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Plants acquire nitrogen, an essential macronutrient, from the soil as nitrate. Since
nitrogen availability is a major determinant of crop productivity, the soil is amended
with nitrogenous fertilizers. Extensive use of irrigation can lead to the accumulation of
salt in the soil, which compromises crop productivity. Our characterization of NODULE
INCEPTION (NIN)-like PROTEIN 7 (NLP7), a transcription factor regulating the primary
response to nitrate, revealed an intersection of salt stress and nitrate metabolism. The
growth of loss-of-function mutant nlp7 was tolerant to high salinity that normally reduces
the fresh weight and chlorophyll and protein content of wild type (Col-0). On a medium
with high salinity, the nlp7 experienced less stress, accumulating less proline, producing
less nitric oxide (NO) and reactive oxygen species (ROS), and expressing lower transcript
levels of marker genes, such as RD29A and COR47, than Col-0. Nevertheless, more
sodium ions were translocated to and accumulated in the shoots of nlp7 than that of
Col-0. Since nlp7 also expressed less nitrate reductase (NR) activity, nitrate accumulated
to abnormally high levels with or without salinity. We attributed the enhanced salt
tolerance of nlp7 to the balanced accumulation of nitrate anions and sodium cations.
Our results suggest that nitrate metabolism and signaling might be targeted to improve
salt tolerance.

Keywords: Arabidopsis, NLP7, nitrate reductase, nitric oxide, salt stress tolerance

INTRODUCTION

Nitrogen is an essential macronutrient, and its availability may be a limiting factor for crop
productivity. To meet the increasing demand for food, nitrogen-based fertilizers are increasingly
utilized in agriculture worldwide (Nosengo, 2003), and consumption of fertilizer is expected to
increase from 1.25 to 236 million tons by 2050. However, from the fertilizer applied to soil, only
30–50% of added nitrogen is actually absorbed by plants (Good and Beatty, 2011), and residual
nitrogen is released into the surrounding environment, causing severe pollution and ecological

Abbreviations: ROS, reactive oxygen species; ABA, abscisic acid; NR, nitrate reductase; NO, nitric oxide; MS, Murashige
and Skoog; MDA, malondialdehyde.
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imbalance through natural processes (Garnett et al., 2009). Thus,
protecting the environment while increasing crop productivity is
not an easy task. In addition, these competing demands must also
take into account, global climate change.

The Arabidopsis NODULE INCEPTION (NIN)-LIKE
PROTEIN (NLP) gene family encodes the core transcription
factors that regulate nitrate signaling in plants (Wang et al., 2018).
Among these, NLP7 acts as a master regulator, controlling the
primary response in nitrate signaling (Konishi and Yanagisawa,
2013; Marchive et al., 2013; Liu et al., 2017; Zhang et al.,
2021). The loss-of-function nlp7 exhibits a nitrogen-deficient
phenotype as well as tolerance to drought (Castaings et al., 2009).
While the vital role of NLP7 in the transcriptional response to
nitrate has been characterized, the mechanism responsible for
tolerance of nlp7 to abiotic stress has not been established.

Nitrogen metabolism also interacts with responses to salt
stress. In particular, nitric oxide (NO) plays a pivotal role in
responses to various abiotic stresses, such as drought and high
osmotic potential. The NO accumulates with osmotic stress and
is likely a product of nitrate reductase (NR) (Kolbert et al.,
2010). Treatment of wheat with NO promotes stomatal closure
and enhances drought tolerance (García-Mata and Lamattina,
2001), and supplying osmotically stressed wheat seedlings with
NO that reduces water loss and promotes abscisic acid (ABA)
accumulation (Xing et al., 2004). At low concentrations, NO
positively contributes to stress signaling; however, at higher
concentrations of NO, this free radical causes damage to cells
(Del Rio et al., 2004).

Due to irrigation practices and climate change, soil
salinization affects 1–10 billion hectares of arable land in
over 100 countries (Zhang et al., 2017). In this new century,
salinization is predicted to impact half of the arable land
adversely. The major abiotic stressors, drought, and salinity,
are already responsible for substantial crop production losses
worldwide (Mahajan and Tuteja, 2005; Munns, 2011). To
alleviate the effects of salt stress on crops and maximize crop
productivity, an understanding of the various physiological
phenomena contributing to salt tolerance at a molecular
level is needed.

High salinity increases the osmotic potential of water in
the soil, hindering the ability of plants to acquire water, and
the water deficit ultimately leads to reduced growth (Machado
and Serralheiro, 2017). Salinity also impacts plant growth by
disrupting cell ion homeostasis through the toxic effects of
excess sodium and chloride ions in the plant body (Munns
et al., 2012) and inhibition of the uptake of essential nutrients
(Paranychianakis and Chartzoulakis, 2005; Naeem et al., 2010).

Early signaling in response to salinity includes redistribution
of intracellular calcium, generation of reactive oxygen species
(ROS), phosphorylation by protein kinases, and accumulation
of and transcriptional response to the hormone, ABA. The
induction of ABA-independent genes in response to salt stress
is also reported (Hussain et al., 2021). Salinity-induced signaling
ultimately leads to altered physiology, such as changes in
growth and development, redistribution of intracellular ions, and
synthesis of compatible solutes (Acosta-Motos et al., 2017; Zhao
et al., 2020).

In addition, salt stress is known to alter uptake, assimilation,
and transport of nitrate in plant cells (Lin et al., 2008; Yao et al.,
2008) through the inhibition of the activities of enzymes for
assimilation of nitrate, including nitrate transporters and nitrate
reductase (Goel and Singh, 2015). Moreover, in plants coping
with the detrimental effects of high salinity, the downregulation
and upregulation of NRT1.5 and NRT1.8, respectively, are
associated with improved tolerance to salt (Fan et al., 2007; Han
et al., 2016).

From an effort to understand the response of NLP7 to abiotic
stress, we find that nlp7 performs better than wild type (Col-
0) on saline medium, although NLP7 is induced by salinity.
Moreover, the tolerance of nlp7 to salt stress is associated with
attenuated responses indicative of salt stress. We attribute the
better performance of nlp7 to the abnormal accumulation of
nitrate resulting from reduced expression of NR activity in nlp7.

MATERIALS AND METHODS

Plant Growth Materials
Two T-DNA-tagged mutants, namely, nlp7-1
[SALK_026134.54.75. (SALK_026134c)] and nlp7-2
[SALK_114886.35.50.x (CS868891)], were obtained from
the Arabidopsis Biological Resource Center (ABRC), Ohio
State University. The T-DNA right-border primer LBb1.3
(5′-ATTTTGCCGATTTCGGAAC-3′), the NLP7 full-length
forward primer (5′-ATGTGCGAGCCCGATGATAATTC-3′),
and the NLP7 full-length reverse primer (5′-
TCACAATTCTCCAGTGCTCTCGCAG-3′) were used for
PCR screening. Arabidopsis thaliana Col-0 was used as the
wildtype. The seeds were sterilized, stored at 4◦C for 3 days,
and then inoculated on nitrogen-free half-strength Murashige
and Skoog (MS) medium containing 2% sucrose, 0.5% phytagel,
and 0.5 mM (low nitrate) or 5 mM (normal nitrate) KNO3 as
the sole nitrogen source (pH 5.8). The seedlings were grown
in a growth chamber at 23 ± 1◦C under a 16/8 h light/dark
cycle, 50–55 µmol photons m−2

·s−1 photosynthetic photon flux
density, and 70% humidity. After 4 days of germination, the
seedlings were transferred on the same medium supplemented
with 150 or 200 mM NaCl or KCl. The K+ concentration was
adjusted to 10 mM by adding K2SO4 to all NaCl media with
KNO3 concentration below 10 mM.

Quantitative Reverse Transcription
Polymerase Chain Reaction
The RNA was extracted from whole 9-day-old plants, as described
by Lee et al. (2021). Moloney Murine Leukemia Virus (M-MLV)
reverse transcriptase was used to synthesize the first-strand of
complementary DNA (cDNA). Real-time reverse transcription
polymerase chain reaction (RT-PCR) was conducted by using
EvaGreen 2 × qPCR MasterMix (Applied Biological Materials
Inc., Richmond, Canada). The housekeeping gene, AtActin2 was
used as the internal control. The primers used for PCR are listed
in Supplementary Table 1.
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Chlorophyll Assay
Spectrophotometry was used to detect chlorophyll content.
Briefly, chlorophyll was extracted from the investigated seedlings
in the phenotypic experiments. First, the samples (100 mg)
were ground to a fine powder in liquid nitrogen. The powdered
samples were transferred to a 1.5 mL tube and incubated at 21◦C
with 700 µL of 80% acetone solution. The solutions were gently
mixed in the dark for 30 min to protect chlorophyll from light
damage. The mixture was then centrifuged at 3,000 rpm at 4◦C
for 15 min. Absorbance was measured at 663 and 645 nm. The
following equations were used to estimate chlorophyll content:

Chlorophylla(mg · g−1) = [12.7 × (A663)− 2.69 ×

(A645)] × V/1000 × W

Chlorophyllb(mg · g−1) = [22.9 × (A645)− 4.86 ×

7(A663)] × V/1000 × W

Totalchlorophyll(mg · g−1) = [8.02 × (A663)+ 20.20

× (A645)] × V/1000 × W

where, V = volume of the extract and W = fresh weight of leaves.

Bradford Assay
After nine days of growth in the control medium, Col-0 and
nlp7 seedlings were exposed to 0, 150, or 200 mM NaCl for 1
day. Then, 500 µL of PRO-PREPTM protein extraction solution
(iNtRON Biotechnology Inc., Gyeonggi, Republic of Korea) was
added to the ground samples, and the mixtures were vortexed.
Cell lysis was achieved by incubation at –20◦C for 20–30 min,
followed by centrifugation at 13,000 rpm and 4◦C for 5 min.
The supernatant was transferred to a fresh tube, and the samples
were incubated at –20◦C until used for further experiments. The
protein content was determined using the BCA Protein assay kit
(Merck Millipore, MA, United States). For the assay, 1 mL of
bovine serum albumin solution was prepared in distilled water
(10 mg·mL−1) and then diluted to 1 mg·mL−1 for use. The
reaction mixtures were prepared in tubes. Next, 200 µL of the
reaction mixture was transferred to a 96-well microplate, and
absorbance was measured at 595 nm. Microsoft Excel was used
for constructing a standard curve to calculate the protein content.

Intracellular Nitric Oxide Detection Assay
Endogenous NO content was semi-quantitatively analyzed
using a NO-specific fluorescent probe (diaminofluorescein-
based dye, DAF-FM DA), as Guo et al. (2003) described with
some modifications. After passing through the cell membrane,
DAF-FM DA accumulates within the cell. The binding of
nonfluorescent DAF-FM to intracellular NO leads to the
generation of a fluorescent triazole product (Li et al., 2016). In
this assay, 9-day-old seedlings were exposed to 150 mM NaCl
for 6 h and then stained with 5 µM DAF-FM DA in 20 mM

HEPES-NaOH (pH 7.5) for 30 min in the dark. Next, the stained
seedlings were washed with the same buffer three times for
5 min each and incubated in the dark for 1 h before visualizing
under a laser confocal scanning microscope (LSM 700; Zeiss,
Jena, Germany). The excitation wavelength was 488 nm, and the
emission wavelength was 515–565 nm.

Nitrate Reductase Activity Assay
After 9 days of growth in the control medium, Col-0 and nlp7
seedlings were exposed to 0, 150, or 200 mM NaCl for 1 day.
The NR was isolated, and its content was determined using an
NR assay kit (BC0080, SolarBio, Beijing, China). Briefly, the
samples (100 mg) were extracted in 1 ml of extraction solution
and centrifuged at 4,000 × g for 10 min. The supernatant was
collected and used for further analyses. Absorbance at 520 nm
was used to calculate NR activity.

Nitrate Content Assay
Samples (50 mg) of 9-day-old Col-0 and nlp7 seedlings grown
in the control medium and then treated with 0, 150, or 200 mM
NaCl for 1 day were collected for nitrate content measurements
as described by Zhao and Wang (2017). The pretreated samples
were ground in liquid nitrogen. Then, 1 mL of distilled water
was added to the samples, followed by boiling the samples for
20 min. The mixture was centrifuged at 13,000 rpm at 4◦C
for 10 min. Next, 100 µl of the supernatant was mixed with
400 µl of sulfosalicylic acid in a 15 ml Falcon tube and incubated
at room temperature for 30 min. Then, 9.5 ml of 8% NaOH
solution was added to the samples, and the mixture was cooled
at 4◦C for 5 min. Nitrate content was calculated based on
absorbance at 410 nm.

Chloride Content Assay
Chloride content was analyzed using the Ferricyanide method
described by Hunt (1982) and Pruefer (2001). Briefly, after 9 days
of growth in the control medium, Col-0 and nlp7 seedlings were
exposed to 0, 150, or 200 mM NaCl for 1 day. Samples (50 mg) of
pretreated seedlings were collected and ground in liquid nitrogen.
Collected samples were incubated in 5 ml of 0.5 M HNO3
solution in an oven at 80oC for 1 h. Then, solid materials were
allowed to settle to the bottom of the vial. A stock solution
containing mercuric thiocyanate solution, Hg(SCN)2 (4.17 g/l
distilled water), and ferric nitrate solution, Fe(NO3)3•9H2O
(202 g/l DW), was prepared. Then, a combined color regent was
made by adding 150 ml stock Hg(SCN)2 solution to 150 ml stock
Fe(NO3)3 solution and diluted to 1 L with distilled water. Next,
1 ml of the supernatant was mixed with 3 ml of the color regent
in a 15 ml Falcon tube. Chloride content was calculated from
a standard curve obtained with Cl− standard solutions using a
spectrophotometer with the wavelength set at 480 nm.

15N-Uptake Assay
Nitrate uptake was analyzed using 15NO3

−, as previously
described by Lin et al. (2008). Briefly, seedlings were grown in a
nitrogen-free half-strength MS medium with or without 200 mM
NaCl for 9 days, treated with 0.1 mM CaSO4 for 1 min, and
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FIGURE 1 | The nlp7 mutants showed enhanced salt tolerance. (A) Comparison of the growth performance of Col-0 and nlp7 plants under salt stress. Four-day-old
Col-0, nlp7-1, and nlp7-2 seedlings were germinated and grown on a nitrogen-free half-strength MS medium containing 5 mM KNO3 and then transferred to a
media supplemented with 0, 150, or 200 mM NaCl. After 2 weeks, each phenotype was confirmed. (B) Quantification of fresh weight, chlorophyll content, and
protein content of Col-0, nlp7-1, and nlp7-2 seedlings in response to salt stress. Error bars represent the standard deviation of three biological replicates. Different
letters (a, b, c, or d) within a treatment group indicate significant differences in the two-way ANOVA (P ≤ 0.05, Tukey’s test).

then transferred into a fresh nutrient solution supplemented
with 20 mM K15NO3

− (99% atom), as the sole N source, for
1 h. The seedlings were treated with 0.1 mM CaSO4 for 1 min
once again. The roots were dried at 70◦C to a constant weight
and ground. The 15N content was analyzed using a continuous-
flow isotope mass spectrometer (Thermo-MAT253) coupled to
an elemental analyzer (Flash 2000 HT, Thermo Fisher Scientific
Inc., MA, United States).

Promoter Activity Assay
An approximately 1.45 kb genomic fragment of the NLP7
promoter (–231 to –1,682) was PCR-amplified using the NLP7-
proGUS forward (5′-GGGCCAACTATAGAGGAATGGT-3′) and
reverse (5′-ACAATACAACTGTGCCCCAAAT3′) primers. After
sequencing, the promoter fragment was cloned in front of
the reporter GUS gene in the binary vector, pMDC162. This
vector was then introduced into Agrobacterium tumefaciens and
finally transformed into Col-0 using the floral dip method
(Clough and Bent, 1998). Putative transformants were selected
on half-strength MS media supplemented with hygromycin
B (25 mg·L−1). The β-glucuronidase (GUS) staining was
performed as described by Jefferson et al. (1987), with
some modifications. Briefly, 9-day-old NLP7p::GUS transgenic
seedlings were pretreated under the abovementioned conditions

for 1 day, followed by GUS staining. The Leica EZ4D microscope
(Leica Microsystems1) was used to examine the stained seedlings.

Proline Content Measurement
Proline content was measured as described previously (Bates
et al., 1973). Briefly, proline was isolated from 100 mg of plant
leaves by grinding in 1 ml of 3% sulfosalicylic acid. A 200 µl
aliquot of the extract was allowed to react with 100 µl ninhydrin
(80% glacial acetic acid, 6.8% phosphoric acid, and 70.17 mM
ninhydrin) for 60 min at 100◦C. An ice bath was used to stop
the reaction. Then, the reaction mixture was treated with 200 µl
of toluene and vortexed. The absorbance of the toluene layer was
measured at 520 nm using a UV/VIS spectrophotometer. Finally,
proline content was estimated by extrapolation on a standard
curve and calculated on the FW basis as follows: [(ng proline
ml−1

×ml extraction buffer)/115.5 ng nmol] g−1 sample = nmol
proline g−1 FW material.

Malondialdehyde Content Measurement
After 24 h of salt treatment, samples were harvested, and the
malondialdehyde (MDA) content was assayed according to the
study by Zhang et al. (2020) with small modifications. Seedlings

1http://www.leica-microsystems.com/home/
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were ground in liquid nitrogen, homogenized in 1.5 ml of 20%
(w/v) trichloroacetic acid (TCA), and centrifuged at 10,000 × g
for 5 min. To a 1 ml aliquot of the supernatant, 2 mL of
thiobarbituric acid solution [0.5% (w/v) in 20% TCA] was added.
Then, the mixture was heated at 95◦C for 15 min, rapidly cooled
in an ice bath, and centrifuged at 12,000 × g for 10 min. The
absorbance of the supernatant was measured at 450, 532, and
600 nm, and the MDA content was calculated using the following
equation:

Concentration(mmolL−1) = 6.453 × (OD532 − OD600)

−0.563 × OD450

where, OD = optical density.

Measurement of Abscisic Acid Content
Using 200 mg samples of seedlings treated with 0, 150, or
200 mM NaCl for 1 day, the ABA content was determined
as described previously (Liu et al., 2014; Jeong et al., 2018)
using a commercial kit (Phytodetek Elisa kit, PDK 09347,
Agdia, Inc., Elkhart, Indiana, United States) according to the
manufacturer’s instructions.

Na+ and K+ Ion Content Measurement
The cation content was determined as described by Choi and
Gilroy (2015). Briefly, 100 mg samples of Col-0 and nlp7
seedlings germinated and grown on nitrogen-free half-strength
MS medium containing 5 mM KNO3 and treated with 200 mM
NaCl for 6–24 h were used. The pretreated seedlings were washed
multiple times with deionized water to remove any Na+ and
K+ on the surface. In 20 mL glass test tubes, the samples were
digested with 0.6 mL of concentrated HNO3 at 150◦C until the
plant tissues were entirely dissolved. Next, 0.4 mL of HClO4
was added, and the samples were continuously digested further
at 180◦C until the total sample volume dropped below 0.5 mL.
Then, the extracts were cooled down to room temperature,
and the final volume was adjusted to 5 mL. The Na+ and K+
content were determined using ICP-OES (Agilent Technologies
Inc., CA, United States) from a standard curve obtained with Na+
and K+ standard solutions. Moreover, the Na+-to-K+ ratio was
calculated based on the measured Na+ and K+ content.

Gene Accession Numbers
The ABRC accession numbers of gene sequences used in
the present article are provided in parentheses: NLP7
(AT4G24020), NLP6 (AT1G64530), NRT1.1 (AT1G12110),
HY5 (AT5G11260), COR47 (AT1G20440), RD29A (AT5G52310),
NIA1 (AT1G77760), NIA2 (AT1G37130), NRT1.5 (AT1G32450),
NRT1.8 (AT4G21680), NCED3 (AT3G14440), BG1
(AT3G57270), and BG2 (AT3G57260), ACTIN2 (AT3G18780).

Statistical Analyses
To obtain reliable results, each experiment was independently
repeated at least three times. All statistical analyses were
performed using one-way ANOVA, followed by Tukey’s test, for
the comparison of means with a 95% confidence level. Different

letters (a, b, c, . . .) indicate significant differences at P < 0.05.
Error bars represent standard deviation (SD).

RESULTS

Salt-Induced NLP7 Conditions Tolerance
to Salinity
A previous study showed that nlp7 exhibits tolerance to drought
(Castaings et al., 2009), which led us to examine the tolerance
of this mutant to salinity. Thus, we assessed the performance
of nlp7 grown in stressful concentrations of NaCl. Four-day-
old seedlings of Col-0, nlp7-1, and nlp7-2 were transferred from
agar medium without added NaCl to medium supplemented
with 0, 150 and 200 mM NaCl. After 2 weeks, there was no
difference in the growth performance of Col-0 and nlp7 in the
absence of NaCl; however, on high salinity, nlp7 showed a higher
tolerance. Although all plants grew less on saline medium, nlp7
grew noticeably better than Col-0 (Figure 1A). Moreover, nlp7
exhibited higher fresh weight, chlorophyll content, and protein
content than Col- 0 in the presence of 150 mM NaCl, and
these differences were still greater at a higher NaCl concentration
(200 mM) (Figure 1B). In contrast, the performance of
Col-0 and nlp7 grown on medium supplemented with KCl
(100 and 200 mM) was indistinguishable although all plants
appeared more sensitive to KCl than to NaCl (Supplementary
Figures 1A,B).

To examine whether the expression of NLP7 responds to
salinity, we measured its transcript levels in Col-0 exposed to
NaCl (200 mM) at time points of up to 48 h (5 min, 0.5 h,
1 h, 3 h, 6 h, 18 h, 24 h, and 48 h, in Figure 2). The
expression of NLP7 initially remained low from 5 min to 1 h
after exposure to NaCl, abruptly peaked at 3 and 6 h and
then gradually declined out to 48 h. Transcription factors NLP7
and its close homolog NLP6 serve vital functions in nitrate
signaling and, in particular, promote expression of NITRATE
TRANSPORTER 1.1 (NRT1.1/NPLC 3.8, Konishi and Yanagisawa,
2013; Marchive et al., 2013). NRT1.1 encodes a transceptor (dual
affinity transporter and sensor) involved in nitrate uptake and
nitrate-dependent gene regulation (Huang et al., 1996; Wang
et al., 1998; Liu et al., 1999; Ho et al., 2009). While the
transcriptional response of NLP7 to NaCl peaked by 3 h, the
transcript level of NRT1.1 was maximally induced only after
18 h. The induced expression of stress marker genes COR47 and
RD29A confirmed that salt stress was successfully caused in the
present study (Figure 2).

The Promoter of NLP7 Responds to Salt
and Osmotic Stress
Since salinity enhanced the transcript levels of NLP7, we
examined the transcriptional regulation of the promoter of NLP7
using plants stably transformed with NLP7p::GUS, a fusion of
genomic sequence (1.45 kb) upstream of NLP7 to the reporter
gene, GUS. Following exposure to 200 mM NaCl, the GUS
activity of transformants gradually increased with time under
stress (at 6, 24, and 48 h); and the activity was higher in shoots

Frontiers in Plant Science | www.frontiersin.org 5 January 2022 | Volume 12 | Article 743832

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-743832 January 18, 2022 Time: 15:34 # 6

Le et al. Salt Stress Tolerance of nlp7

FIGURE 2 | NLP7 transcript levels were elevated in response to external salt
treatment. Relative transcript levels of NLP7, NRT1.1, COR47, and RD29A in
Col-0 and nlp7 plants, as determined using qPCR. The seeds were
germinated and grown on a nitrogen-free half-strength MS medium containing
5 mM KNO3 for 9 days and then treated with 200 mM NaCl for 5 min to 48 h.
AtActin2 was used as the internal control. Error bars represent the standard
deviation of three independent replicates. Different letters (a, b, c, d, or e)
within a treatment group indicate significant differences in the two-way
ANOVA (P ≤ 0.05, Tukey’s test).

than in the roots (Figure 3A). To determine whether promoter
activity specifically responded to salt stress, we examined other
treatments. Similar to NaCl, both mannitol (300 mM) and KCl
(200 mM) activated NLP7p::GUS, whereas ABA (5 µM) and IAA
(0.5 µM) did not activate NLP7p::GUS (Figure 3B). In a previous
study, GUS activity of a reporter gene similar to NLP7p::GUS
increased in the guard cells of transgenic plants, which induces
drought resistance (Castaings et al., 2009). High salinity affects
plants through two mechanisms, osmotic stress and ion toxicity
(Ma et al., 2020). The early response of plants to salt stress is
similar to drought stress due to a decline in the water potential
(Navarro et al., 2008; Ma et al., 2020). Our results show that the
promoter of NLP7 responded to osmotic stress and salinity.

We further examined the transcript accumulation of NLP7
separately in the shoots and the roots in response to salt stress.
Following treatment with 150 and 200 mM NaCl, transcripts
of NLP7 substantially accumulated in shoots and not in the
roots of Col-0 in response to NaCl, which was consistent with
the pattern of GUS activity in transgenic plants (Figure 3C).
Similarly, following treatment with 100 and 200 mM KCl, the

FIGURE 3 | NLP7 promoter activity was induced by salt, mannitol, and KCl.
(A) Histochemical β-glucuronidase (GUS) staining of transgenic Arabidopsis
seedlings harboring the NLP7p::GUS fusion construct. The seedings were
germinated and grown on half-strength MS medium containing 5 mM KNO3

for 9 days and then treated with 200 mM NaCl for 0, 6, 24, or 48 h.
(B) Histochemical GUS staining of the 9-day-old seedlings grown on a
nitrogen-free half-strength MS medium containing 5 mM KNO3 in response to
300 mM mannitol, 200 mM NaCl, 200 mM KCl, 5 µM ABA, and 0.5 µM IAA
for 24 h; untreated seedlings were used as controls. (C) Relative transcript
levels of NLP7 in the shoots and roots of 9-day-old Col-0, nlp7-1, and nlp7-2
seedlings following exposure to 0, 150, or 200 mM NaCl for 6 h. AtActin2 was
used as the internal control. Error bars represent the standard deviation of
three independent replicates. Different letters (a, b, or c) within a treatment
group indicate significant differences in the two-way ANOVA (P ≤ 0.05,
Tukey’s test).
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FIGURE 4 | Nitrate content was elevated, and nitrate reductase activity was altered in nlp7 mutants under salt stress. (A) The nitrate content of the shoots and the
roots of 9-day-old Col-0, nlp7-1, and nlp7-2 seedlings was measured. The seeds were germinated and grown on nitrogen-free half-strength MS medium containing
5 mM KNO3 for 9 days and then treated with 0, 150, and 200 mM NaCl for 24 h. Error bars represent the standard deviation of three independent replicates.
(B) 15NO3 uptake in the roots of Col-0 and nlp7-2 seedlings. The seedlings were germinated and grown on a nitrogen-free half-strength MS medium with or without
200 mM NaCl for 9 days and then transferred to a medium containing 20 mM of 15NO3

– and kept for 1 h. Error bars represent the standard deviation of three
independentreplicates. (C) Comparison of nitrate reductase activity under salt stress between 9-day-old Col-0 and nlp7 seedlings. Error bars represent the standard
deviation of three independent replicates. Different letters (a, b, c, d, e, f, g, h, or i) within a treatment group indicate significant differences in the two-way ANOVA
(P ≤ 0.05, Tukey’s test).

transcript levels of NLP7 appreciably increased in the shoots
and not in the roots (Supplementary Figure 2). Considering
that NLP7 is a transcriptional regulator of nitrate response and
a member of a family of homologous genes, we examined how
nlp7 mutants affect the expression of NLP6. The transcript level
of NLP6 was unaffected by salt stress in both the shoots and the
roots, and the levels were no different between Col-0 and nlp7
with or without salt stress (Supplementary Figure 3).

The nlp7 Accumulated More Nitrate Than
Col-0 in the Shoots
Since NLP7 is involved in nitrate signaling (Zhao et al., 2018),
we examined the possible role of NO, a signaling molecule for
salt stress tolerance (Nabi et al., 2019), in the enhanced tolerance
of nlp7 plants to salt stress. NO is enzymatically generated from
nitrate as a byproduct of NR (Meyer et al., 2005). Thus, reduced
NO levels may result from the reduced activity of NR in nlp7
(Figure 4). Fluorescence of the dye, DAF-FM DA was used
to measure the endogenous NO levels in planta (Figure 5A).
The roots of nlp7 showed lower NO levels following treatment
with 0, 150, or 200 mM NaCl for 30 min to 6 h than those of
Col-0 (Figure 5B).

To examine the nitrate content, we separately collected the
shoot and root tissues of Col-0 and nlp7 and found no difference

in the nitrate content of Col-0 and nlp7 in the absence of salt
stress; however, the nitrate content of shoots (and not roots)
of nlp7 was higher than Col-0 under high salinity (Figure 4A).
Since plants could accumulate higher chloride anion under high
salt stress, we also measured the chloride content and found no
difference between Col-0 and nlp7 (Supplementary Figure 4).
Moreover, the nitrate uptake of nlp7 and Col-0 was similar
following treatment with 15N-labeled KNO3 with or without
200 mM NaCl (Figure 4B). Likewise, Yu et al. (2016) have
reported a similar nitrate uptake by nlp7 and Col-0 plants in the
absence of salinity.

Importantly, the transcription factor, NLP7 binds to the
nitrate response element, a cis-element, in the promoter region
of NIA1, encoding a critical component of NR, and regulates
its transcription (Konishi and Yanagisawa, 2019). Thus, we
measured the NR activity of Col-0 and nlp7 under salt stress. As
shown in Figure 4C, the NR activity was lower in nlp7 than Col-
0, suggesting that the accumulation of nitrate in nlp7 may be a
consequence of reduced consumption by NR.

To explain how nitrate is taken up by the roots could have
accumulated in the shoots of nlp7, we compared the transcript
levels of various nitrate transporter genes in nlp7 and Col-0. In
particular, we found that the expression of NRT1.5, encoding a
transporter that uploads nitrate into the xylem (Raddatz et al.,
2020), was noticeably reduced in the roots of nlp7 treated with
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FIGURE 5 | The nlp7 mutants showed reduced nitric oxide (NO) content
under salt stress. (A) The NO accumulation in the root tips of Col-0 and nlp7
seedlings following exposure to 150 mM NaCl. The Col-0, nlp7-1, and nlp7-2
seedlings were germinated and grown on a nitrogen-free half-strength MS
medium containing 5 mM KNO3 for 9 days and then treated with 200 mM
NaCl for 6 h. The roots of the test seedlings were incubated with 5 µM of
DAF-FM DA in 20 mM HEPES-NaOH (pH 7.5) for 30 min in the dark, and the
NO-associated fluorescence was visualized using a laser confocal scanning
microscope (LSM 700; Zeiss, Jena, Germany). The excitation wavelength was
488 nm, and emission wavelength was 515–565 nm. Images on the left were
obtained under green fluorescence, and the ones in the middle were obtained
under bright-field microscopy; the images of green fluorescence and

(Continued)

FIGURE 5 | bright field microscopy were merged and are shown on the right.
(B) The NO content of the shoots and the roots of Col-0, nlp7-1, and nlp7-2
seedlings was measured following treatment with 0, 150, or 200 mM NaCl for
30 min to 6 h. Error bars represent the standard deviation of three
independent replicates. Different letters (a, b, c, d, e, or f) within a treatment
group indicate significant differences in the two-way ANOVA (P ≤ 0.05, using
Tukey’s test).

0 and 150 mM NaCl; whereas, the expression of NRT1.8, which
unloads nitrate from the xylem (Raddatz et al., 2020), was
elevated in the shoots and reduced in the roots of nlp7 (Figure 6).
These results suggest that the excess nitrate accumulation in the
shoots of nlp7 may be due to an enhanced expression of NRT1.8.

Nitrate-Driven Ion Homeostasis May
Contribute to the Enhanced Salt
Tolerance of nlp7 Plants
Next, we addressed whether enhanced tolerance to salt was
due to the reduced accumulation of Na+ in nlp7. The rate of
translocation of Na+ from the roots to the shoots was measured at
6 h and 24 h after exposure to 200 mM NaCl. At 6 h, the rate was
no different in Col-0 and nlp7; however, at 24 h, the rate increased
substantially in Col-0 and not nlp7 (Figure 7A). In contrast to
shoots, the accumulation of Na+ and K+ in roots under salt stress
was lower in Col-0 and higher in nlp7 (Supplementary Figure 5).
A higher ratio of Na+/K+ in the roots possibly accounted for the
reduced root growth (Figure 7B) of nlp7. In addition to being an
anabolic source of nitrogen, nitrate is a persistent anion in cells
and contributes to the ion homeostasis of plants by balancing the
excessive Na+ cations from salt stress (Raddatz et al., 2020).

Proline typically accumulates in plants stressed by salt or
osmoticum (Nanjo et al., 1999; Maiale et al., 2004; Sannazzaro
et al., 2007), and MDA accumulates in response to lipid
peroxidation resulting from salt stress (Wu et al., 2017; Zhou
et al., 2017). Interestingly, the levels of proline and MDA were
lower in nlp7 than in Col-0 following treatment with 0, 150, or
200 mM NaCl (Figures 8A,B). Moreover, the transcript levels of
the stress marker genes, such as RD29A and COR47, were slightly
lower in nlp7 or similar to those in Col-0 (Figure 8C).

Yang et al. (2018) showed that HY5 is essential for tolerance to
salt stress, so we assessed the expression of HY5. In the shoots, the
transcripts of HY5 similarly accumulated in Col-0 and nlp7 under
salt stress, while in the roots, the level of transcripts was lower
in Col-0 than in nlp7 (Supplementary Figure 6). This finding
suggests that a nitrate-dependent reduction in the accumulation
of Na+ contributes to tolerance of nlp7to salt.

Under High Salinity, Abscisic Acid
Accumulated Less in Col-0 Than in nlp7
Plant hormones play diverse roles in plants under stress.
Among these, the signaling of ABA plays crucial roles in
response to abiotic stress (Vishwakarma et al., 2017), and
ionic and osmotic stress activates the ABA biosynthesis (Kim
et al., 2010; Sah et al., 2016). To explore the involvement
of NLP7 in salinity-triggering ABA biosynthesis, we measured
the ABA content of Col-0 and nlp7 in response to added
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FIGURE 6 | Transcript levels of nitrate transporter genes were altered in nlp7 mutants. The relative transcript levels of the nitrate transporter genes, NRT1.5
(transporter of nitrate from the roots to the xylem) and NRT1.8 (responsible for nitrate unloading from the xylem and transport to the surrounding shoot organs) in the
shoots and the roots of Col-0 and nlp7 seedlings, as determined using qPCR. Nine-day-old seedlings were germinated and grown on a nitrogen-free half-strength
MS medium containing 5 mM KNO3; treated with 0, 150, or 200 mM NaCl for 6 h; and then dissected into shoot and root parts. AtActin2 was used as the internal
control. Error bars represent the standard deviation of three independent replicates. Different letters (a, b, c, d, e, f, g, or h) within a treatment group indicate
significant differences in the two-way ANOVA (P ≤ 0.05, Tukey’s test).

NaCl. Following treatment with 150 mM NaCl, nearly 30% less
ABA accumulated in nlp7 than in Col-0, and this difference
was two-fold greater following treatment with 200 mM NaCl
(Figure 9A). Moreover, we examined the expression of genes
involved in ABA biosynthesis or metabolism in 9-day-old
seedlings of Col-0, nlp7-1, and nlp7-2 following exposure to
0, 150, or 200 mM NaCl for 6 h (Figure 9B). The transcript
levels of 9-cisepoxycarotenoid dioxygenase (NCED3), encoding a
key enzyme in ABA biosynthesis (Urano et al., 2009; Liu et al.,
2016), was markedly reduced in nlp7; and, the transcript level
of ß- GLUCOSIDASE 1 (BG1) and ß-GLUCOSIDASE 2 (BG2),
involved in the conversion of inactive ABA-GE (located in the
endoplasmic reticulum) to free active ABA (Xu et al., 2012),
was reduced in nlp7 following treatment with 200 mM NaCl.
These results suggest that nlp7 suffered less severe damage from
high salinity because less ABA accumulated in comparison to

Col-0 (Figure 9A). As shown in Supplementary Figure 7, any
excess of ABA would be inappropriate for attaining maximal
biomass. Thus, ABA content must be optimized for maximized
salt tolerance (Supplementary Figures 7A,B).

DISCUSSION

The NLP7 is one of the extensively studied genes involved in
nitrogen signaling. This gene belongs to the nodule inception
(NIN) family (Castaings et al., 2009; Yu et al., 2016; Liu et al.,
2017). NIN proteins harbor a 60-amino acid domain, called the
RWPRK domain, which is similar to the DNA-binding domain
of bZIP8 and bHLH/Z9 transcription factors (Schauser et al.,
2005). Since NLP7 is a positive regulator of nitrogen signaling,
we initially speculated that NLP7 could play a positive role under
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FIGURE 7 | Na+ translocation to the shoots of nlp7 mutants was decreased
under salt stress. (A) The Na+ translocation from the roots to the shoots in
Col-0, nlp7-1, and nlp7-2 seedlings in response to salt stress. The seeds were
germinated and grown on a nitrogen-free half-strength MS medium containing
5 mM KNO3 and then treated with 200 mM NaCl for 6–24 h. Na+

translocation from the roots to the shoots was estimated based on the Na+

and K+ content of the roots and the shoots using ICP-OES (Agilent)
calculated from a standard curve obtained with Na+ and K+ standard
solutions. (B) The Na+-to-K+ ratio was calculated based on the Na+ and K+

content of the roots and the shoots of salt-treated Col-0 and nlp7 seedlings.
Error bars represent the standard deviation of three independent replicates.
Different letters (a, b, or c) within a treatment group indicate significant
differences in the two-way ANOVA (P ≤ 0.05, Tukey’s test).

salt stress and could improve plant stress tolerance. However,
the nlp7 plants not only weighed more than Col-0 when raised
under high-salinity conditions, but they also showed higher
content of chlorophyll and protein per unit weight, indicating
that the loss of NLP7 appears to be in fact beneficial to the
salt tolerance of Arabidopsis seedlings (Figure 1). A similar
observation was also made by another research group (Castaings
et al., 2009). Therefore, we further explored why the nlp7 plants
are more resistant to salt stress than Col-0. The NLP7 seems to be
associated with salt stress signaling because its transcript levels
were apparently increased in response to salt stress (Figure 2).
Moreover, the NLP7 promoter activity was increased not only by
NaCl but also by KCl (Figure 3B).

Recently, NLP6 and NLP7, along with teosinte
branched1/cycloidea/proliferating cell factor1-20 (TCP20),
were shown to bind the promoter of the NIA1 gene under
nitrogen starvation (Guan et al., 2017). Moreover, the NIT2
protein in Chlamydomonas reinhardtii, which is structurally
related to the plant NIN proteins, activates NR by binding

FIGURE 8 | The nlp7 mutants showed reduced proline and malondialdehyde
(MDA) content and decreased relative transcript levels of stress marker genes.
(A, B) Proline and MDA content of 9-day-old Col-0 and nlp7 seedlings
germinated and grown on a nitrogen-free half-strength MS medium containing
5 mM KNO3 and then treated with 0, 150, or 200 mM NaCl for 24 h. Error
bars represent the standard deviation of three independent replicates.
(C) Relative transcript levels of RD29A and COR47 (stress marker genes) in
9-day-old Col-0, nlp7-1, and nlp7-2 seedlings in response to salt
stress, as determined using qPCR. The seeds were germinated and grown on a

(Continued)
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FIGURE 8 | nitrogen-free half-strength MS medium containing 5 mM KNO3

for 9 days and then treated with 0, 150, or 200 mM NaCl for 6 h. AtActin2
was used as the internal control. Error bars represent the standard deviation
of three independent replicates. Different letters (a, b, c, d, or e) within a
treatment group indicate significant differences in the two-way ANOVA
(P ≤ 0.05, Tukey’s test).

its promoter (Camargo et al., 2007). As expected, under salt
stress, the activity of NR was lower in nlp7 plants than in Col-0
(Figure 4C), although nitrate uptake was equivalent between
the two; thus, the reduced NR activity of nlp7 plants does not
appear to be due to the decreased nitrate uptake under salt
stress (Figure 4B). Contrary to these results, nitrate content
was higher in nlp7 plants, perhaps due to the decreased NR
activity (Figure 4C). Both the roots and the shoots of the
nlp7 plants accumulated more nitrate than Col-0 (Figure 4A).
These observations contradict the view that nitrate assimilation
through NR action should be more active in the plants to tolerate
stress conditions.

The NO is considered a key intracellular signaling molecule,
which is involved in diverse developmental and physiological
processes (Lamattina et al., 2003; Lamotte et al., 2005),
particularly plant responses to abiotic stresses. Nevertheless, the
functional roles of NO in salt stress responses remain elusive
(Manai et al., 2014). There are two well-characterized enzymatic
sources of NO in plants, namely NO synthase (NOS) and NR
(Crawford, 2006). The primary function of NR encoded by NIA1
and NIA2 is nitrogen assimilation, in which nitrate is converted
to nitrite through the activity of NR. Moreover, NR is the key
enzyme for NO production in most plants (Tejada-Jimenez et al.,
2019). The NR produces NO from nitrite in an NAD(P)H-
dependent manner (Chen et al., 2016). This led us to measure
the NO content of Col-0 and nlp7 plants, because at low levels,
NO is also known to be a positive regulator of the stress response
(Rockel et al., 2002; Del Rio et al., 2004). As shown in Figure 5, the
NO content was lower in nlp7 than in Col-0. In plants, the various
physiological functions of NO at the cellular level depend on
the specific sites of action, where it is regulated and distributed,
and its concentrations in the cell (Hasanuzzaman et al., 2018;
Sánchez-Vicente et al., 2019). However, as several other salt stress
responses (Figures 8, 9) were suppressed in nlp7 plants, we could
not conclude that NO triggers the salt signaling cascade more
effectively in this mutant than in Col-0. In fact, when produced
abundantly, the NO can contribute to various ROS-induced
cellular responses (Chen et al., 2014). The nlp7 plants likely
produced less ROS, as evidenced by the lower NO accumulation
in this mutant than in Col-0. Moreover, the nlp7 plants appeared
to be less stressed than the Col-0 plants under high salinity, as
evidenced by the lower levels of MDA (Figure 5A), an indicator
of oxidative stress, in the mutant. MDA is a compound with high
reactivity in the form of enol. It occurs naturally and is a reliable
marker for oxidative stress (Del Rio et al., 2005). Furthermore,
the lower proline content (Figure 5B) may be another evidence
for the fact that the nlp7 plants were less stressed than the Col-0
plants. ABA is involved in plant stress response, and its content is
increased under stress conditions (Cutler et al., 2010; Fujita et al.,
2011; Sah et al., 2016). We observed that nlp7 plants accumulated

FIGURE 9 | Abscisic acid accumulation was decreased in the nlp7 mutant
under salt stress. (A) Comparison of the abscisic acid (ABA) content between
Col-0 and nlp7 plants. Nine-day-old Col-0, nlp7-1, and nlp7-2 seedlings were
germinated and grown on a nitrogen-free half-strength MS medium containing
5 mM KNO3 and then treated with 0, 150, or 200 mM NaCl for 24 h. Error
bars represent the standard deviation of three independent replicates.
(B) Comparison of the relative transcript levels of the ABA-related genes, such
as NCED3, BG1, and BG2, in Col-0 and nlp7 plants. The seedlings were
grown, treated, and analyzed as described in Figure 8C. AtActin2 was used
as the internal control. Error bars represent the standard deviation of three
independent replicates. Different letters (a, b, c, d, e, or f) within a treatment
group indicate significant differences in the two-way ANOVA (P ≤ 0.05,
Tukey’s test).

less ABA than Col-0 under salt stress (Figure 9A). Moreover,
the transcript levels of the ABA biosynthetic gene, NCED3 were
decreased in the nlp7 plants. Likewise, the transcript levels of BG1
and BG2, which are involved in the conversion of inactive ABA
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to its active form (Xu et al., 2012; Ng et al., 2014), were reduced
in the mutant (Figure 9B). Thus, the lower endogenous ABA
levels in nlp7 plants again likely indicate that this mutant is less
stressed than Col-0.

Upon plant exposure to salt stress, high external sodium
concentrations lead to the rapid influx of Na+ ions into cells
through various pathways (Keisham et al., 2018). Typically, the
Na+ ions enter the cell via the K+ influx pathway, because the
ionic radii of the hydrated form of Na+ and K+ are similar,
making it difficult to discriminate between these two ions (Benito
et al., 2014). Consequently, plants growing in highly saline soil
often suffer from both Na+ toxicity and K+ deficiency (Hasegawa
et al., 2000). In some halophytes, nitrates are transported to the
shoots in a Na+-dependent manner (Junfeng et al., 2010; Nie
et al., 2015). For instance, in Beta vulgaris, Na+ improved both
nitrate uptake and its transport to the shoots (Kaburagi et al.,
2014, 2015). Contrary to our expectation, Na+ content was much
higher in the nlp7 plants than in Col-0 plants, particularly in
the roots (Supplementary Figure 5). However, both Na+ and
K+ levels were much higher in the nlp7 plants (Supplementary
Figure 5). This finding implies that the nlp7 plants could
accumulate more Na+ and K+ than Col-0 plants. A possible
reason for this phenomenon is that the nlp7 plants accumulated
more nitrates, which are anions, due to their reduced NR
activity (Figure 4C), leading to the increased uptake of Na+, a
cation, from the medium to balance the ionic charges. Under
saline conditions, although Na+ influx may eventually lead to
toxicity for Arabidopsis growth, these cations can also serve as
an osmoticum (Alvarez-Aragon et al., 2016), although this aspect
remains largely undervalued or omissive. Several studies have
demonstrated that ionic solute uptake is one of the strategies of
plants to adapt to low water potential in salinity environments
(Alvarez-Aragon et al., 2016; Genc et al., 2016). For instance, in
halophytes, high Na+ accumulation contributes to the adaptation
to saline environments (Flowers and Colmer, 2015). In these
plants, Na+ may be used as an osmolyte within the cell. Based
on this, the nlp7 plants may be more tolerant of osmotic
stress induced by high salinity. A similar phenomenon has
been reported by Alvarez-Aragon and Rodriguez-Navarro (2017).
The authors observed that in Arabidopsis, nitrates increased the
absorption of Na+ and its loading into the xylem, resulting in
high Na+ accumulation in the shoots. Under salt stress, Na+
serves an important osmotic function to prevent water loss and
plant withering (Alvarez-Aragon and Rodriguez-Navarro, 2017),
which supports our conclusion in the present study.

Nitrate assimilation is crucial for vascular plants. Moreover,
NR activity is regulated by diverse, intricate mechanisms
(for details, refer to the review by Lillo et al., 2004). NR

is rapidly inactivated or activated through phosphorylation
or dephosphorylation, respectively (MacKintosh and Meek,
2001). In addition, genes encoding NR are regulated at the
posttranslational level to modulate enzyme activity in response
to various external stimuli (Provan and Lillo, 1999; Lillo et al.,
2003). The present study proposes that maintaining the optimal
nitrate concentration through the modulation of NR activity may
be an effective strategy to improve the salt tolerance of plants. As
such, salt tolerance of plants can be enhanced through various
mechanisms, and we cannot completely exclude the possibility
that NLP7, which is rapidly induced under salt stress, acts as a
transcriptional regulator of certain unknown genes related to the
salt stress tolerance of Arabidopsis.
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