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Increasing the iron content of plant products and iron assimilability represents a major
issue for human nutrition and health. This is also a major challenge because iron is
not readily available for plants in most cultivated soils despite its abundance in the
Earth’s crust. Iron biofortification is defined as the enhancement of the iron content in
edible parts of plants. This biofortification aims to reach the objectives defined by world
organizations for human nutrition and health while being environment friendly. A series
of options has been proposed to enhance plant iron uptake and fight against hidden
hunger, but they all show limitations. The present review addresses the potential of
soil microorganisms to promote plant iron nutrition. Increasing knowledge on the plant
microbiota and plant-microbe interactions related to the iron dynamics has highlighted a
considerable contribution of microorganisms to plant iron uptake and homeostasis. The
present overview of the state of the art sheds light on plant iron uptake and homeostasis,
and on the contribution of plant-microorganism (plant-microbe and plant-plant-microbe)
interactions to plant nutritition. It highlights the effects of microorganisms on the plant
iron status and on the co-occurring mechanisms, and shows how this knowledge
may be valued through genetic and agronomic approaches. We propose a change
of paradigm based on a more holistic approach gathering plant and microbial traits
mediating iron uptake. Then, we present the possible applications in plant breeding,
based on plant traits mediating plant-microbe interactions involved in plant iron uptake
and physiology.

Keywords: iron, biotic interactions, plant–microbe interaction, microbiota, plant nutrition, iron biofortification,
rhizosphere

INTRODUCTION

More than 820 million people are suffering from chronic undernourishment, and two billion from
micronutrient deficiencies (hidden hunger) worldwide (FAO et al., 2019). People from lower-
middle-income countries suffer from hunger (undernourishment) and do not have access to a
varied diet (malnutrition). This is leading to micronutrient deficiencies (MNDs) in micronutrients
such as iron (Fe), Zinc (Zn) and vitamin A. Overcoming undernourishment and overcoming
malnutrition represent two of the main “Sustainable Development Goals” of the United Nations
Development Program UNDP 2015 (UNDP, 2015).

Iron deficiency—the main case of MND in the world—has serious effects on human health, such
as microcytic anemia, impaired immune function and poor endocrine function (Bailey et al., 2015;
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Wakeel et al., 2018; World Health Organization, 2021). Iron
plays an essential role in the physiology of living organisms,
e.g., in DNA synthesis, respiration, and photosynthesis
(Aisen et al., 2001).

Meat is the main source of iron in food, with 20–60% of
Fe in the form of haemoproteins that are easily assimilable by
the human body (Cross et al., 2012). However, a significant
fraction of the world human population does not have access
to meat and thus suffers from iron deficiency. This deficiency
also occurs in developed countries, especially among young ladies
(Beck et al., 2014). In plant-based diets in developing countries,
iron is supplied by plant products, especially grains (cereals and
legumes). However, these grains contain low levels of Fe, and
even more include anti-nutritional compounds such as phytates
which hamper Fe assimilation (Gómez-Galera et al., 2010). Yet,
the iron concentration in grains has decreased over the years
because of intensified agriculture, e.g., with the introduction
of semi-dwarf, high-yielding cultivars of wheat (Fan et al.,
2008). At the same time, meat consumption is decreasing in
developed countries with the growing concern for environmental
(higher environmental footprint of animal proteins than of
plant proteins) and diet issues. Thus, increasing Fe content and
assimilability in plant products represents a major challenge for
human nutrition and health.

To address this challenge, food fortification, which consists
in artificially supplementing food with micronutrients (iron,
zinc, vitamins), has been proposed as an option. The Food
Fortification Initiative1 created a network of governmental and
private agencies in several developing countries to promote the
iron fortification of wheat flour. As a result, the consumption
of Fe-fortified wheat flour has increased from 18% in 2004 to
27% in 2007, allievating iron deficiency for 540 million people
(White and Broadley, 2009). Promising results were also obtained
in India, the Philippines and Rwanda with rice, pearl millet
and beans supplemented with iron (Finkelstein et al., 2017,
2019). However, there are limitations to this approach. Costs
are important, supplementation may modify food taste and
is not always well accepted, and finally fortified food hardly
reaches poor people with limited or no access to commercial
channels. Iron fertilization is a common agricultural practice
also used to mitigate plant iron deficiency but not considered
so far overlooked to increase staple food quality. Three main
groups of Fe fertilizers are used: inorganic Fe compounds,
synthetic Fe, and organic Fe complexes (Abadía et al., 2011;
Zanin et al., 2019). In addition to their high cost, the possible
incorporation of these ligands into edible parts of the plant
(Abadía et al., 2011) may represent a problem. These limitations
also apply to new nano-chelates under development (Yuan
et al., 2018). Indeed, the increasing use of nanoparticles raises
concerns for human health or the environment (Soares and
Soares, 2021). In short, efficient Fe fertilizers have several
drawbacks: they are expensive, their efficiency is variable, and
they can be incorporated in the host plant including its
edible parts. They do not represent sustainable options for
increasing the iron content of agricultural products, even if

1http://www.ffinetwork.org/

foliar applications of iron may be of interest in specific cases
(e.g., increasing the iron content of rice and barley grains,
Slamet-Loedin et al., 2015).

Another option relies on iron biofortification, the promotion
of the iron content of plants, especially their edible parts
such as leaves (e.g., lettuce or spinach), roots (e.g., carrot or
cassava), fruits (e.g., peach or apple), and grains (e.g., rice,
wheat, maize). This biofortification relies on better plant iron
nutrition and on the modulation of iron homeostasis. This
option was reported to be more efficient, sustainable and cheaper
than micronutrient fortification (Murgia et al., 2012; World
Health Organization, 2017). According to the FAO, “biofortified
crop varieties are those which have been nutritionally enhanced
using conventional plant breeding or modern biotechnology,
especially recombinant DNA techniques. However, by far the
most widely adopted biofortified crop varieties have been those
developed through conventional crop breeding” (FAO, 2019,
2021). Approximately 90 iron-biofortified crop varieties have
been released in different part of the world (FAO, 2019; Singh
and Prasanna, 2020) and help fight hidden hunger, but much
progress remains to be made. Iron biofortification represents a
major challenge because Fe is not readily available for living
organisms, including plants, in most cultivated soils despite
its abundance: Fe is the fourth element in the Earth’s crust
(Lemanceau et al., 2009). Low iron availability is particularly
acute in alkaline soils which represent about 30% of the world’s
croplands and up to 40% of arable surfaces (Chen and Barak,
1982; Sullivan and Gadd, 2019). Iron availability depends on
the soil properties and more specifically on the soil pH and
redox potential (Robin et al., 2008; Colombo et al., 2014).
Immobilization of iron in the form of scarcely soluble complexes
formed between Fe3+ and hydroxides, oxyhydroxides, and
oxides, increases with the soil pH (Robin et al., 2008). The low
availability of iron may lead to plant growth depression and even
to iron deficiency chlorosis (IDC), interveinal chlorosis, which
ultimately negatively impact crop yield (Briat et al., 2015) and
quality (their Fe content).

Soil microorganisms have long been known to contribute to
plant iron nutrition (Marschner, 1995). This beneficial effect
was first showed by comparing the iron contents of plants
grown in sterile and non-sterile soils. The iron content of
sunflower, maize (Masalha et al., 2000), rape and red clover
(Rroço et al., 2003; Jin et al., 2006) was significantly lower
when they were grown in sterile rather than non-sterile soil;
sunflower even suffered from chlorosis in sterile soil. A high
occurrence of oligotrophic bacteria in lupine rhizosphere was
associated with an increased concentration of Fe, Cu, Mn and
Zn in plant shoots, suggesting that these bacteria may contribute
to plant iron and more generally to plant mineral nutrition (De
Santiago et al., 2019). The promotion of iron nutrition in a
range of plant species by various microbial strains (e.g., root
symbionts) and metabolites has been reported in a series of
studies listed in Table 1. Interactions between plants may also
facilitate their iron nutrition. Intercropping cereal and legume
plants can notably improve their iron content (Zuo et al., 2000;
Gunes et al., 2007; Zuo and Zhang, 2009; Xue et al., 2016). Thus,
maize-peanut intecropping improved Fe nutrition of peanut
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TABLE 1 | Microorganisms and microbial metabolites mediating the plant iron status.

Microorganisms and/or
microbial metabolites

Application
modes

Plants Effects on the plant
iron status

Additional observations Effects on plant
genes

Mechanism(s) proposed
by authors

References

Acinetobacter calcoaceticus
O-13; Bacillus simplex K-10

Bacterial
suspension

Potato Plant [Fe]/Fe(1)↗(2) Tryptophan addition enhance
iron uptake

Sid.(3) iron mobilization Mushtaq et al.,
2021

N2 fixer and/or auxin producer
mutants of Azospirillum
brasilence FP2

Bacterial
suspension

Maize Plant [Fe]/Fe↗,
modif. Fe distrib(3).

Root ethylene production↘(4),
root auxin and DIMBOA(5)

production↗,
metabolic partitioning of carbon
differed

Regulation of hormone
signaling and cellular iron
transport

Housh et al.,
2021

Gluconacetobacter
diazotrophicus PAL5;
Azospirillum brasilense REC3

Bacterial
suspension

Strawberry Plant [Fe]/Fe↗ Phenolic compounds
content↘,
chlorophyll↗

Sid. iron mobilization Delaporte-
Quintana et al.,
2020

Pseudomonas spp.;
Enterobacter spp.;
Bacillus sporothernodurans

Bacterial
suspension

Sunflower Plant [Fe]/Fe↗ Sid.(6) production↗,
phytohormone production↗,
phosphate solubilization↗,
HCN(7) production↗

Sid. iron mobilization Pourbabaee
et al., 2018

Burkholderia cepacia JFW16 Bacterial
suspension

Milkvetch Plant [Fe]/Fe↗ Rhizosphere acidification, root
FR(8)

↗, flavin release, sid. and
phytohormone production↗

FRO2 expr.(9)
↗,

IRT1 expr.↗,
AHA2 expr.↗,
FIT1 expr.↗

Promotion of iron
mobilization by acidification,
strategy I iron uptake, and
hormonal regulation

Zhou et al.,
2018

Pseudomonas fluorescens
ATCC13525

Bacterial
suspension

Tomato Plant [Fe]/Fe↗ IRT1 expr.↗, FRO2
expr.↗, NRAMP3
expr.↗

Promotion of strategy I iron
uptake, and redistribution

Nagata, 2017

Burkholderia terricola
LMG20594; Pseudomonas
brassicacearum NFM421;
B. pyrrocinia LMG14191;
P. mandelii NBRC103147;
Herbaspirillum huttiense
NBRC10252

Bacterial
suspension

Lentil, pea Plant [Fe]/Fe↗ Rhizosphere acidification, sid.
production↗, phytohormone
production↗

Iron uptake Reza, 2017

Paenibacillus polymyxa
BFKC01

Bacterial
suspension

Arabidopsis Plant [Fe]/Fe↗ Root FR↗ FRO2 expr.↗, IRT1
expr.↗, FIT1
expr.↗ MYB72
expr.↗

Promotion of iron uptake by
modulation of the
expression of strategy I key
genes and of ISR key genes

Zhou et al.,
2016

Rhizobium leguminosarum
bv.(10) phaseoli; Pseudomonas
spp. Avm

Bacterial
suspension

Common
bean

Plant [Fe]/Fe↗,
modif. Fe distrib.

Wild variety more efficient in Fe
uptake than cultivated variety
after microbial inoculation

Promotion of iron uptake Carrillo-
Castañeda
et al., 2005

Bacillus subtilis CPA; Bacillus
sp. AHP3; Pseudomonas
chlororaphis PR29; Glomus
fasciculatum
(consortium)

Bacterial and fungal
suspension

Wheat Plant [Fe]/Fe↗ Grain protein content↗
superoxide dismutase (SOD)↗
catalase (CAT)↘, chlorophyll↗
Metabolome modification

Promotion of nutrient yield
by metabolic regulation and
ROS scavenging activity

Yadav et al.,
2020

Arthrobacter sulfonivorans
DS-68; Enterococcus hirae
DS-163

Bacterial coating Wheat Plant [Fe]/Fe↗, seed
[Fe]/Fe↗, modif. Fe
assimil.(11)

Anti-nutritional factor↘ Promotion of iron uptake Singh et al.,
2018
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TABLE 1 | (Continued)

Microorganisms and/or
microbial metabolites

Application
modes

Plants Effects on the
plant iron status

Additional observations Effects on plant
genes

Mechanism(s) proposed
by authors

References

Bacillus subtilis BHHU10,
Trichoderma harzianum
TNHU27, and Pseudomonas
aeruginosa PJHU15
(consortium)

Bacterial and fungal
coating

Pea Modif. Fe assimil. Phenolics, flavonoids, ascorbic
acid and protein content↗

Promotion of ROS
scavenging activity in plants

Jain et al., 2014

Pseudomonas fluorescens
C7R12; pyoverdine of
P. fluorescens C7R12

Bacterial
suspension;
apo-siderophore

Arabidopsis Root [Fe]/Fe↘,
shoot [Fe]/Fe↗

Changes in plant hormone
production, Incorporation of
Fe-pyoverdine suggested by
15N-labeling and
immunodetection

Numerous
modifications
evidenced in a
transcriptomic
study

Sid. promotion of iron
mobilization in the
rhizosphere including the
apoplast, of strategy I iron
uptake, and regulation of
hormone signaling

Trapet et al.,
2016

B. subtilis GBO3 Bacterial
suspension;
Bacterial VOCs(12)

Arabidopsis Plant [Fe]/Fe↗ Rhizosphere acidification, root
FR↗

FRO2 expr.↗, IRT1
expr.↗,
FIT1 expr.↗

Promotion of iron
mobilization by acidification
and of strategy I iron uptake

Zhang et al.,
2009

Bacillus amyloliquefaciens
BF06

Bacterial VOCs Arabidopsis Plant [Fe]/Fe↗ Root FR↗,
Fe2+ production↗, Production
of VOCs implied (2R or
3R-butanediol)

FRO2 expr.↗, IRT1
expr.↗, FIT1
expr.↗

Promotion of strategy I iron
uptake through gene
expression modulation

Wang et al.,
2017

Arthrobacter sulfonivorans
DS-68; Arthrobacter sp.
DS-179

Liquid bacterial
culture coating

Wheat Plant [Fe]/Fe↗ Organic acid production↗ ZIP expr.↗ Promotion of iron uptake
and translocation through
organic acid production
and stimulation of iron
transporters

Singh et al.,
2017

B. subtilis GBO3 Liquid bacterial
culture

Cassava Shoot [Fe]/Fe↗ Promotion of the plant iron
status through the
regulation of the plant iron
metabolism including
hormone signaling

Freitas et al.,
2015

Paenibacillus cookie JGR8;
Pseudomonas
pseudoalcaligenes JGR2;
Bacillus megaterium JGR9

Liquid bacterial
culture

Lesser
bullrush

Shoot [Fe]/Fe↗ for
strain JGR2, modif.
Fe distrib.

Sid. production↗,
phytohormone production↗,
phosphate solubilization↗

Sid. promotion of iron
accumulation and
translocation; relationship
between sid. production
and phosphate
solubilization

Ghosh et al.,
2014

Chryseobacterium spp. C138 Liquid bacterial
culture

Tomato Plant [Fe]/Fe↗ Fe-sid. used as a source of
iron under iron deficiency

Radzki et al.,
2013

P. putida MTCC 103,
Enterobacteria

Liquid bacterial
culture

Rice Plant [Fe]/Fe↗,
seed [Fe]/Fe↗

Variation of peroxidase activity Promotion of iron
solubilization, uptake and
translocation related to sid.
production

Sharma et al.,
2013

R. leguminosarum PR1;
Pseudomonas sp. PGERs17

Liquid bacterial
culture

Lentil Plant [Fe]/Fe↗ Nodulation↗,
leghaemoglobin↗

Fe-sid. used as a source of
iron under iron deficiency

Mishra et al.,
2011

Trichoderma asperellum T34 Fungal conidia Cucumber Shoot [Fe]/Fe↗ Fe-sid. used as a source of
iron under iron deficiency

De Santiago
et al., 2013
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TABLE 1 | (Continued)

Microorganisms and/or
microbial metabolites

Application
modes

Plants Effects on the
plant iron status

Additional observations Effects on plant
genes

Mechanism(s) proposed
by authors

References

T. asperellum T34 Fungal conidia White lupin Shoot [Fe]/Fe↗ Peroxidase activity↗, catalase
activity↗

Sid. promotion of iron
accumulation and
translocation under iron
deficiency; promotion of
ROS scavenging activity is
implied

De Santiago
et al., 2009

Hymenoscyphus ericae Fungal suspension Heather Plant [Fe]/Fe↗ Variation in results depending
on calcium addition

Sid. iron mobilization Leake et al.,
1990

Glomus etunicatum WV579A, G.
diaphanum WV579B,
G. intraradices WV894

Fungal cultures Maize Root [Fe]/Fe↗ Variation in results depending
on soil pH and fungal strain

Sid. iron mobilization Clark and Zeto,
1996

Glomus mossae and rhizosphere
microorganisms

Fungal spores, root
pieces and soil

Peanut,
sorghum

Plant [Fe]/Fe↗
modif. Fe distrib.

Plant phosphate↗ Increased soil exploration Caris et al.,
1998

Glomus mossae, G. albidum, G.
fasciculatum, G. macrocarpum.

Fungal spores
propagated in
sterile soil

Galleta
grass

Plant [Fe]/Fe↗ use of 59Fe Sid. iron mobilization and
transport into mycorrhizal
plants

Cress et al.,
1986

Glomus intraradices Commercial
inoculant

Maize Shoot [Fe]/Fe↗
Shoot [Fe]/Fe↘

Variation in results with amount
of micronutrients and P added

Increased soil exploration Liu et al., 2000

Arbuscular mycorrhiza fungi
inoculant

Commercial
inoculant

Chickpea Plant [Fe]/Fe↗ No effect of mineral N
fertilization

Increased soil exploration Farzaneh et al.,
2011

Glomus intraradices, G. mosseae,
G. aggregatum,
G. etunicatum

Commercial
inoculant

Sorghum Plant [Fe]/Fe↗ Plant biomass↗,
chlorophyll↗,
Plant S↗,
ROS↘

DMAS2 exp.↗,
NAS2 exp.↗,
YS1 exp.,↗

Promotion of strategy II iron
uptake (PS↗), and of ROS
scavenging activity

Prity et al.,
2020

Glomus intraradices, G. mosseae,
G. aggregatum,
G. etunicatum

Fungal spores (mix) Alfalfa Plant [Fe]/Fe↗ Plant biomass↗,
chlorophyll↗,
plant S↗,
root FR↗,
ROS↘

FRO expr.↗,
SULTR (1;1,
1;2,1;3, 3;1)
expr.↗

Promotion of iron
mobilization in the
rhizosphere including the
root apoplast, and of ROS
scavenging activity

Rahman et al.,
2020

Glomus intraradices, G. mosseae,
G. aggregatum, G. etunicatum

Fungal spores (mix) Sunflower Plant [Fe]/Fe↗ Plant biomass↗,
chlorophyll↗,
root FR↗,
ROS↘, CAT↗,
SOD↗

FRO1 expr.↗,
IRT1 expr.↗,
ZIP1 expr.↗,

Promotion of iron
mobilization and uptake,
and ROS scavenging
activity

Kabir et al.,
2020

Rhizophagus irregularis
DAOM197198

Fungal spores Maize Shoot [Fe]/Fe↗ Genes implied in strategy II
were not induced

OPT8 expr.↗, NAS
expr.↗

Selective induction of
putative iron transporters

Kobae et al.,
2014

Rhizophagus irregularis
DAOM197198

Fungal spores Chicory Root [Fe]/Fe↗ Root exploration volume↗,
phosphatase production↗

Increased soil exploration,
phosphatase activities
implied

Labidi et al.,
2012

Desferrioxamine B, sid. of
Streptomyces obtained
commercially

Fe-siderophore Wheat Plant [Fe]/Fe↘,
modif. Fe distrib.

Variation of phytosiderophore
production

Sid. inhibition of iron uptake
via PS chelation

Sadrarhami
et al., 2021
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TABLE 1 | (Continued)

Microorganisms and/or
microbial metabolites

Application
modes

Plants Effects on the
plant iron status

Additional observations Effects on plant
genes

Mechanism(s) proposed
by authors

References

3 pyoverdines, sids of
P. fluorescens C7R12;
Pseudomonas sp. B4214;
Pseudomonas sp. D426

Fe-siderophore Pea Plant [Fe]/Fe↗,
modif. Fe distrib.

Effects on the plant Fe status
varying with pea cv.(13) and
sids, modifications of the plant
ionome

Fe-sid. used as a source of
iron under iron deficiency

Lurthy et al.,
2020

Azotochelin, sid. of Azotobacter
vinelandii obtained
commercially

Fe-siderophore Soybean Plant [Fe]/Fe↗ Sid. iron mobilization Ferreira et al.,
2019

Pyoverdine, sid. of
P. fluorescens ATCC13525

Fe-siderophore Tomato Plant [Fe]/Fe↗, chlorophyll↗ FRO2 expr.↗, IRT1
expr.↗

Fe-sid. used as a source of
iron under iron deficiency

Nagata et al.,
2013

Pyoverdine, sid. of
P. fluorescens C7R12

Fe-siderophore Arabidopsis,
tobacco,
barley, wheat,
fescue, rye
grass

Plant [Fe]/Fe↗ Incorporation of Fe-pyoverdine
suggested by 15N-labeling

Fe-sid. used as a source of
iron under iron deficiency

Shirley et al.,
2011

Pseudomonas spp. sid. Fe-siderophore Red clover Plant [Fe]/Fe↗ chlorophyll↗ Sid. iron mobilization,
Fe-sid. used as a source of
iron under iron deficiency

Jin et al., 2010

Pyoverdine, sid. of
P. fluorescens C7R12

Fe-siderophore Arabidopsis Plant [Fe]/Fe↗ An IRT1 mutant still
incorporated Fe-pyoverdine,
incorporation of Fe-pvd
suggested by 15N-labeling and
immunodetection

Fe-sid. used as a source of
iron under iron deficiency
using a non-reductive
uptake mechanism

Vansuyt et al.,
2007

Aerobactin, sid. of Citrobacter
diversus

Fe-siderophore Soybean Plant [Fe]/Fe↗ Fe2+ production↘ Fe-sid. used as a source of
iron under iron deficiency
using a non-reductive
uptake mechanism

Chen et al.,
2000

Hydroxamate, sid. mixture from
Penicillium chrysogenum

Fe-siderophore Cucumber,
maize

Plant [Fe]/Fe↗ Fe2+ production↗ Sid. iron mobilization Hördt et al.,
2000

Rhizoferrin, sid. of Rhizopus
arrhizus

Fe-siderophore Tomato Modif. Fe distrib.,
root [Fe]/Fe↗

chlorophyll↗ Sid. iron mobilization Yehuda et al.,
2000

Ferrioxamine B, sid. of
Streptomyces spp. obtained
commercially

Fe-siderophore Onion Root [Fe]/Fe↗ Root FR unchanged Sid. iron mobilization Manthey et al.,
1996

Rhizoferrin, sid. of Rhizopus
arrhizus

Fe-siderophore Tomato Modif. Fe distrib.,
root [Fe]/Fe↗

Fe-sid. used as a source of
iron under iron deficiency

Shenker et al.,
1995

Pseudobactin, syn.(14)

pyoverdine, sid. of
Pseudomonas putida WCS358

Fe-siderophore Barley Modif. Fe distrib.,
root [Fe]/Fe↗

No Fe exchange between
pyoverdine and
phytosiderophore

Fe-sid. used as a source of
iron under iron deficiency

Duijff et al.,
1994

Ferrioxamine B, sid. of
Streptomyces spp. obtained
commercially

Fe-siderophore Cucumber Plant [Fe]/Fe↗ Siderophore in the xylem Fe-sid. used as a source of
iron, uptake through the
transpiration stream and
translocation

Wang et al.,
1993
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(Zuo et al., 2000), while wheat-chickpea intecropping increased
the Fe concentration in wheat seeds (Gunes et al., 2007).
Interestingly, the rhizosphere microbiota of these associated plant
species differed from the rhizosphere microbiota of these same
plants cultivated separately (Sun et al., 2009; Zhang et al., 2012;
Wahbi et al., 2016a; Taschen et al., 2017). A more complex
rhizosphere bacterial network was recently shown in pea-wheat
intecropping (Pivato et al., 2021). Thus, we can hypothesize
that the rhizosphere microbiota accounts for the increased iron
uptake by intercropped plants.

On the basis of a range of studies published lately, we argue
that iron biofortification is a relevant option to alleviate MND.
This option requires better knowledge of the organisms and
mechanisms that promote plant iron uptake and homeostasis.
The present overview of the state of the art sheds light
on plant iron uptake and homeostasis, and on the plant-
microorganisms interactions (plant-microbe and plant-plant-
microbe) that impact these processes. Then, we describe different
strategies of iron fortification of plants, with a special focus
on biofortication, and we finally discuss promising prospects
based on the monitoring of the dynamic interplay between plants
and their rhizosphere microbiota, including microbes from the
surrounding soil, attached to and influenced by the roots, plus
from the roots themselves (endophytes).

BIOLOGICAL LEVERS TO PROMOTE
PLANT IRON UPTAKE AND REGULATE
IRON HOMEOSTASIS

Valuing Plant Genetic Resources to
Improve Iron Nutrition
Plant Iron Physiology
The forms of iron available to plants are the ferric iron cation
(Fe3+), or ferric-ion chelates (Fe3+-chelates), and the ferrous
iron cation (Fe2+) (Figure 1). Two main strategies of root
iron acquisition are described: strategy I (the reduction-based
strategy), and strategy II (the chelation strategy) (Curie and
Briat, 2003; Curie et al., 2009; Kobayashi and Nishizawa, 2012;
Connorton et al., 2017). Strategy I is found in non-graminaceous
monocots and dicots. It relies on the reduction of Fe3+ by
a ferric reduction oxidase (encoded by a FRO gene), and the
incorporation of the resulting Fe2+ into the root by an iron-
regulated transporter (encoded by an IRT or a RIT gene). The
pH is decreased in the rhizosphere (Hinsinger et al., 2003),
as a result of proton extrusion by plasma membrane proton
pumps (encoded by an AHA gene); this acidification increases
Fe3+ solubility.

Strategy II is found in grasses. It relies on the excretion of
phytosiderophores (PSs, structural derivatives of mugineic acid)
by a transporter of mucigenic acid (encoded by a TOM gene) that
chelates Fe3+ (Fe3+-PS) before incorporation into the root by an
oligopeptide transporter belonging to the Yellow Stripe/Yellow
Stripe Like family (YS/YSL) (Curie et al., 2009).

Differentiating plant species according to their iron uptake
strategy has its own limitations, as both strategies are found in
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FIGURE 1 | Schematic representation of different aspects of microbial regulation of the plant iron status. (A) Types of effects of microorganisms on the plant iron
status: (i) content, (ii) root and/or shoot distribution, (iii) assimilability, and (iv) iron storage in the seeds (see Table 1 for further information). (B) Microbial activities
involved in the active strategy of plant iron uptake and homeostasis. Plant transporters and enzymes mediating iron uptake are represented in blue for dicots and
non-graminaceous monocots, and in red for grasses. In iron uptake strategy I (reductive strategy), protons are extruded by H+-ATPases (e.g., AHA in Arabidopsis),
Fe3+ is reduced by plant ferric reductases (e.g., FRO2 in Arabidopsis) to Fe2+ which is internalized in root cells by a specific transporter (e.g., IRT1 in Arabidopsis or
IRT-like in rice and barley). Excretion of root fluorescent phenolic compounds (FPC) via ABC transporters (e.g., PDR9 in Arabidopsis) contributes to strategy I iron
uptake and more specifically to re-mobilization of root apoplastic iron which is internalized via IRT1. In iron uptake strategy II (chelating strategy), Fe3+ is chelated by
phytosiderophores (PS) (e.g., secreted via TOM1 in rice) and the Fe-PS complex is internalized by a specific transporter (e.g., YSL in rice or YSL-like in peanut).
A non-reductive mechanism controlled by the plant phosphorus (P) status implies a putative specific iron chelate transporter (ICT) possibly involved in the
internalization of chelates formed by Fe3+ reduced and complexed by FPC (Fe2+-FPC). Numbers represent the types of microbial activities: ÊAcidification through
production of protons (H+), organic acids (OA) and hydrogen cyanide (HCN), and ËChelation by OA, HCN or microbial siderophores (MS) contributes to
solubilization of ferric iron (Fe3+) immobilized in O(OH)n. Acidification and chelation increase bioavailability of Fe3+ to plants. ÌFe3+-MS complexes are suspected to
be internalized by a non-reductive process (MS transport, MS-T) with possible endocytosis (represented by green vesicles). ÍRhizosphere microorganisms can
metabolize cellulose, hemicellulose and putrescine, or produce putrescine, and thus modify molecules involved in root apoplastic iron storage and re-mobilization.
ÎMicroorganisms triggering induced systemic plant resistance (ISR) influence FPC production; FPCs contribute to plant iron uptake by re-mobilizing root apoplastic

(Continued)
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FIGURE 1 | iron through the modulation of MYB72 (root transcription factor) and BGLU42 (beta-glucosidase) expression. ÏMicroorganisms influence the expression
of key genes of plant iron uptake strategies I and II. ÐMicroorganisms influence the plant reactive oxygen species (ROS) status, and this modulates the plant iron
status. ÑMicroorganisms influence the plant hormone (JA, jasmonic acid; Et, ethylene; ABA, abscisic acid; NO, nitric oxide; GA, gibberellin; SA, salicylic acid; IAA,
indole acetic acid) status (directly by synthesizing or metabolizing them, or indirectly by inducing plant defense responses), and this modulates the plant iron status.
ÒMicroorganisms influence the plant P status, which is implied in the regulation of the plant iron status. ÓFungal root symbionts extend the volume of soil explored,
and this improves acquisition of nutrients including iron. Phytosiderophore scavenging by soil bacteria influences strategy II plant iron uptake. Slash-dotted arrows
indicate interrelations between various components of plant physiology influencing plant iron acquisition and redistribution. (∗) influence on plant P bioavailability.

rice, barley and peanut (Ishimaru et al., 2006; Pedas et al., 2008;
Xiong et al., 2013). In Arabidopsis (a strategy I plant), chelating
agents (e.g., coumarins) may contribute to iron nutrition
in addition to the reduction strategy, especially in alkaline
environments (Fourcroy et al., 2014; Schmid et al., 2014; Schmidt
et al., 2014). These fluorescent phenolic compounds (FPCs)
are synthesized via the phenylpropanoid pathway and secreted
via an ABC transporter (e.g., PDR9 in Arabidopsis). Chlorotic
phenotypes of IRT1 and FRO2 mutants were not restored by
FPCs from plant exudates, suggesting that strategy I is implied
in the uptake of Fe3+chelated to PC (Fourcroy et al., 2016).
However, based on a review of results obtained under phosphate-
(Pi-) deficient conditions, Tsai and Schmidt (2017) hypothesized
the existence of an auxiliary IRT1-independent iron chelate
transporter (ICT) that would bypass the IRT1 uptake system and
internalize the Fe-FPC complex under Pi-deficient conditions.
Flavins, another family of phenolic compounds, also increased
iron solubilization in the rhizosphere of other plant species (e.g.,
barrel medic, sugar beet) than Arabidopsis (Rodríguez-Celma
et al., 2013; Sisó-Terraza et al., 2016). Iron solubilization by
phenolic compounds has also been reported in rice, a strategy II
plant (Bashir et al., 2010; Ishimaru et al., 2011). Besides PSs and
FPCs, organic acids (e.g., citrate or succinate) chelate Fe3+ (Fe3+-
OC) and contribute to plant iron nutrition (Abadía et al., 2011;
Adeleke et al., 2017). Synthetic ferric chelates (Fe3+-SC)—e.g.,
Fe-EDDHA or Fe-EDTA –, may provide iron to strategy I plants;
entire chelates have been found in roots and shoots (Orera et al.,
2009, 2010). These small hydrophilic molecules are suspected to
use the transpiration stream as the driving force of entry (Abadía
et al., 2011). Iron uptake by the leaves follows similar mechanisms
as those described in the roots (Malhotra et al., 2019). Thus,
even if strategies I and II remain essential pathways for iron
acquisition by plants, they are not necessarily exclusive and may
be complemented by additional mechanisms.

Iron is a central cofactor of enzymatic reactions involving
electron transfer in essential metabolic pathways such as
respiration or photosynthesis (Balk and Schaedler, 2014). Yet,
its redox properties may also induce toxic effects. Free Fe2+

catalyzes the Fenton reaction in which reactive oxygen species
(ROS) characteristic of oxidative stress are generated, and ROS
may cause irreparable damage to cellular components when they
are present in excessive concentrations (Winterbourn, 1995).
The intracellular concentrations and forms of iron are therefore
tightly regulated at the cellular level. The mechanisms involved
in iron homeostasis have many common features in strategy
I and strategy II plants (Connorton et al., 2017; Grillet and
Schmidt, 2019; Kobayashi et al., 2019). In planta, chelation of
Fe2+ to Nicotianamine (NA), and Fe3+ to citrate, allows iron

mobilization and the control of its high reactivity (Curie et al.,
2009; Connorton et al., 2017). In strategy II plants, ferric iron
is additionally present in the form of Fe3+-PS (Zhang et al.,
2019). Iron is also stored in unreactive forms such as ferritins that
represent a major iron pool in plants mostly found in chloroplasts
and mitochondria. They behave like a buffer that stores iron to
avoid overload and the resulting ROS formation, and releases it
when needed. To avoid oxidative stress, iron storage in vacuoles
also contributes to iron homeostasis. Candidate transporters
for moving cytosolic iron into vacuoles are members of the
IRT, FPN/IREG (ferroportin/iron regulated) and VIT (vacuolar
iron transporter) families (Morrissey et al., 2009; Roschzttardtz
et al., 2009; Vert et al., 2009). VIT transporters are particularly
important for vacuolar iron storage in seeds (Roschzttardtz
et al., 2009; Zhang et al., 2012). In seeds, iron is mainly
found under an insoluble form poorly available for nutrition
because it is complexed with phosphate bound to inositol in
phytates (Mary et al., 2015). Iron remobilization from the
vacuoles is mediated by members of the natural resistance-
associated macro-phage protein family (NRAMP) (Curie et al.,
2000; Nevo and Nelson, 2006). In addition to ferritins and
vacuoles, the root apoplast appears as a third level of iron
storage by plants (Curie and Mari, 2017). Bienfait et al. (1985)
demonstrated that a pool of 500–1,000 nanomoles of Fe per gram
fresh weight could be formed in the root apoplast where it is
adsorbed on the cell wall whose net charge is negative (Shomer
et al., 2003). The cell wall composition, more particularly
the respective proportions of celluloses, hemicelluloses, pectins,
and lignins, varies depending upon plant genotypes, and
influences the amount of adsorbed iron (Chen, 2014; Shi et al.,
2018). The plant capacity to store iron in its root apoplast
is positively correlated to the amount of hemicelluloses in
the cell wall and would be a key determinant in the IDC
tolerance of graminaceous plant species such as maize (Shi
et al., 2018). IDC tolerance in soybean is also associated
with an increased amount of root apoplastic iron (Longnecker
and Welch, 1990). Remobilization of precipitated apoplastic
iron relies on phenolic compounds (Jin et al., 2007; Bashir
et al., 2011; Ishimaru et al., 2011; Lei et al., 2014), putrescine
synthesis, and decreased cell wall suberization (Zhu et al., 2016;
Curie and Mari, 2017).

Proteins involved in iron acquisition—F6′H1, PDR9, and
members of the HA, FRO, and IRT family—also mediate
cellular iron trafficking (Connorton et al., 2017). Members of
the oligopeptide transporter (OPT) protein family (e.g., YS/YSL
transporters) are also key determinants of iron transport in planta
(Su et al., 2018; Grillet and Schmidt, 2019; Kumar et al., 2019).
This transporter family is particularly important for the transport
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of Fe to the seeds (Grillet et al., 2014; Curie and Mari, 2017; Su
et al., 2018; Kumar et al., 2019).

Plant Breeding
The identification of plant traits mediating plant iron uptake and
iron homeostasis in planta offers opportunities for plant breeders
to promote iron nutrition and content in agricultural products
(Waters and Sankaran, 2011).

Conventional plant selection and new breeding strategies
are both applied to enhance iron acquisition, storage and
nutritional availability in edible parts of crops. There exists
a natural genetic variation in the level of expression of the
mechanisms regulating iron uptake and homeostasis among
plant genotypes. The efficiency of plant iron nutrition is highly
variable across plant species (Hansen et al., 2006). The level of
tolerance or the susceptibility to IDC highly differs according
to plant species and even to cultivars (e.g., Gildersleeve and
Ocumpaugh, 1989; Zribi and Gharsalli, 2002; Mahmoudi et al.,
2009; Helms et al., 2010). The Fe levels in grains can vary
significantly depending on cultivars (e.g., from 10 to 160 mg/kg
in maize, 15–360 mg/kg in wheat, 23–105 mg/kg in pea and
34–157 mg/kg in bean) (White and Broadley, 2005, 2009).
Assimilability of Fe for human beings correlates positively
with the iron content in edible parts of crops (Welch et al.,
2000) and varies with the forms of iron. The most assimilable
forms of iron in plants are Fe2+-nicotianamine (Fe2+-NA)
and Fe3+-ferritin (Zielińska-Dawidziak, 2015; Beasley et al.,
2019). In addition, iron nutritional availability is decreased by
antinutrient molecules (e.g., phytates and tannins) that hamper
its assimilation. Sufficient iron availability in food products is
only possible when the concentration of these molecules is low
(Sandberg, 2002; Delimont et al., 2017). Conventional breeding
has led to the selection of cultivars showing better resistance
to iron stress (i.e., IDC tolerant) and a higher iron content
in edible parts, but also a decreased content of antinutrients
(reviewed in Garcia-Oliveira et al., 2018). This was the case in
species displaying high natural variability in their iron content
(e.g., bean and pearl millet) (Manwaring et al., 2016; Lockyer
et al., 2018). The selection of IDC-tolerant cultivars has further
improved yields under iron stress conditions. However, the
corresponding selection process relies on a long and costly
screening of inbred lines.

Taking that limitation into account, transgenesis has been
proposed as an option to promote plant iron nutrition and
content by overexpressing or silencing genes mediating plant
iron acquisition, transport and/or storage. The corresponding
strategy has been followed through the targeting of one gene or
several ones in combination and has led to genotypes with an
increased iron content (i.e., from <2 to 6-fold) (Kawakami and
Bhullar, 2018; Connorton and Balk, 2019). However, transgenesis
raises public concerns (Lassoued et al., 2018). Furthermore,
positive effects recorded in controlled conditions may be lost
in field conditions because iron bioavailability varies among
soils (Gregory et al., 2017). For example, iron uptake by
soybean was increased by overexpressing FRO in controlled iron
stress conditions (Vasconcelos et al., 2006) but not in high-
calcareous soil environments (Kocak, 2014); even more, this

genetic transformation appeared to be deleterious under non-
iron stressed conditions due to toxic effects of the iron overload
(Vasconcelos et al., 2006).

More generally, results from cultivars obtained from
conventional and new breeding strategies vary depending
upon soil iron bioavailability (Gregory et al., 2017; Garcia-
Oliveira et al., 2018; Lockyer et al., 2018; Connorton and Balk,
2019). Alternative strategies based on QTL (quantitative trait
loci) identification and on genome-wide association (GWAS)
have been proposed to identify putative traits and genes
mediating plant iron nutrition, and include them in plant
breeding programs. The first step of this strategy confirmed
the importance of genes implied in (i) iron uptake strategies
I and II, (ii) the synthesis of phenolic compounds, and (iii)
iron homeostasis. They further underlined the multigenic
character of traits related to the plant iron status and the crucial
importance of environmental conditions (Garcia-Oliveira et al.,
2018; Connorton and Balk, 2019). Gene expression profiling
of soybean plants sensitive or tolerant to IDC pinpointed
key roles for phenylpropanoids (Waters et al., 2018). The
major contribution of iron storage in the root apoplast and
of fluorescent phenolics to remobilize this extracytoplasmic
iron was confirmed and represents potential breeding targets
(Curie and Mari, 2017; Waters et al., 2018). The complex and
interregulated mechanisms of plant iron uptake and homeostasis
has also been emphasized. A key role has been given to (i)
phosphorus known to be in close relation with the iron status
(e.g., Vansuyt et al., 2003; Tsai and Schmidt, 2017; Shi et al.,
2018; Filiz and Kurt, 2019), (ii) ISR through the root-specific
transcription factor MYB72 and beta-glucosidase BGLU42
(Zamioudis et al., 2014), and (iii) hormone signaling, especially
IAA, Et, NO and ABA signaling (Lei et al., 2014; Li et al., 2015;
Curie and Mari, 2017; Filiz and Kurt, 2019). The complex
interrelations between the plant iron status, the P status, defense
reactions and hormone signaling make the promotion of plant
nutrition via plant breeding a difficult task.

Plant-Microbe Interactions Mediating
Iron Uptake and Homeostasis
Impact of Rhizosphere Microbiota on Iron Availability
The rhizosphere microbiota impacts the physico-chemical
properties of the root environment by acidifying the soil through
the release of organic acids and protons, and chelating iron
with organic acids and siderophores (Figure 1BÊ, Ë). These
modifications prompt iron extraction from the soil matrix and
thus modify its solubility and availability for the host plant.

Solubilization of iron in the rhizosphere is promoted by
acidification. Protons are released during microbial activities
such as nitrification (Kuypers et al., 2018). Protons may also be
released from carboxylic groups when the pH of the soil solution
is higher than the pKa of organic acids exuded by microorganisms
(Glasauer et al., 2003). The protons released by microbial and
plant activities acidify the rhizosphere (Hinsinger et al., 2003;
Norton and Ouyang, 2019). Iron initially bound in scarcely
soluble minerals (e.g., hematites, goethites) and amorphous
solids [e.g., Fe(OH)3] is replaced by protons at the sorption
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sites and released in the soil solution (Figure 1BÊ; Albrecht-
Gary and Crumbliss, 1998; Glasauer et al., 2003). Acidification
also results from phosphate solubilization (Sharma A. et al.,
2013). Organic acids are produced by rhizosphere bacteria that
solubilize phosphates (e.g., Pseudomonas, Bacillus, Rhizobium,
and Enterobacter) (Werra et al., 2009; Adeleke et al., 2017). Fe and
P are often sequestered in soils together in low-solubility minerals
like strengite or phosphosiderite. Thus, increased solubility of
iron is associated with increased solubility of P (Marschner et al.,
2011; Rijavec and Lapanje, 2016).

Solubilization of iron in the rhizosphere is also promoted
by its chelation with organic acids, and by siderophores that
scavenge ferric iron immobilized in scarcely soluble or insoluble
forms and make it available to plants (Figure 1BË; Kraemer,
2004; Jin et al., 2010; Ferret et al., 2014). The great majority of
aerobic microorganisms synthesize small molecules with a high
affinity for ferric iron—called siderophores—for their nutrition
in iron stress conditions. Microbial siderophores (MSs) present
high but variable affinity for Fe3+, and are also diverse in
size and chemical composition (Budzikiewicz, 2004; Hider and
Kong, 2010; Saha et al., 2016; Khan et al., 2019). It has long
been known that plants use iron chelated to MSs for their
nutrition in Fe-limiting conditions; in particular, pyoverdines
(pvds), a major class of siderophores produced by fluorescent
pseudomonads, show a high affinity for ferric iron (reviewed
by Crowley, 2006; Vansuyt et al., 2007; Jin et al., 2010; Shirley
et al., 2011; Nagata et al., 2013; Radzki et al., 2013; Trapet
et al., 2016). Rhizoferrin, ferrocrocin, fusigen, and coprogen, all
produced by fungal root symbionts, also display high affinity
for ferric iron (Winkelmann, 2017; Haselwandter et al., 2020).
Microorganisms are expected to be highly competitive for Fe
compared to plant roots because they can (i) use Fe bound to
phytosiderophores (PSs) (microbial siderophores like pyoverdine
have much higher affinity for Fe than PSs do), (ii) decompose PSs,
and (iii) acquire iron more efficiently (Figure 1B ; Marschner
et al., 2011; Sadrarhami et al., 2021). However, while Fe-
pvds are more stable than Fe-PSs, they do not depress plant
iron nutrition but, even more, promote it (Vansuyt et al.,
2007; Jin et al., 2010; Shirley et al., 2011) in contrast with
the early report of Becker et al. (1985b). The mechanisms
underlying the beneficial effect of microbial siderophores on
plant nutrition remain to be elucidated, even if some insights
have been given (Vansuyt et al., 2007; Gonzàlez-Guerrero et al.,
2016). Organic acids present much lower affinity for iron than
siderophores do, but in circumneutral and alkaline environments
such as calcareous soils, organic acids may be deprotonated
and thus act as metal-complexing agents (Dehner et al., 2010).
Hydrogen cyanide (HCN) produced by microorganisms may also
contribute to iron mobilization by chelation (Frey et al., 2010;
Rijavec and Lapanje, 2016).

Availability of soil nutrients, including Fe, can also
be enhanced by increasing the volume of soil explored
(Figure 1BÓ). This is achieved by root fungal symbionts
which greatly extend the scope of the roots through their fine
hyphae. Increases in plant iron content have been ascribed
to a better access to soil nutrients via fungal networks
(Caris et al., 1998; Liu et al., 2000; Farzaneh et al., 2011). In

addition, iron is transported into root cells by endosymbionts
(Gonzàlez-Guerrero et al., 2016).

Plant Iron Physiology Modulation by the Rhizosphere
Microbiota
Rhizosphere microorganisms modulate plant iron uptake
mechanisms. The expression of genes involved in strategies
I and II is modulated in the presence of microorganisms
(Figure 1BÏ; Zhang et al., 2009; Nagata et al., 2013; Nagata,
2017; Kobae et al., 2014; Zhou et al., 2016, 2018; Wang et al.,
2017; Kabir et al., 2020). Rhizosphere acidification and ferric
reductase activity (implied in strategy I) and plant PS synthesis
(implied in strategy II) are enhanced (Reza, 2017; Wang et al.,
2017; Zhou et al., 2018; Prity et al., 2020). The production
of plant phenolics known to impact plant iron uptake and
remobilization (Figure 1BÎ; Fourcroy et al., 2016; Curie and
Mari, 2017; Waters et al., 2018) and iron assimilability in food
due to their antinutrient properties (Delimont et al., 2017) is
also modified. Fluorescent pseudomonads induce the ISR (Van
Loon et al., 2008; Berendsen et al., 2015) which regulates the
expression of the root-specific transcription factor MYB72 and
the MYB72-controlled beta-glucosidase BGLU42 (Zamioudis
et al., 2014). These factors control the synthesis and excretion
of iron-mobilizing FPCs in Arabidopsis (Palmer et al., 2013).
Coumarins improve plant performance by eliciting microbe-
assisted iron nutrition (Harbort et al., 2020). The concentration
and composition of phenolic compounds in edible parts of plants
is regulated by associated microorganisms (e.g., Basha et al.,
2006; Lavania et al., 2006; Baslam et al., 2011; Jain et al., 2014;
Singh et al., 2014; Baker et al., 2015).

Microorganisms modulate plant hormone signaling, which
in turn impacts the plant iron physiology by modulating iron
acquisition and homeostasis (Figure 1BÑ; Lei et al., 2014; Li
et al., 2015; Filiz and Kurt, 2019). Plant hormone signaling is
under the control of microorganisms through the elicitation of
the induced systemic response (ISR), a plant response interrelated
with the plant iron deficiency response (Zamioudis et al., 2014;
Romera et al., 2019). Changes in the plant indole acetic acid (IAA)
and iron contents are observed concomitantly after bacterial
inoculation, suggesting that microorganisms impact together
hormone signaling and iron nutrition (Zhou et al., 2016, 2018;
Housh et al., 2021). Emission of volatile organic compounds
(VOCs) by Bacillus amyloliquefaciens promotes plant iron
nutrition in Arabidopsis, and this promotion requires nitric oxide
(NO) regulation (Wang et al., 2017), suggesting that the beneficial
effect of the rhizosphere bacterial strain is regulated by plant
hormone signaling. Rhizosphere microorganisms may either
synthesize or degrade phytohormones [i.e., abscisic acid (ABA);
IAA; gibberellic acid (GA); cytokinins (CKs); salicylic acid
(SA); ethylene (Et); NO] and therefore modulate phytohormone
concentrations (Horchani et al., 2011; Bakker et al., 2014;
Egamberdieva et al., 2017; Ravanbakhsh et al., 2018). For
example, the concentration of ethylene, a key regulator of root
apoplastic iron remobilization under Fe shortage (Curie and
Mari, 2017), is regulated by microbial 1-aminocyclopropane-1
carboxylic acid (ACC) deaminase that degrades the Et precursor
(Ravanbakhsh et al., 2018).
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The influence of microorganisms on the plant antioxidant
defense has been associated to an increase of the plant iron
content in a series of studies performed on sorghum, sunflower
and alfalfa (Figure 1BÐ; Kabir et al., 2020; Prity et al., 2020;
Rahman et al., 2020). According to these authors, the promotion
of ROS-scavenging activities by arbuscular mycorrhizal fungi
(AMF) is part of the mechanisms involved in alleviation of
Fe-deficiency symptoms.

Rhizosphere microorganisms can modify the plant iron status
via their influence on the plant P status (Figure 1BÒ; Tsai and
Schmidt, 2017; Shi et al., 2018; Filiz and Kurt, 2019). Phosphate
solubilizers and AMF have long been described to promote
plant P nutrition and growth (Brown, 1974; Smith et al., 2011).
More recently, microbial promotion of P nutrition was showed
to impact iron partitioning in the roots and shoots of Thypha
angustifolia (Ghosh et al., 2014), and to enhance iron nutrition
in chicory through an AMF (Glomus irregulare syn. Rhizophagus
irregularis; Labidi et al., 2012).

Other activities of rhizosphere microorganisms may also
influence iron storage in the root apoplast and its remobilization.
The hemicellulose composition of the root cell wall influences
the amount of stored Fe, while putrescine, a diamine excreted
by the roots, is involved in the iron remobilization process
(Figure 1; Zhu et al., 2016; Shi et al., 2018). Since cellulose
and hemicellulose are degraded by microbial activities, iron
storage in the root apoplast is likely to be impacted by the
corresponding microorganisms (Figure 1BÍ; Lasa et al., 2019).
Metatranscriptomic data indicate that the proportion of cellulose
degraders is increased in the rhizosphere of cereals (Turner
et al., 2013). Also, putrescine is one of the most commonly
used substrate by wheat rhizosphere microorganisms (Gała̧zka
et al., 2019): microbial degradation of this diamine (e.g., by
pseudomonads) is thus likely to regulate plant remobilization
of apoplastic iron (Kuiper et al., 2001; Song et al., 2015;
Liu et al., 2018).

In sum, MSs play a key role in plant physiology related
to iron uptake and homeostasis (Table 1 and Figures 1, 2)
through (i) phosphorus solubilization and thus the plant
P status (Sharma A. et al., 2013), (ii) elicitation of plant
defense reactions through Microbial Associated Molecular
Patterns (MAMPs) inducing ISR (De Vleesschauwer et al.,
2006; Höfte and Bakker, 2007; Van Loon et al., 2008), (iii)
plant hormone signaling and the synthesis of fluorescent
root phenolics via ISR (Pieterse et al., 2014; Zamioudis
et al., 2014), and (iv) the expression of genes mediating
iron uptake and homeostasis (Table 1). The importance of
microbial siderophores in the rhizosphere is also evidenced
by results showing that their synthesis and activities are
enhanced in the rhizosphere. Protein families related
to siderophore production increased in barley root- and
rhizosphere-associated bacterial taxa (Bulgarelli et al., 2015),
and sequences encoding bacterial siderophore synthesis were
highly enriched within bacterial endophytes in rice roots
(Sessitsch et al., 2012).

In addition, discussion is running on the possible contribution
of microbial siderophores to the remobilization of root apoplastic
iron and in a non-reductive process of iron uptake by

plants (Figure 1BÌ). A large-scale transcriptomic study in
Arabidopsis suggests that remobilization of root apoplastic iron
is promoted by the pyoverdine synthesized by P. fluorescens
strain C7R12 (Trapet et al., 2016). Plants grown in iron-deficient
conditions in the presence of apo-pyoverdine (a siderophore
uncomplexed with iron) exhibited a phenotype similar to that
of plants grown in iron-containing medium and incorporated
more iron than the untreated plants did. In these conditions,
pyoverdine repressed the expression of root genes related
to ABA signaling (Trapet et al., 2016), suggesting that the
MS may promote the remobilization of root apoplastic iron
(which indeed implies ABA regulation) (Lei et al., 2014; Curie
and Mari, 2017). Possible non-reductive uptake of bacterial
ferrisiderophores would represent an additional and major
influence of microorganisms on the plant iron status. Various
findings support the existence of a transport system whereby
the plant would internalize bacterial ferrisiderophores in the
form of integral ferric chelates. Pyoverdines of fluorescent
pseudomonads chelated to iron (Fe3+-pvd) contribute to the
plant iron nutrition of both dicots (strategy I) and graminaceous
monocots (strategy II) more efficiently than the synthetic
ferric chelate Fe3+-EDTA does (Vansuyt et al., 2007; Jin
et al., 2010; Shirley et al., 2011). The stability constant of
the Fe3+-pvd complex is significantly higher (1032) than that
of Fe3+-EDTA (1025) or Fe-PS (1018) (Vansuyt et al., 2007;
Shirley et al., 2011). This suggests that dissociation and ligand
exchange between Fe3+-pvd and Fe3+-PS might not be the
sole process accounting for the enhanced iron nutrition by Fe-
MS and suggests incorporation of Fe3+-pvd by the roots. The
presence of pvd in planta was confirmed by measurements
of 15N-labeled Fe3+-pvd and by immunodetection using anti-
pyoverdine antibodies (Vansuyt et al., 2007; Trapet et al.,
2016). The use of IRT1 knock-out mutants indicated that
this membrane transporter of Fe2+ (IRT1) is not involved
in iron uptake from Fe3+-pvd in strategy I plants (Vansuyt
et al., 2007). Thus, Fe-pvd clearly contributes to plant iron
nutrition, with evidence of the presence of pvd in planta but
no proof of the direct uptake of the entire Fe3+-pvd complex.
The description of a non-reductive iron uptake system in a
phytoplankton organism supports a possible incorporation of
bacterial ferrisiderophores kept throughout evolution (Kazamia
et al., 2018). This hypothesis is also supported by the presence
of vesicles in the roots of Arabidopsis supplemented with
Fe-pvd (Lemanceau et al., 2009); these vesicles mediate the
internalization of ferrisiderophores by endocytosis in diatoms
(Kazamia et al., 2018).

Plant-Plant-Microbe Interactions
Mediating Plant Iron Nutrition and
Homeostasis
The plant iron status is modulated by plant-plant interactions
that also involve microbial interactions in non-sterile growing
conditions. Intercropping, in which at least two plant species
are grown together in the same field, is proposed as a means to
increase crop yield and quality in low-input agricultural systems
by valuing beneficial plant-plant interactions. Several studies
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FIGURE 2 | Schematic representation of the feedback loop summarizing the iron dynamics in the rhizosphere as regulated by plant-microbe interactions. ÊThe plant
iron status shapes the rhizosphere microbiota. Iron bioavailability ([Fe]↘) is decreased in the rhizosphere due to plant Fe uptake (a) (Robin et al., 2006, 2007), and
plant excretion of root fluorescent phenolic compounds (FPCs) is enhanced in calcareous soils ([FPC]↗), with low iron availability ([Fe]↘) (b) (Jin et al., 2010; Stringlis
et al., 2018). Production of microbial siderophores is consequently increased ([MS]↗) (c) (Jin et al., 2010), and pseudomonads adapted to iron stresss conditions are
favored (d) (Robin et al., 2007) thanks to the synthesis of specific pyoverdines (pvds) (e) (Robin et al., 2007; Stringlis et al., 2018). ËIn return, these populations
positively influence plant health and iron nutrition. Specific pvds of rhizosphere pseudomonads display high antagonistic activities by competing against
phytopathogens for iron (f) (Robin et al., 2007; Gu et al., 2020), and others trigger plant induced systemic resistance (ISR) (g) (Stringlis et al., 2018). Fungal
phytopathogens (Fusarium) can be counter-selected by FPCs (h) (Stringlis et al., 2018). Specific microbial populations are counter-selected by iron competition

(←Fe→), by FPC toxicity ( ), or microbial antagonism; these populations represent a source of iron (and of other nutriments) when metabolized (i). A siderophore
produced by a pseudomonad strain recruited in the rhizosphere of an iron-stressed plant can also favor plant iron nutrition (j) (Jin et al., 2010), and distinct pvds of
different strains of Pseudomonas differently favor plant iron nutrition (k) (Lurthy et al., 2020), suggesting that plant iron nutrition is impacted differently depending on
the pseudomonads recruited in the rhizosphere.
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reviewed by Xue et al. (2016) and Dai et al. (2019) reported
increased tolerance to IDC of legumes and non-legume dicots
in alkaline conditions when they were associated with a cereal
in intercropping systems. Intercropping can also modulate plant
iron distribution (Xue et al., 2016). Intercropping with grass was
even more efficient than adding iron chelates on the yields of
blueberries cultivated in sub-alkaline soil (Michel et al., 2019). An
increased iron content of peanut grains (1.43-fold) was recorded
when peanut was intercropped with maize in calcareous soil
(Zuo and Zhang, 2009). Intercropping with oat was as good
as in-furrow amendment with chemical Fe chelate (FeDDHA)
for alleviating soybean IDC on calcareous soils (Kaiser et al.,
2014). However, variations were observed depending on
environmental conditions, and Fe amendment was sometimes
more reliable. Better knowledge of the biotic interactions
involved is therefore required to increase the reproducibility
of the results so as to develop these environmentally friendly
cropping systems.

Regarding iron uptake, three mechanisms of facilitation may
account for the enhancement of iron nutrition in dicots in the
presence of graminaceous crop plants.

The first mechanism would rely on the extraction of
iron by chelation with PSs from grasses that would increase
iron availability to dicots, as shown when intercropping olive
(Cañasveras et al., 2014) and citrus rootstocks (Cesco et al.,
2006) with grasses. Intercropping impacted PS production and
expression of the FRO and IRT genes implied in the strategy I
iron uptake system. However, this trend lacks consistency across
studies (Dai et al., 2019).

A second mechanism would rely on a non-reductive
mechanism used by dicots to incorporate Fe-PSs formed with PSs
excreted by grasses. Fe-PSs from a strategy II plant (maize) were
internalized by a strategy I plant (peanut) (Xiong et al., 2013) via
a membrane transporter belonging to the YS/YSL family of Fe-PS
transporters (Curie et al., 2000, 2009).

Finally, the third mechanism enhancing iron uptake in dicots
intercropped with maize would rely on the remobilization
of apoplastic iron by root phenolic compounds. Under Fe
deficiency, maize was unable to remobilize its pool of root
apoplastic iron, contrary to bean (Bienfait et al., 1985).
In addition, Fe-deficient bean plants mobilized iron from
the root apoplast of other plants grown in their presence
(Bienfait et al., 1985). In alkaline conditions, increased synthesis
of root fluorescent phenolics (Waters et al., 2018) could
contribute to the mobilization of rhizosphere iron by dicots.
Therefore, the non-used root apoplastic iron pool of maize
roots could be remobilized by an associated dicotyledonous
crop. This could partly account for the better iron nutrition
of legumes grown together with maize (Xue et al., 2016;
Dai et al., 2019).

The rhizosphere microbiota also contributes to the better
efficiency of plant species cultivated together. In cereal-legume
intercropping, symbiotic interactions between the legume species
and nitrogen-fixing microorganisms decrease competition for
soil nitrogen, and the resulting resource partitioning promotes
nitrogen nutrition of the cereal. In addition to limited
interspecific competition for N acquisition in cereal-legume

intercropping, other processes such as soil N enrichment or high
N restitution through below-ground legume residues benefit N
acquisition by the cereal (Hauggaard-Nielsen et al., 2009; Fustec
et al., 2010). More generally, plant-plant interactions impact root
exudation, and this affects soil rhizosphere microbiota (Vora
et al., 2021) and favors colonization by AMF (Ingraffia et al.,
2019). On the other hand, improved mycorrhization increased
the Fe content in wheat intercropped with faba bean, but did
not increase it in mono-cropped faba bean (Ingraffia et al., 2019).
According to these authors, the enhancement of plant Fe uptake
modulated by AMF depends on soil physico-chemical properties.
The mycorrhizosphere of associated plants, formed by AMF-
colonized roots and hyphae, increases microbiota functionalities
(Wahbi et al., 2016b). Intercropping impacts the abundance,
diversity, activity and co-occurrence network of rhizosphere
microbial communities (Li et al., 2016, 2018; Wahbi et al.,
2016a; Duchene et al., 2017; Taschen et al., 2017; Gao et al.,
2019; Zaeem et al., 2019; Liu et al., 2021; Pivato et al., 2021).
This is in agreement with the well-known positive relationship
between plant and microbial diversity (Spehn et al., 2000; Carney
and Matson, 2005; Qiao et al., 2012; Ahmad et al., 2013).
In controlled conditions, the pea-wheat association did not
harbor a mixture of the two rhizospheres, but rather a new
bacterial community with more Actinobacteria and a decreased
abundance of α-Proteobacteria and Acidobacteria (Taschen et al.,
2017). In another study in field conditions, bacterial networks
were impacted by pea-wheat intercropping, but bacterial diversity
and structure were not, suggesting a more complex bacterial
network and more complex interactions (Pivato et al., 2021).
The observed changes in the microbial community diversity
and its increased complexity may account for the beneficial
effects observed in intercropping. Compared to maize and peanut
cultivated independently, comparable microbial communities
have been observed whether the roots were separated or
not: Bacillus, Brevibacillus, and Paenibacillus were mainly
increased in the rhizosphere of maize, while Burkholderia,
Pseudomonas, and Rhizobium were mainly increased in the
rhizosphere of peanut. In these conditions, the availability of
nutrients (N and P) was increased (Li et al., 2018), even if
no correlation was found with the changes observed in the
microbial community.

More generally, the higher microbial diversity associated
with higher plant diversity results in better plant fitness,
resilience to stress (De Vries et al., 2018), and positive effects
of intercropping (Sun et al., 2009). Various studies suggesting
a better iron nutrition of strategy I plants grown in association
with a cereal have been reported (reviewed by Xue et al.,
2016; Dai et al., 2019). Despite the well-known impact of
intercropping on the rhizosphere microbiota and evidence of
the role of microorganisms (e.g., AMF) in enhancing plant
nutrition in association, data allowing us to evaluate the role
played by the plant microbiota are missing. Additional data
on the plant iron content will also be required because up
to now the effect of intercropping has been mostly evaluated
by visually recording IDC symptoms. Therefore, knowledge
integrating plant-plant, plant-microorganism and microbe-
microbe interactions is sorely lacking.

Frontiers in Plant Science | www.frontiersin.org 14 December 2021 | Volume 12 | Article 744445

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-744445 December 3, 2021 Time: 9:37 # 15

Lurthy et al. Microbiota Contribution to Plant Iron Biofortification

CONSEQUENCES FOR THE
DEVELOPMENT OF IRON
BIOFORTIFICATION STRATEGIES

Microorganisms modulate iron bioavailability nearby and within
the roots, as weel as plant iron uptake and homeostasis (Figure 1).
Optimizing the biotic interactions that mediate plant iron uptake
and homeostasis opens onto stimulating prospects for plant
iron biofortification. The importance of microorganisms in plant
nutrition including iron nutrition is widely acknowledged, but
up to now they have been mainly used as biofertilizers and
applied to plants in different formulations containing one or
several microorganisms. However beneficial effects of microbial
inoculation are often offset by a lack of consistency due to poor
survival of the introduced strains (Singh and Prasanna, 2020;
French et al., 2021).

Current research is now shifting its focus on the monitoring
of rhizosphere microbiota on the basis of increasing knowledge
of the plant-microbe feedback. The impact of the rhizosphere
microbiota on iron availability and plant iron physiology is part
of dynamic processes that are themselves influenced by plant-
microbe interactions. Monitoring plant-microbe interactions
mediating plant iron nutrition and homeostasis requires to
decipher the complexity of the corresponding interactions. It
is now well established that plants shape the composition of
their microbiota via rhizodeposition including root exudation
(Badri et al., 2013; Lemanceau et al., 2017a; Canarini et al.,
2019; Jones et al., 2019). In turn, the rhizosphere microbiota
impacts plant nutrition, growth and health. This feedback loop
is modulated by the plant genotype and by the soil physico-
chemical and biological properties (Lemanceau et al., 2017b;
Rodriguez et al., 2019). These reciprocal interactions are well
illustrated by the iron dynamics in the rhizosphere (Figure 2).
Two series of studies report that the Fe-chelating ability of the
rhizosphere microbiota is modified by the plant iron status.
The first one was conducted on transgenic tobacco deregulated
in ferritin, hence hyperaccumulation of iron in planta and
iron depletion of the corresponding rhizosphere. This depletion
resulted in the selection of pseudomonad populations highly
adapted to iron-stressed conditions thanks to the synthesis
of efficient siderophores (Robin et al., 2006, 2007). The
second series was conducted with clover grown in Fe-deficient
conditions; this plant synthesized more phenolic compounds,
hence the selection of a higher occurrence of siderophore-
producing bacteria (Jin et al., 2010). In both cases, the plant
contributed to decrease rhizosphere iron availability. This led
to an increased level of iron competition that favored the
microbial communities most adapted to these iron stress
conditions thanks to their siderophores (Figure 2; Robin
et al., 2006, 2007; Jin et al., 2007, 2010), while depleting
those susceptible to low iron availability. The plant metabolites
released in iron stress conditions (e.g., phenolic compounds
like scopoletin) may even have a biocidal effect on susceptible
populations (Gnonlonfin et al., 2012). Microbial populations
recruited by the host plant in turn impact plant nutrition,
growth, and health (Figure 2). Thus, plant iron nutrition
was promoted by siderophores synthesized by a Pseudomonas

strain originating from the rhizosphere of Fe-deficient clover
(Jin et al., 2010). Also, a siderophore from a pseudomonad
strain highly represented in the rhizosphere of a pea cultivar
tolerant to IDC significantly improved iron nutrition of this
plant (Lurthy et al., 2020). Similarly, two strains (P. simiae
WCS417 and P. capeferrum WCS358) highly tolerant to the
antimicrobial effect of root phenolics promoted Arabidopsis
growth via siderophore production (Figure 2; Berendsen et al.,
2015; Stringlis et al., 2018). The biomass of the microbes
counter-selected by iron competition and phenolics represents
a potential pool of iron and other nutrients. Thus, in addition
to iron stored in ferritins, vacuoles and the root apoplastic
compartment, the root microbiota could be used as an
additional level of iron storage by plants. Regarding plant health,
major phytopathogens are controlled by iron competition in
the rhizosphere. Siderophores with a high affinity for iron
and retrieved from the rhizosphere of ferritin-overexpressing
transgenic tobacco displayed a higher antagonistic activity
against the phytopathogenic oomycete Pythium aphanidermatum
(Figure 2; Robin et al., 2007). Root FPCs synthesized through a
MYB72-dependent pathway selectively inhibited the soil-borne
fungal pathogens Fusarium oxysporum and Verticillium dahlia
(Figure 2; Stringlis et al., 2018). In addition, plant protection
was promoted by the above mentioned P. simiae WCS417 and
P. capeferrum WCS358, inducers of plant systemic resistance
(ISR; Stringlis et al., 2018).

The influence of the crosstalk between the host plant and
its associated microbiota on plant iron nutrition (Figure 2)
stresses the importance of considering the plant together with
its microbiota in biofortification strategies. Progress in the
knowledge of the interactions between eukaryotic organisms and
their associated microbiota has led to the emergence of the
holobiont concept, defined as the host and its associated microbes
(Vandenkoornhuyse et al., 2015). Because of the importance of
their associated microbiota, in terms of abundance, diversity
and beneficial effects for the host plant, plants can no longer
be considered as stand-alone entities (Dessaux et al., 2016).
According to this concept, the genome interacting with its
environment is no more restricted to the plant genome but is
extended to that of the holobiont (hologenome) (Theis et al.,
2016). Therefore, we propose to consider holobiont genetic
resources for improving the plant iron status. Including the
plant microbiota and its transmission by seeds in breeding
programs has been proposed (Gopal and Gupta, 2016; Wei
and Jousset, 2017; Berg and Raaijmakers, 2018). More recently,
Wille et al. (2019) presented a comprehensive review of
the plant-microbe interactions implied in resistance to root
diseases in grain legumes and discussed possible consequences
for breeding strategies. They especially proposed to consider
the entire plant holobiont in resistance breeding strategies.
The same principle should be applied to iron biofortification.
In that prospect, plant traits included in breeding programs
should comprise traits modulating plant-microbe interactions
beneficial for the plant iron status. These traits represent
promising new breeding targets. Among them, three types stand
out and require special attention (i) the synthesis pathways
of fluorescent phenolics and plant defense responses sharing
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common key components, (ii) plant regulation of iron storage
in the root apoplast, and (iii) putrescine synthesis mediating
apoplastic iron remobilization. The targeted plant traits should
also include those involved in the recruitment of functional
microbial genes (Lemanceau et al., 2017b) mediating siderophore
production, synthesis, or degradation of specific molecules
related to the plant iron physiology (e.g., cellulose, hemicellulose,
putrescine, plant hormones). Particular attention should be
paid to microbial siderophores because they represent a major
contribution of microorganisms to the plant iron status, although
the mechanisms involved are not all known yet. Recent results
show that effects of Fe-MS on the plant iron status vary depending
on plant genotype and MS structure (Lurthy et al., 2020).
Therefore, the high level of specificity between the plant and
its microbiota should be taken into account. Beyond plant-
microorganism interactions, crop biodiversity and plant-plant
interactions represent major levers for improving the resistance
and resilience of canopies and reducing their dependence on
synthetic inputs, to ultimately ensure crop sustainability (Wezel
et al., 2014; Dubey et al., 2020). Increasing crop biodiversity
relies on the association of plants cultivated in intercropping.
The challenge is to find out plant associations and practices
that favor processes of ecological facilitation in intecropping.
This occurs when the association optimizes the development of
both species (e.g., improved resource availability) and minimizes
any negative interactions that might occur between the two
species (Callaway, 1995). To allow this facilitation process to
occur and thus promote the functioning and performance of
intercropping, the choices of plant species and cultivars to
be grown in association, together with the cropping practices
(seeding density and pattern, level of nitrogen fertilization)
are key to success (Andersen et al., 2007; Neumann et al.,
2007; Bedoussac et al., 2015). When these conditions are
met, intercropping allows better nutrition of each associated
plant species thanks to the facilitation process (Duchene et al.,
2017) and the use of fertilizers can be reduced (Bedoussac
and Justes, 2010). Research is ongoing to optimize biotic
interactions that promote plant nutrition. Given the impact of
the plant species, but also of its genotype, on the rhizosphere
microbiota, characterizing the effect of different cultivars of a
plant species grown in association on the microbial community
is a key step for identifying the best performing cultivars
in the association. However, the mechanisms underlying the
positive effects of these cropping systems on plant-microbe
interactions remain largely untapped, and further studies are
required to better understand and exploit the interplay of these
biotic interactions.

CONCLUSION AND PROSPECTS

Iron amounts in soils are above plant needs but are not readily
available in most agricultural soils. Consequently, increasing
soil iron bioavailability to enhance plant and ultimately human
nutrition represents a major challenge. The soil microbiota
has a great impact on iron bioavailability in the rhizosphere
and on plant iron physiology. This should open avenues for

plant iron biofortification strategies that will value these biotic
interactions. The entire plant holobiont should be considered
in biofortification strategies, and the plant traits included in
breeding programs should comprise traits modulating plant-
microbe interactions beneficial for the plant iron status. These
traits will include the synthesis of root phenolics and the
regulation of apoplastic iron storage and remobilization. Plant
traits mediating the recruitment of microbial genes involved in
the synthesis or degradation of specific molecules related to the
plant iron physiology (e.g., cellulose, hemicellulose, putrescine,
plant hormones) have to be investigated. Special attention should
be paid to the interactions with microbial siderophores, which
strongly impact the plant iron status; many of the mechanisms
involved still have to be identified. Recent findings highlight the
specificity of biotic interactions, the role of the environment,
and the interconnexion between plant iron nutrition and other
parameters that also influence the quantity and the quality of
vegetal products—plant health, the P status, and the ionome.
This leads us to think that important headways should be
made possible by the development of integrative approaches. In
addition to iron biofortification, these approaches will take into
account plants and their extended genotype formed by each plant
and its specific microbiota; this holobiotic organism will be more
prone than the plant alone to adapt to environmental stresses.
Intercropping appears promising to implement these strategies.

More options for iron biofortification could be brought by
emerging research perspectives. Most of the findings on the
microbial influence on plant iron come from studies focusing
on soil and rhizosphere interactions. Yet, the phyllosphere
and spermosphere microbiota, whose influence has long
been underestimated, also influence the plant iron physiology
(Lemanceau et al., 2017a). Iron is absorbed by the leaves,
and a signal originating from the shoots and involving IAA
appears to elicit root-to-shoot iron translocation (Kabir et al.,
2013; Garnica et al., 2018). The importance of the shoot
microbiota on these components of the plant iron dynamics
remains to be explored. The spermosphere microbiota is at least
partly inherited from parent plants (Lemanceau et al., 2017a).
Therefore, it is essential to evaluate the role of the corresponding
microorganisms. Studies on the plant microbiota mostly provide
taxonomic descriptions of plant-associated microorganisms.
Therefore, results are deeply influenced by the soil microbiota
reservoir which varies according to the soil physical and chemical
properties (Dequiedt et al., 2009; Ranjard et al., 2013; Xue
et al., 2018). Lemanceau et al. (2017b) have proposed the
principle of a functional plant-genotype-specific core microbiota
shared whatever the soil in which the corresponding genotype is
cultivated. This proposal relies on the fact that plant-beneficial
microbial traits (e.g., production of siderophores, hormones,
antibiotic molecules, and HCN) can be found in distinct
microbial taxa. Finally, it is important to widen the objectives and
develop more integrative studies. Potential trade-offs may indeed
occur. Breeding programs focused on plant health promotion
could be detrimental to plant growth and also impact the
plant iron status, and vice versa. The dynamics of iron in the
rhizosphere also modulates plant health (Figure 2). Seemingly,
increasing plant iron content also more globally impacts the
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plant ionome (Cohen et al., 1998). This could be favorable to
other essential micronutrients like Zn, but could also lead to the
accumulation of toxic elements due to the variable specificity
of plant iron transporters (Rajkumar et al., 2010; De Valença
et al., 2017). Another trade-off probably involves phenolic
antioxidant compounds. Research about them is ongoing for
improving human health, but they may also act as antinutrients
by decreasing iron assimilability. The selection of new genotypes
should no longer be oriented toward the production of plants
harboring specific characters like enhanced iron content or
resistance to a given pathogen. Plant improvement strategies
should rather consider the extended genotype formed by the
plant and its specific microbiota, and search for combinations
allowing the holobiont to quickly adapt to a range of severe
biotic and abiotic stresses likely to occur for a particular crop. We
should rather tend toward the search for “ideoholotypes.”
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