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Panicle morphology is an important trait in racial classification and can determine grain

yield and other agronomic traits in sorghum. In this study, we performed association

mapping of panicle length, panicle width, panicle compactness, and peduncle recurving

in the sorghum mini core panel measured in multiple environments with 6,094,317 single

nucleotide polymorphism (SNP) markers. We mapped one locus each on chromosomes

7 and 9 to recurving peduncles and eight loci for panicle length, panicle width, and panicle

compactness. Because panicle length was positively correlated with panicle width, all loci

for panicle length and width were colocalized. Among the eight loci, two each were on

chromosomes 1, 2, and 6, and one each on chromosomes 8 and 10. The two loci on

chromosome 2, i.e., Pm 2-1 and Pm 2-2, were detected in 7 and 5 out of 11 testing

environments, respectively. Pm 2-2 colocalized with panicle compactness. Candidate

genes were identified from both loci. The rice Erect Panicle2 (EP2) ortholog was among

the candidate genes in Pm 2-2. EP2 regulates panicle erectness and panicle length in

rice and encodes a novel plant-specific protein with unknown functions. The results of

this study may facilitate the molecular identification of panicle morphology-related genes

and the enhancement of yield and adaptation in sorghum.

Keywords: sorghum, panicle morphology, association mapping, mini core, candidate genes

INTRODUCTION

The sorghum inflorescence consists of a single panicle with many racemes and is an
important determinant of grain yield (Hmon et al., 2013). Sorghum panicles are more
extensively branched than maize and rice (Vollbrecht et al., 2005; Brown et al., 2006)
and vary significantly in number, length, and angle of primary branches as well as the
three-dimensional shape, size, and distribution of the seed (Li et al., 2020), especially
compared to other major cultivated cereal crops (Brown et al., 2006). Therefore, sorghum
is an excellent model for studying panicle morphology in panicle-bearing grasses. Sorghum
panicles may be compact or open up to 50 cm long and 30 cm wide (Doggett, 1988),
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and their morphology depends on the number and length of
panicle branches and the number of aborted spikelets (Brown
et al., 2006). The panicle morphology is an important criterion
for the racial classification of sorghum. The compact panicle is
typical of domesticated sorghum, especially elite high-yielding
modern commercial varieties (Kimber, 2000; Brown et al., 2006;
Dillon et al., 2007; OGTR, 2017), whereas undomesticated species
are more likely to have open panicles (Harlan and de Wet, 1972).
Plants with open or loose panicles are more likely to be small-
seeded, reducing grain yield (Desmae et al., 2016). However,
compact panicles are also more prone to infection/infestation by
grain mold (Sharma et al., 2010), webworm [Celama sorghiella
(Riley)] (Hobbs et al., 1979), head bug (Calocoris angustatus
Leth.), and head caterpillar (Helicoverpa armigera Hb.) (Sharma
et al., 1994). As a result, race guinea with loose panicles is
more common in wet environments to prevent grain molding,
and race durra with compact panicles is more common in dry
environments (Harlan and de Wet, 1972; Doggett, 1988; Ayana
and Bekele, 1998).

Despite its importance in yield and adaptation, the genetic
control of panicle morphology is not fully understood.
Approximately 300 panicle morphology-related quantitative
trait loci (QTLs) have been cataloged by Mace et al. (2019)
from previous studies. More recently, Girma et al. (2019)
identified 15 regions across the sorghum genome associated
with panicle compactness and shape, and Faye et al. (2019)
identified 13 panicle compactness loci that colocalize with
a priori candidate genes. Olatoye et al. (2020) also found a
significant enrichment of QTL colocalized with grass panicle-
related genes such as maize Ramosa2 and rice Aberrant Panicle
Organization1 (APO1) and TAWAWA1, but many QTLs did
not colocalize with panicle gene orthologs (Olatoye et al.,
2020). They suggested that global panicle diversity in sorghum
is largely controlled by oligogenic, epistatic, and pleiotropic
variations in ancestral regulatory networks. Zhou et al. (2019)
detected 35 unique SNPs associated with variation in panicle
architecture using a semiautomated phenotyping pipeline called
Toolkit for Inflorescence Measurement (TIM). They also found
colocalization with previously mapped panicle-related loci and
identified nine candidate genes.

The objective of this study was to identify QTL related to
panicle morphology and recurving of peduncles and determine
the candidate genes that regulate panicle morphology in
sorghum using a genome-wide association study (GWAS) with
phenotyping data on sorghum panicle length and width in 11
environments at International Crops Research Institute for the
Semi-Arid Tropics (ICRISAT), India, panicle compactness in
two environments in China, and 6,094,317 single nucleotide
polymorphism (SNP) markers in the sorghum mini core (MC)
collection panel (Upadhyaya et al., 2009).

MATERIALS AND METHODS

A total of 242 accessions of sorghumMC (Upadhyaya et al., 2009)
were phenotyped in rainy and post-rainy seasons with or without
irrigation at ICRISAT, Patancheru, India. The plants were grown

in an alpha design with three replicates. Each single-row plot was
4m long with a row spacing of 75 cm and plant spacing within
a row of 10 cm. Ammonium phosphate (150 kg/ha) was applied
before planting, and 100 kg/ha of urea was applied as a top
dressing 3 weeks after planting. For the post-rainy season with
irrigation, field plots were irrigated five times at equal intervals,
each with 7 cm of water. Panicle length and width were measured
in centimeters according to the International Board for Plant
Genetic Resources IBPGR/ICRISAT (1993).

The MC panel was also grown in Tengqiao, Hainan, China
(18◦24′ N, 109◦45′ E) in 2017 and 2020. All experiments used a
completely randomized block design with three replicates. Before
harvest, panicle pictures were taken and panicle compactness,
length/width, and peduncle recurving were scored according to
IBPGR/ICRISAT (1993).When panicles were scored as 1= loose,
2 = semi-compact/semi-loose, and 3 = compact (Mohammed
et al., 2015), the original IBPGR/ICRISAT codes of 1, 2, 3, 4, and
11 were converted to 1; 6 and 7 to 2; and 8, 9, 10, and 13 to 3. The
coefficient of variation (CV) was calculated as the ratio between
SD and mean. The broad-sense heritability was calculated using
the R lme4 package.

The genome resequencing of 242 MC accessions and
SNP development was performed as follows. The reference
genome was the sorghum BTx623 (Paterson et al., 2009)
version 3.1.1 (https://phytozome-next.jgi.doe.gov/info/Sbicolor_
v3_1_1), which was also used to identify candidate genes.
Sequencing reads were mapped to the reference genome
using BWA-MEM version 0.7.17 (Li, 2013) and sorted by
SAMtools version 1.10 (Li et al., 2009). Duplicate reads were
removed using Picard version 2.0.1 (http://broadinstitute.github.
io/picard/). The SAMtools flagstat was used to calculate the
mapping percentage. Sequence variation detection and SNP
calling were performed using the GATK version 4.17 function
HaplotypeCaller and SelectVariants (McKenna et al., 2010). SNPs
were called with parameters “QD < 2.0, MQ < 40.0, FS >

60, SOR > 3.0, MQRankSum < −12.5, ReadPosRankSum <

−8.0.” SNPs were filtered with VCFtools version 1.16 (Li, 2013)
using the parameters “max-missing 0.1, maf 0.05, maxDP 50,
and minDP 10.” Only SNPs on chr1–chr10 were used. This
produced 6,094,317 SNPs for the GWAS analysis. Population
structure was analyzed using Admixture version 1.3 (Alexander
et al., 2015). The number of clusters (k) in MC was set to 2–15.
Admixture version 1.3 was run for each k-value, using 489,339
SNPs (Supplementary Figure 1). The optimal k was determined
to be 10, as the CV (i.e., cross-validation) error was the lowest at
k = 10. This k-value was used to generate the Q matrix used in
the GWAS, as described below.

The GWAS and linkage disequilibrium (LD) analysis were
performed using the 6,094,317 SNPs after filtering based on the
criteria of minor allele frequency of >0.05 and missing data rate
of 10% or less in the population. The kinship matrix (K) was
generated using EMMAX (Kang et al., 2010), and the GWAS
was performed using EMMAX with Q matrix. The modified
Bonferroni correction was used to determine the genome-wide
significance thresholds of the GWAS, based on a nominal level
of α = 0.05, corresponding to a raw P-value of 8.2 × 10−9 or a
–log10(P)-value of 8.08. Candidate genes were identified using
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FIGURE 1 | Panicle morphology of the five major races in the association mapping panel (Upadhyaya et al., 2009). IS 7250 has loose panicles, and IS 4631, IS 4092,

and IS 12937 have compact panicles, whereas IS 608 has semi-compact panicles.

the reference sequence Sorghum bicolor version 3.1.1, curated at
Phytozome (Goodstein et al., 2012) 13 (https://phytozome-next.
jgi.doe.gov/).

RESULTS

Phenotyping
Panicle length and width were found to be correlated with
Pearson’s correlation coefficients ranging from 0.56 to 0.70
(significant at P < 0.001). Figure 1 shows variations in panicle
morphology of the five primary sorghum races in the association
mapping panel (Upadhyaya et al., 2009) from a field evaluation
in Hainan in 2020. Based on the panicle compactness data from
the Hainan 2020 environment, 64% of the MC accessions had
compact panicles, 14% had semi-compact panicles, and 22%
had loose panicles. In the 11 ICRISAT testing environments
(Supplementary Table 1), panicle width was more variable
across the environments than panicle length as measured by
the coefficient of variation (CV). The CV for panicle length
ranged from 0.27 to 0.39, with a mean of 0.33, while that
for panicle width ranged from 0.21 to 0.61, with a mean of
0.48 (Table 1; refer to Supplementary Table 2 for variance). In
contrast, irrigation in Environments 3 and 5 did affect panicle
length and width compared to no irrigation in Environments
4 and 6 but not consistently. By comparing Environments 3 to
5, irrigation did not significantly affect the panicle length (P =

0.17) but decreased the panicle width by 1.42 cm on average (P=

0.0034). Between Environments 4 and 6, irrigation increased the
panicle length by 1.9 cm on average (P = 0.0030) but decreased
the panicle width by 1.85 cm on average (P = 0.000012). When
panicle compactness was scored only as compact, semi-compact,
and loose, panicle length and width were negatively correlated
with panicle compactness with r=−0.40 and−0.27, respectively,
in Environment 1 at ICRISAT, and both were significant at
P < 0.001 (i.e., panicle compactness was only measured in

Environment 1 at ICRISAT). Similarly, in the 2020 Hainan
dataset, panicle length and width were negatively correlated with
panicle compactness with r=−0.42, and−0.47, respectively, and
both were also significant at P < 0.001. These results indicate
that loose panicles tend to be longer and wider, and compact
panicles are shorter and narrower. Using 100 seed weight data
obtained from the studies by Upadhyaya et al. (unpublished)
and Li et al. (unpublished), we found that seed weight was
positively correlated with panicle compactness both at ICRISAT
(r = 0.33; significant at P < 0.001) and Hainan (r = 0.31;
significant at P < 0.001), indicating that loose panicles often
carry smaller seeds and that compact panicles carry larger seeds.
This may have contributed to the positive correlation between
panicle compactness and seed weight per panicle (r = 0.23;
significant at P < 0.01). Since the untransformed data were used
in this study, heritability may not be as accurately estimated (Fusi
et al., 2014), and small-effect QTLs may not be identified by
GWAS (Goh and Yap, 2009). Nevertheless, variance, broad-sense
heritability, and the Shapiro–Wilk normality test are presented in
Supplementary Table 2.

Genome-Wide Association Study
For a trait to be mapped, the association had to be strong
in multiple environments with multiple SNPs and reached the
Bonferroni correction P-value of 8.2× 10−9 or a –log(P) of 8.08,
in at least two environments, except for recurving peduncles,
which was evaluated only in one environment. Using these
criteria, we identified 11 QTLs: one on chromosome 4 for panicle
length/width ratio, two for peduncle recurving with one each
on chromosomes 7 and 9, eight for panicle length and width,
and one compactness colocalized with panicle length and width
on chromosome 2 (Table 2; representing SNPs from each locus
are presented in Supplementary Table 3). For the eight-panicle
length and width QTLs, two were on chromosomes 1, 2, and 6,
and one each was located on chromosomes 8 and 10 (Figure 2,
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TABLE 1 | Coefficient of variation (CV) for panicle length and width in the 11 testing environments.

Environment 1 2 3 4 5 6 7 8 9 10 11

Panicle length 0.27 0.27 0.33 0.32 0.39 0.35 0.29 0.29 0.36 0.37 0.39

Panicle width 0.21 0.34 0.55 0.51 0.61 0.53 0.49 0.39 0.5 0.53 0.6

TABLE 2 | Panicle morphology-related quantitative trait loci (QTLs) mapped in multiple environments.

QTL Trait* Chromosome:

position (bp)

Gene in or near

QTL

No. of

environment

QTL detected

Colocalization

with other QTL

References**

Pm 1-1 PL, PW 1: 10423724–

10464740

Sobic.001G132600 1 (PL), 4 (PW)

Pm 1-2 PL, PW 1: 59803397–

59808620

Sobic.001G311050 5 (PW) QPLEN1.7

Hmon et al., 2013

Pm 2-1 PL, PW 2: 71879000–

71902200

See Table 3 7 (PL), 5 (PW)

Pm 2-2 PL, PW, PC 2: 73190000–

73247000

See Table 3 7 (PL), 5 (PW), 1

(PC)

Pm 4-1 PL/PW ratio 4: 8275699–

8300275

Sobic.004G095300 2, 10, 11

Pm 6-1 PL, PW 6: 32406706–

32416278

1 (PL), 3 (PW) QPLEN6.6

Reddy et al., 2013

Pm 6-2 PL, PW 6: 48330285–

48349357

Sobic.006G115600 5 (PL), 3 (PW) QPLEN6.12

Zou et al., 2012

Pr 7-1 PR 7: 8189476–

8208789

Sobic.007G072600,

Sobic.007G072800,

Sobic.007G072901

1 (PR)

Pm 8-1 PL, PW 8: 53337842–

53434526

Promoter of

Sobic.008G120200

3 (PL), 5 (PW) QPWTH8.1

Zhou et al., 2019

Pr 9-1 PR 9: 4118798–

4127062

1 (PR)

Pm 10-1 PL, PW 10: 13724096–

13790887

3 (PL), 2 (PW) QPTYP10.1

Hmon et al., 2013

*PL, panicle length; PW, panicle width; PC, panicle compactness; PR, peduncle recurving.

**From the data cataloged by Mace et al. (2019).

Table 2, Supplementary Figures 2–9). Associations with P-
values lower than the Bonferroni threshold were not observed in
environments with a CV lower than the average, 0.33 and 0.48 for
panicle length and width, respectively, except for panicle width in
Environment 8 (Figure 2, Table 1, Supplementary Figures 2–9).
Pm 2-1 and Pm 2-2 were both detected in the greatest number
of environments with low P-values (Figure 2); Pr 7-1 and Pr 9-1
were associated with peduncle recurving with the lowest P-values
(Supplementary Figure 9). We focused on these loci to identify
candidate genes.

Candidate Panicle Morphology Genes
To identify candidate panicle morphology-related genes, we
examined genomic regions covered by each QTL in the Sorghum
bicolor version 3.1.1 genome at Phytozome (Goodstein et al.,
2012) 13 (https://phytozome-next.jgi.doe.gov/info/Sbicolor_v3_
1_1). For the two peduncle QTLs, there were no protein-coding
genes in the Pr 9-1 locus (Table 2). However, Pr 9-1 was 748
bp from the 5′ end of the Sobic.009G043600 coding region

and 48 bp from the 5′ end of the Sobic.009G043500 coding
region. Sobic.009G043600 encodes glutathione S-transferase 4,
and Sobic.009G043500 encodes sulfite oxidase. There were three
large genes (i.e., Sobic.007G072600, Sobic.007G072800, and
Sobic.007G072901) and one small gene (i.e., Sobic.007G072700)
in the Pr 7-1 locus. Sobic.007G072600, Sobic.007G072800, and
Sobic.007G072901 all encode F-box proteins. Sobic.007G072700
encodes an unknown protein specific to sorghum-based on a
BLAST search.

We examined Pm 2-1 and Pm 2-2 loci in more detail. The
genomic regions of the two loci are displayed in Figure 3 for
panicle length and width from two testing environments and
compactness from one. Pm 2-1 included four genes, and Pm 2-
2 included six genes (Figure 3, Table 3). Each of the four genes
(i.e., Sobic.002G355700, Sobic.002G355800, Sobic.002G355900,
and Sobic.002G356000) in Pm 2-1 resided in an LD block, except
Sobic.002G355900, but in Pm 2-2, only Sobic.002G374400 was
inside an LD block (Figure 3). Functional studies are necessary
to identify the genes underlying each locus.
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FIGURE 2 | Manhattan plot of chromosome 2 showing Pm 2-1 and Pm 2-2 associated with panicle length and width in 7 and 6 out of 11 environments, respectively.

Association with panicle compactness was identified in a separate environment. PL 3, 4, 5, 6, 8, 9, and 11 and PW 3, 5, 6, 8, 9, and 11 were the environments in

which panicle length and width QTLs Pm 2-1 and Pm 2-2 were detected. The red dashed horizontal lines indicate the Bonferroni threshold P-value.
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FIGURE 3 | Detailed map of Pm 2-1 and Pm 2-2 loci. X and Y axes represent –log(P) and physical distance in bp, respectively. At the bottom of Pm 2-1 and Pm 2-2,

the panels are linkage disequilibrium (LD) plots aligned to the respective locus map.

Frontiers in Plant Science | www.frontiersin.org 6 October 2021 | Volume 12 | Article 743838

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. Panicle Morphology Loci in Sorghum

TABLE 3 | Sorghum panicle morphology candidate genes in Pm 2-1 and Pm 2-2.

Sorghum gene ID Annotation

Pm 2-1

Sobic.002G355700 Histone H3

Sobic.002G355800 Ca2+-binding protein

Sobic.002G355900 Lipid transfer protein

Sobic.002G356000 Lipid transfer protein

Pm 2-2

Sobic.002G374100 Jasmonate ZIM domain-containing TIFY 10b

Sobic.002G374200 DNA-directed RNA polymerase

Sobic.002G374300 FAR1 transcription factor

Sobic.002G374400 Erect panicle2 protein

Sobic.002G374500 Unknown protein

Sobic.002G374600 Beta-ketoacyl-ACP synthase

DISCUSSION

Our goal was to map major QTLs that are stable across
environments and identify genes that can be used to improve
economically important traits in sorghum and other species.
In this study, we mapped nine panicle morphology QTLs, such
as Pm 2-1 and Pm 2-2, and two peduncle recurving QTLs,
such as Pr 7-1 and Pr 9-1. Neither Pm 2-1, Pm 2-2, Pr 7-1, and
Pr 9-1 were previously identified by other groups (Faye et al.,
2019; Girma et al., 2019; Zhou et al., 2019; Olatoye et al., 2020),
nor they were identified in 22 studies cataloged by Mace et al.
(2019). The Pr 7-1, Pm 2-1, and Pm 2-2 loci contained four,
four, and six genes, respectively. The RNAseq data available at
Phytozome (McCormick et al., 2018) may provide insight into
their functions. In addition, LD can be used to identify candidate
genes mapped by GWAS (Sulem et al., 2008). For the three
genes in Pr 7-1, the highest expression of Sobic.007G072600
and Sobic.007G072901 was in both the peduncle and the panicle
at the floral initiation stage, while the highest expression of
Sobic.007G072800 was in the leaf sheath. Sobic.007G072700 was
not expressed in the peduncles. Both Sobic.007G072600 and
Sobic.007G072901 are good candidates in determining which
gene in this locus causes recurving peduncles. Among the four
genes in Pm 2-1, Sobic.002G355700 and Sobic.002G356000
were not expressed in peduncles and Sobic.002G355900 was
almost exclusively expressed in dry seeds. The remaining
Sobic.002G355800 was highly expressed in leaf sheaths,
panicles, shoots, and stems, with slightly lower expression in
peduncles, and resides inside an LD block (Figure 3). Therefore,
Sobic.002G355800 is a candidate gene for the Pm 2-1 locus.
In the Pm 2-2 locus, Sobic.002G374100 is co-expressed with
genes in an anthesis stage-specific co-expression subnetwork
with very low expression in peduncles; Sobic.002G374500
is not expressed in panicles or peduncles, and the highest
expression of Sobic.002G374600 is in leaves and shoots. The
remaining three genes (Sobic.002G374200, Sobic.002G374300,
and Sobic.002G374400) were highly expressed in the panicles
and peduncles. However, Sobic.002G374400 shares 66% identity
and 77% similarity with Erect Panicle2 (EP2) in indica rice
and is the only gene inside an LD block (Figure 3). EP2

regulates panicle erectness, panicle length, and grain size in
rice (Zhu et al., 2010). The EP2 mutants have shorter panicle
length, more vascular bundles, and a thicker stem than that
of wild-type plants, creating an erect panicle phenotype.
EP2 encodes a novel plant-specific protein localized to
the endoplasmic reticulum with unknown function (Zhu
et al., 2010) and is a candidate for the Pm 2-2 locus. This
is possible because panicle morphology regulation in both
sorghum and rice may have similar mechanisms (Chen et al.,
2015).

Previous studies have identified genes related to panicle/tassel
morphology in the grasses. In maize, mutations in Ramosa
produce a maize tassel resembling a loose sorghum panicle
(Vollbrecht et al., 2005). Ramosa1 transcription factor regulates
long inflorescence branch architecture similarly in maize
and sorghum but is absent in rice and heterochronically
expressed in sorghum (Vollbrecht et al., 2005). Several panicle
morphology-related genes have been identified in rice. A rice
ncl-1, HT2A, and lin-41 (NHL)-domain-containing protein
encoded by FUWA produces a more compact and erect
panicle when the gene is mutated, and the mutant can be
rescued by orthologs from sorghum and maize, indicating
that the regulation of panicle morphology by this gene is
evolutionarily conserved in rice, sorghum, and maize (Chen
et al., 2015). The OsLG1 gene product also regulates rice panicle
compactness; its overexpression converts compact panicles to
loose panicles. OsLG1 is an squamosa promoter-binding (SBP)-
domain transcription factor that controls the development
of rice ligules. The association analysis found that an SNP
in the OsLG1 regulatory region led to a compact panicle
architecture in cultivated rice during rice domestication (Zhu
et al., 2013). Another rice panicle morphology gene, APO1,
encodes an F-box protein. The overexpression of APO1 increases
panicle branches and spikelets (Ikeda et al., 2007), whereas
APO1 mutation reduces the number of secondary branches
by >90% and the total number of flowers by >70% (Ikeda
et al., 2005). The abovementioned studies of Ramosa in maize
and FUWA in rice, as well as the fact that the bulk of
maize tassel and sorghum panicle developmental activities are
shared (Leiboff and Hake, 2019), demonstrate similarities and
differences in inflorescence development in maize, rice, and
sorghum. Further studies are required to confirm whether the
candidate genes identified in this study play a role in panicle
morphology in sorghum and their possible effects on yield and
related traits.
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Supplementary Figure 9 | Manhattan plot of chromosome 7 showing Pr 7-1

(top) and 9 showing Pr 9-1 (bottom) associated with peduncle recurving (red

arrow). Red dashed line indicates Bonferroni threshold P-value.
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