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In recent years, deep-learning-based fruit-detection technology has exhibited excellent
performance in modern horticulture research. However, deploying deep learning
algorithms in real-time field applications is still challenging, owing to the relatively low
image processing capability of edge devices. Such limitations are becoming a new
bottleneck and hindering the utilization of AI algorithms in modern horticulture. In this
paper, we propose a lightweight fruit-detection algorithm, specifically designed for
edge devices. The algorithm is based on Light-CSPNet as the backbone network, an
improved feature-extraction module, a down-sampling method, and a feature-fusion
module, and it ensures real-time detection on edge devices while maintaining the fruit-
detection accuracy. The proposed algorithm was tested on three edge devices: NVIDIA
Jetson Xavier NX, NVIDIA Jetson TX2, and NVIDIA Jetson NANO. The experimental
results show that the average detection precision of the proposed algorithm for orange,
tomato, and apple datasets are 0.93, 0.847, and 0.850, respectively. Deploying the
algorithm, the detection speed of NVIDIA Jetson Xavier NX reaches 21.3, 24.8, and
22.2 FPS, while that of NVIDIA Jetson TX2 reaches 13.9, 14.1, and 14.5 FPS and that of
NVIDIA Jetson NANO reaches 6.3, 5.0, and 8.5 FPS for the three datasets. Additionally,
the proposed algorithm provides a component add/remove function to flexibly adjust the
model structure, considering the trade-off between the detection accuracy and speed
in practical usage.

Keywords: modern horticulture, deep learning, fruit detection, lightweight, edge devices

INTRODUCTION

With the rapid development of computer vision techniques applied in modern horticulture
applications in the recent years, fruit detection has been widely used for fruit-quality detection,
ripeness identification, yield prediction, and automatic picking applications as the first step of
processing. However, the research findings are not adequately extended to practical applications.
For example, most of the existing high-accuracy fruit-detection algorithms cannot be deployed
to field robots because the computing device in the robot has a low arithmetic power and fruit
detection determines the subsequent operations to be performed by the robot (Barth, 2018;
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Kang et al., 2020). Therefore, there is an urgent requirement for a
lightweight and a highly accurate fruit-detection algorithm
for deployment in robots, to accomplish the real-time
detection of fruits.

In the last few decades, many researchers have investigated
fruit-detection algorithms. In most previous studies on the
image processing techniques for fruit detection, manually
selected features were used to encode the image data acquired
using different sensors and accordingly, the fruit position was
estimated. Most traditional methods for fruit image recognition
involve a combination of features, such as the color, texture, and
shape of the target (Burnett and Blaschke, 2003; Bulanon et al.,
2009; Zhao et al., 2016). Gongal et al. (2015) reviewed traditional
image processing techniques applied to the agricultural field.
Blasco et al. (2003) used an algorithm based on the inter-pixel
spectral response as a feature for detecting orange fruits. These
traditional methods are based on the study of specific scenarios
and generally have a low accuracy in real applications, where
the working environment is complex. Recently, the introduction
of deep learning has led to significant advances in object
recognition. There are many scholars who have applied deep
learning methods in agriculture, including yield estimation by
detecting fruits and improving crop quality by pest and disease
detection (Gao et al., 2020; Mu et al., 2020; Dhaka et al., 2021;
Kundu et al., 2021). Mu et al. (2020) developed an R-CNN
algorithm using Resnet-101 as the backbone network for the
detection, counting, and size estimation of green tomatoes. The
limitations of fruit detection in the shading and growth stages
were improved, and the average detection time per image was
0.37 s at 2.7 FPS on a GTX 1060 graphics card. Koirala et al.
(2019) proposed a YOLOv3-based mango-detection algorithm,
MangoYOLO, that was applied to the front and rear dual images
of each fruit tree, and the detection time reached 70 ms at 14.3
FPS per image in a cluster of high-performance computers. Liu
et al. (2020) proposed an improved tomato-detection model,
YOLO-Tomato, based on YOLOv3. The traditional rectangular
bounding box was replaced with a circular bounding box to
match the tomato target more accurately. The time taken to detect
each image could reach 54 ms at 18.5 FPS on a GTX 1070Ti
graphics card. Wan and Goudos (2020) proposed an improved
Faster R-CNN network for multi-category fruit detection. The
detection speed could reach 58 ms at 17.2 FPS per image on
an Nvidia GTX 1060 graphics card. Fu et al. (2020) established
an apple-detection algorithm using two fast neural network
structures, ZFNet and VGG16, to detect apples from the original
RGB and foreground RGB images and improved the detection
accuracy with an average detection time of 0.181 s at 5.5 FPS per
image in an Nvidia TITAN XP graphics card. Yu et al. (2019)
trained a strawberry dataset using a mask R-CNN algorithm to
segment strawberry fruits and assist in the visual localization of
picking points for picking robots, with an average time of 0.125 s
at 8.0 FPS per image, processed on a GTX 1080 graphics card.
Song et al. (2019) developed and trained a Faster R-CNN model
implemented using VGG16, for the all-day picking of kiwifruit.
The algorithm was configured in a desktop computer with an
average detection time of 0.347 s at 2.9 FPS per image detected on
an Nvidia TITAN XP graphics card. Gao et al. (2020) proposed

a multi-class apple detection algorithm based on Faster R-CNN.
The apples were detected separately under different occlusion
conditions to assist the robot in developing a picking strategy,
and the detection speed of processing an image on an Nvidia
TITAN XP graphics card was 0.241 s at 4.1 FPS. Although
these algorithms can further improve the detection accuracy
by avoiding the influence of the external environment on fruit
detection, the powerful feature extraction and generalization
capabilities of deep neural networks also require a large number
of parameters and computational cost. However, to achieve the
aim of real-time detection, the detection speed should be at
least 20 FPS. Otherwise, the speed is further degraded or even
unworkable when the algorithm is incorporated in the edge
devices of field robots. With the increasing demand for detection
performance and generalization capability, achieving real-time
detection with the highest possible detection accuracy has
become an important research topic. One of the most important
research directions is the lightweighting of the network.

A number of studies have introduced model lightweighting
in various fields, excluding agriculture. Howard et al. (2017)
proposed MobileNet, a mobile model, that is based on
depthwise separable convolution, instead of the traditional
convolutional operations. The computational complexity is
significantly reduced. An improved version of MobileNetV2
was thereafter proposed by Sandler et al. (2018) to further
improve the performance of the network model, by adding an
inverted residual structure with linear bottlenecks to the network.
Zhang et al. (2018) proposed a lightweight neural network
model, ShuffleNetV1, that ensures network performance while
reducing the operational complexity through group convolution
and channel shuffling. Ma et al. (2018) analyzed the relationship
between the computer memory access loss time and running
speed on this basis, and they also emphasized the effect of four
factors, namely, the number of input and output channels of
the convolutional layer, number of group operations, number
of branches of the network model, and number of element-wise
operations, on the speed of the overall model. Subsequently,
the network model was further improved, and the ShuffleNetV2
network model was proposed. The algorithms of the YOLO
series family (Redmon et al., 2016; Redmon and Farhadi, 2017,
2018; Bochkovskiy et al., 2020) have gained wide recognition
in the one-stage target detection in the recent years. It uses a
direct prediction of the object bounding box, combining the two
phases of region proposal and object detection into one stage,
and its backbone network, Darknet, can also be replaced with the
other backbone networks, thereby achieving efficiency, flexibility,
and an appropriate generalization performance. Among them,
the performance of the Yolo-tiny series of network models has
attained new highs in lightweighting. The average accuracy of
yolov4-tiny on the COCO dataset exceeds that of the mainstream
lightweight networks (Jiang et al., 2020). However, because the
fruit size in the actual field generally varies, few being extremely
small, the detection accuracy is relatively low, owing to the fact
that the network structure of the lightweight model is relatively
simple, with a small number of layers; therefore, the effective
features that can be extracted from the target are also relatively
few that causes the performance of small-sized fruit detection to
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be unsatisfactory. This is also one of the reasons that hinders the
application of lightweight networks in the field of fruit detection.

In this study, we propose a lightweight network model based
on edge devices and deploy the model on portable and powerful
edge devices that can achieve a high accuracy and real-time fruit
detection, and the specific issues in the existing literature that are
addressed by this study are given below.

(1) To address the large number of parameters and
computation cost of the existing fruit-detection
networks owing to the complex structures, in this
paper, a computationally efficient lightweight CSP target
detection network, Light-CSPNet, is proposed for fruit
detection. The accuracy and speed of fruit detection are
significantly improved.

2) To address the low detection accuracy of the existing
lightweight networks owing to fewer layers and insufficient
feature representation capability, this paper proposes a
down-sampling method based on the variation in the
feature-map size for lightweight networks. It replaces the
single down-sampling strategy used in the mainstream
methods. This can facilitate exhaustively utilizing
the feature-map characteristics with different scales.
The detection accuracy of the lightweight model is
further improved.

(3) To address the problem of apparent differences in the fruit
size in actual fields, this paper proposes a deep–shallow-
layer fusion model that fuses features at three different
scales and performs feature fusion through the multiscale
fusion of the dual-attention mechanism, to strengthen the
feature expression capability and substantially improve the
detection accuracy for different fruit sizes.

Through experimentation, it has been shown that the
network model proposed in this paper can substantially improve
the detection accuracy and achieve real-time detection using
edge devices. The remainder of this paper is organized as
follows. Section 2 describes the proposed lightweight fruit-
detection network. Section 3 discusses the related experiments
performed and the corresponding results. Section 4 presents the
conclusions of this study.

MATERIALS AND METHODS

In this paper, we propose a lightweight fruit-detection algorithm
for edge device applications. We introduce the overall structure
of the algorithm in Section 2.1, the backbone network of the
network model in Section 2.2, the feature-fusion module of the
network model in Section 2.3, and the detection branch of the
output in Section 2.4.

Overall Algorithm Structure
This section mainly describes the flow of our proposed algorithm,
and Figure 1 shows the overall structure of the algorithm. The
algorithm consists of three main steps: first, the orchard image is
input to the backbone network, Light-CSPNet, to extract features;
thereafter, the extracted features are passed through the deep and

shallow feature-fusion module, and multiscale feature fusion is
performed using the dual attention algorithm based on multiscale
fusion, and finally, three shallow detection branches are output
to obtain the fruit-detection results. The details of the algorithm
architecture are as follows:

(1) Light-CSPNet: The backbone network is Light-CSPNet,
a lightweight network for edge devices, as shown in
Figure 1(1) in the red box. Cross-stage fusion enables
the network model to retain the more effective gradient
information expression features. There are two main
features: the design of the Light-CSP block and the down-
sampling method based on the variation of the feature-
map size.

(2) Deep–shallow-layer fusion model: Three shallow branches
with different scales were designed to extract small targets
of the fruit class based on prior knowledge. In the feature-
fusion part, the feature information of three different
depths and sizes in the backbone network is first extracted.
Thereafter, feature fusion is performed through a dual
attention mechanism based on the multiscale fusion
function to further enhance the feature representation and
improve the detection accuracy, as shown in the green box
in Figure 1(2).

(3) Shallow detection branches: The three different scales of
feature maps obtained in the previous section were used to
construct three different detection branches for the target
fruit detection. The non-maximum suppression algorithm
(NMS) (Girshick et al., 2014) was used to remove the
duplicated frames and those with low confidence scores.
The obtained results are the final fruit-detection results, as
shown in the blue box in Figure 1(3).

Backbone Network
The backbone network, Light-CSPNet, is based on CSPNet
(Wang C. Y. et al., 2020), with the features detailed below:

(1) To address the problem of the high computational cost
of real-time fruit detection, the internal structure of the
blocks used in the original CSPNet at different scales is
lightened and replaced with Light- blocks for extracting
features, thereby avoiding time-consuming detection.

(2) To address the problem in the small-sized fruit detection,
a multi-strategy down-sampling method based on the
variation of the feature-map size is used. Different
down-sampling methods are used according to the size
of the down-sampling rate to improve the feature
extraction ability.

Figure 2 shows the comparison of the backbone network
structure between the conventional CSPNet and the proposed
Light-CSPNet. The red and green dashed boxes are the parts
of the changes made in this study to the internal structural
parts of the down-sampling method and the convolutional block,
respectively. In this section, we present the proposed improved
parts, where the Light-CSP block part in the green box is
introduced in Section 2.2.1, and the down-sampling part based
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FIGURE 1 | General architecture of the algorithm.

FIGURE 2 | Comparison of CSPNet and Light-CSPNet backbone networks.
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on the change in the feature-map size in the red box is introduced
in Section 2.2.2.

Light-CSP Block
In the conventional convolutional neural network architectures,
such as ResNet (He et al., 2016) and DenseNet (Huang et al.,
2017), the output of each layer is composed of the convolutional
operation of the layer itself and the output of all the previous
layers. However, this results in a gradient flow in the kth layer
of the model while updating and using the weights by retracing
from the 1st layer to the kth layer each time, leading to repeated
learning of redundant information. In recent years, researchers
have also investigated improving the learning capability and
parameter information utilization of the model (Ma et al., 2018;
Zhu et al., 2018; Wang C. Y. et al., 2020), where CSPNet (Wang
C. Y. et al., 2020) uses cross-stage partial concatenation to map
the output xk−1 of the (k-1)th layer convolution operation into
two parts in the next layer. It merges them after passing them
through a cross-stage hierarchy, such that, one of the parts
is updated with the gradient, while the other part keeps the
original gradient information unchanged. This ensures that the
propagated gradient information maintains a large correlation
difference, thereby reducing the gradient reuse problem. CSPNet
also achieved state-of-the-art test results on the MS COCO
target detection dataset. The network structure of CSPNet can be
expressed as follows:

xk = M{[x′k−1, T(F(x′′k−1))] (1)

where xk−1 is the input of this layer that is divided into two
channels after passing it through a convolution layer and can
be expressed as xk−1 = [x′k−1, x′′k−1]. T is the transition function
used to truncate the gradient flow in xk(k = 1, k = 2). M denotes
a 1 × 1 convolution operation for integrating the two separated
parts while controlling the number of channels.

However, owing to the large parameters and a high
computational cost, CSPNet exhibits a long detection time.
Therefore, it is not suitable for deployment in field robots.

In this paper, we propose Light-CSPNet to shorten the
detection time, while ensuring the detection accuracy. As shown
in Figures 3A,B, we replace the large number of Res blocks or
Dense blocks stacked in the partial block of the CSPNet with a
miniature cross-stage network structure consisting of only three
convolutional layers, the light partial block. And we reduce a
partial transition layer to reduce (with fusion last strategy) the
computational effort.

The n convolutional modules stacked in the partial block
part of the CSPNet with a nested miniature cross-stage network
structure consisting of only a few convolutional layers has been
replaced and is represented as

xk = M{[x′k−1, T[F(y′k−1, T′(F(y′′k−1)))]]} (2)

where y′k−1and y′′k−1 are the two different channels from x′′k−1
that is divided before entering the next convolutional layer.
They can be expressed as x′′k−1 = [y

′

k−1, y′′k−1],and T′ is the
new transition function that truncates the gradient flow in the
previous convolutional layer.

By switching and reintegrating the channel streams, we
reduce the large amount of duplicated gradient information
that allows the gradients to maintain appropriate correlation
differences during propagation and further reduces the amount
of computation and number of parameters per block in the
network. Using this method, we eliminate the requirement of
a high computational cost in large networks, such as CSPNet,
and improve the speed and accuracy of fruit detection in real-
time applications.

Figure 4 shows the specific internal flow chart of each block
with the corresponding scale in Light-CSPNet that can be divided
into the following four steps:

(1) The output, xk−1, of the previous layer is used as the input
of this layer. The output X after passing a 3 × 3 × C1
convolutional layer is mapped into two parts x′k−1, x′′k−1
for separate operational processing.

(2) x′k−1 is kept constant. After passing x′′k−1 through another
3 × 3 × C2 convolutional layer to output Y , it is again
mapped again into two parts of y′k−1and y′′k−1.

(3) After passing y′′k−1 through a 3 × 3 × C2 convolutional
layer with outputZ, it is thereafter fused withy′k−1 into the
Ỹ of dimension 2× C2.

(4) Ỹ is fused with the previous x′k−1, and thereafter, the
1 × 1 convolution operation is performed to double the
dimension toX̃, whose dimension is C1 + 2 × C2. Finally,
the result is input as xk in the next section.

In this framework, we use a nested two-span phase network
structure to propagate the gradient information. Compared with
stacking n Res blocks and Dense blocks, the computational and
parametric quantities of this network are significantly reduced,
further improving the operational efficiency.

Down-Sampling Method Based on the Variation of
Feature-Map Size
In this paper, we propose a down-sampling method based
on the variation of the feature-map size to address the
problem encountered while employing the conventional single
down-sampling method that cannot effectively retain the
various scales of feature maps at different down-sampling
rates, and accordingly, our proposed method improves the
detection accuracy.

In the field of fruit detection, the size of many fruits as
observed in the images are small. After several iterations of down-
sampling, the image size of a target fruit is only of a few pixels.
In such scenarios, if the conventional convolution with stride is
2 and the activation function, ReLU, is used for down-sampling,
the relationship information between the neighboring pixels will
be significantly lost, resulting in a degradation of the detection
performance that is not ideal for small-sized target detection.

Luo et al. (2016) studied the relationship between feature
maps and receptive field size at different scales and proposed
that the feature maps at different scales contain different feature
information. If a single down-sampling method is used, then
a large amount of useful information will be ignored and the
detection accuracy will be reduced. Based on this, we adopt a
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FIGURE 3 | Using the excellent structural design of CSPNet, we propose a lightweight network model, Light-CSPNet. Here, the n partial block in the original
network is replaced with a lightweight, specifically designed light partial block, and the double fusion operation is replaced with one fusion operation to further
improve the network operation speed. (A) Shows the network architecture of CSPNet; (B) Shows the network architecture of the proposed Light-CSPNet.

FIGURE 4 | Internal flow diagram of each Light-CSP block in the backbone network.

down-sampling method in backbone network based on the size
variation of feature map, which switches the down-sampling
methods according to the different down-sampling rate.

(1) When the down-sampling rate is low, the image size is
large, the receptive field is small, and the extracted features
are all low-level texture and color features. A down-
sampling method based on the cross-scale fusion function

is proposed to remedy the problem encountered, owing
to the inability to simultaneously retain the effective
information of complex images and the information
between neighboring pixels in the conventional down-
sampling methods.

(2) When the down-sampling rate is high, the image size
is small, the receptive field is large, and the extracted
features are all high-level semantic features. At this time,

Frontiers in Plant Science | www.frontiersin.org 6 October 2021 | Volume 12 | Article 740936

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-740936 October 7, 2021 Time: 19:20 # 7

Zhang et al. An Edge Computing Fruit Detection Algorithm

using the max-pooling method, the relationship between
adjacent pixels can be preserved, while still maintaining
the translation invariance of the image. This algorithm can
improve the detection accuracy of small-sized target fruits,
without increasing the computational effort.

The specific structure of the down-sampling method based on
the cross-scale fusion function used at low down-sampling rates
is shown in Figure 5. Because this down-sampling method is used
to extract features in shallow networks and shallow features are
prone to gradient disappearance, the general idea of the algorithm
is based on the design concept of residual blocks in ResNet. (1)
First, the original image a0 with Scale × 1 is input and mapped
into two channels that can be expressed as a0 = [a′0, a′′0]. (2) a′0
is down-sampled through a convolution operation with a stride
of 2 in a convolution layer with a convolution kernel of 3 × 3, to
ensure that the computational effort is not significantly increased
while using convolution for feature extraction. The scale of the
feature-map output from this channel becomes half of that of the
original image: Scale × 0.5. (3) a′′0 is convolved by a convolution
kernel with a 1× 1 kernel and a stride of 2. At this point, the scale
of the feature-map output from this channel also becomes half
of that of the original one: Scale × 0.5. (4) a′0 and a′′0 channels
are concatenated through a down-sampling layer of cross-scale
fusion to complete a down-sampling operation. The image size
is reduced from Scale × 1 to Scale × 0.5. Two such down-
sampling methods based on the cross-scale fusion function are
performed in the shallow network of the input image to ensure
that the training process reduces the information loss between
neighboring pixels while achieving effective extraction of the
shallow features.

By employing this down-sampling strategy based on the
variation of the feature-map size, we can flexibly change the
down-sampling method according to the down-sampling rate.
The use of a down-sampling method based on a cross-scale
fusion function at low down-sampling rates can preserve useful
information in complex images and improve the efficiency
of gradient utilization in shallow networks. The max-pooling
operation for down-sampling at high down-sampling rates can
reduce the loss of information between neighboring pixels and
completely extract the deep semantic information in the features.

Internal Parameters of Light-CSPNet Network
Architecture
The internal parameters of the network architecture of Light-
CSPNet are shown in Table 1. It contains two down-sampling
methods based on a cross-scale fusion function and three
maximum pooling modules with a down-sampling method based
on the feature-map size variation and three convolution modules
in the Light-CSP Block for lightweight feature extraction. Each
layer was followed by batch normalization and a Leaky ReLU
activation function.

Feature-Fusion Module
In this paper, a three-channel deep–shallow layer fusion model
is proposed. The feature maps of different scales are fed into

a multiscale fusion of dual attention (MFDA) algorithm for
feature fusion, to further improve the detection accuracy. The
target information focused on deep and shallow networks will
be different in solving machine-vision tasks with convolutional
neural networks. Feature fusion of different feature maps can
effectively improve the detection accuracy and generalization
ability of the model in object detection (Liu et al., 2016; Tsung-Yi
et al., 2017; Kirillov et al., 2019; Wang W. et al., 2020). In the field
of horticulture, for example, in an orchard, the size of the fruits
varies. Therefore, a significant difference in the target size and
an inconsistent fruit resolution will be observed. If only shallow
features are used to enhance the small-sized target detection
capability, it will lead to the loss of the high-level semantic
features. This can easily cause gradient disappearance, and the
improved utilization of the feature-map information of different
layers for fruit detection at different scales is the key to this
task. Based on this, the deep–shallow-layer fusion module in this
study extracts feature information from three channels: small-
scale, equal-scale, and large-scale channels. Thereafter, the three
feature maps are input to the MFDA module for feature fusion, to
improve the feature representation at different scales. The overall
architecture of the deep–shallow-layer fusion model and the flow
of the MFDA algorithm are shown in Figures 6A,B, respectively.

The pink area in Figure 6A is the proposed deep–shallow-
layer multiscale fusion module. The backbone network, Light-
CSPNet, convolves the input raw image to obtain features with
different scales as the down-sampling rate increases. This module
up-samples the deep semantic features and down-samples the
shallow texture features. Thereafter, it is concatenated with
the feature maps at equal scales into the MFDA algorithm to
highlight the feature expressions and improve the fruit feature
expressions at different scales as well as the detection of small
targets. Only equal-scale and small-scale features were fused in
the 104× 104 branch. The final feature maps of the three shallow
branches were used for subsequent detection.

The MFDA algorithm inputs features from three channels
and enhances the correlation between features using the channel
attention mechanism and the spatial attention mechanism
successively. The algorithm flow is illustrated in Figure 6B.
The algorithm is divided into two parts: (1) First, the equal-
scale feature map X1, the small-scale feature map X2, and
the large-scale feature map X3, obtained by up-sampling and
down-sampling, are input into the channel attention module.
Thereafter, the enhanced features, Y1 and Y2, are connected by
dimension to obtain Y . Finally, the feature map Y is input to the
spatial attention module to obtain Yfusion. It is worth noting that
the 104 × 104 branch does not necessitate down-sampling the
large-scale feature map of X3.

Our proposed deep–shallow layer fusion model can enhance
the correlation between the color and texture information
of the shallow layer and the semantic information of the
deep layer at different scales of the feature pyramid and
comprehensively utilize the features extracted from each layer
through convolutional neural networks. The correlation between
the features of each layer is improved, and the detection accuracy
of the targets at different scales is significantly improved.
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FIGURE 5 | Network structure of down-sampling method based on cross-scale fusion function.

TABLE 1 | Internal parameters of the network architecture of Light-CSPNet.

Block name Filter shape Input Output

Down-sampling method based on cross-scale fusion 1 × 1 × 32 3 × 3 × 32 (Stride = 2) 1 × 1 × 32 416 × 416 × 3 208 × 208 × 32

Down-sampling method based on cross-scale fusion 1 × 1 × 64 3 × 3 × 64 (Stride = 2) 1 × 1 × 64 208 × 208 × 32 104 × 104 × 64

Light-CSP block 3 × 3 × 64 3 × 3 × 32 3 × 3 × 32 104 × 104 × 64 104 × 104 × 64

(Transition filter) 1 × 1 × 64 104 × 104 × 64 104 × 104 × 128

Maxpool Stride = 2 104 × 104 × 128 52 × 52 × 128

Light-CSP block 3 × 3 × 128 3 × 3 × 64 3 × 3 × 64 52 × 52 × 128 52 × 52 × 128

(Transition filter) 1 × 1 × 128 52 × 52 × 128 52 × 52 × 256

Maxpool Stride = 2 52 × 52 × 256 26 × 26 × 256

Light-CSP block 3 × 3 × 256 3 × 3 × 128 3 × 3 × 128 26 × 26 × 256 26 × 26 × 256

(Transition filter) 1 × 1 × 256 26 × 26 × 256 26 × 26 × 512

Maxpool Stride = 2 26 × 26 × 512 13 × 13 × 512

Light-CSP block 3 × 3 × 512 3 × 3 × 256 3 × 3 × 256 13 × 13 × 512 13 × 13 × 512

(Transition filter) 1 × 1 × 512 13 × 13 × 512 13 × 13 × 18

Detection Branch
In this study, we address the feature maps obtained from the
output of the deep–shallow layer fusion model at three different
scales. Thereafter, a separate prediction branch is constructed
for each feature map to detect the target fruits at that specific
scale. We replaced the deep 13 × 13 scale branches with shallow
104 × 104 scale branches to improve the detection accuracy
of small-sized target fruits. In addition, the K-means target

border clustering algorithm in YOLOv3 is used in this study to
assign three anchors to each prediction branch for focusing on
target detection at small target scales in the fruit class. Finally,
the output feature vectors of the three prediction branches are
combined. Prediction borders with lower confidence threshold
scores were used. The NMS algorithm was applied to reject
the overlapping borders of the same target to obtain the final
fruit-detection results.
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FIGURE 6 | (A) Overall architecture of the deep–shallow-layer fusion model. (B) Flow of multiscale fusion of dual attention (MFDA) algorithm.

EXPERIMENT

In this section, we qualitatively and quantitatively evaluated
the proposed algorithm. To meet the requirements of multi-
variety heterogeneous collection in practical applications, the
algorithm for different fruit-detection datasets was tested in
this study. Furthermore, various conventional network models
were compared horizontally to evaluate the performance of the
different network architectures for the detection of different fruit

datasets. A GEFORCE GTX 1080Ti GPU, Intel i7 8th CPU
computer was the hardware device used in this experiment
to train a mature model for the overall algorithm training.
The model is also deployed in portable, well-performing edge
devices to test the detection accuracy and detection speed.
The tests were conducted on three edge devices of the
NVIDIA Jetson series, with different prices and algorithm
powers: NVIDIA Jetson Xavier NX, NVIDIA Jetson TX2, and
NVIDIA Jetson NANO.
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FIGURE 7 | (A) Shows an image of small-sized citrus fruits taken in sufficient light condition. (B) Shows an image of small-sized citrus fruits taken in poor light
condition. (C) Shows an image of medium-sized citrus fruits.

Dataset Introduction
Orange Dataset
The orange dataset comprised of the data obtained from an
orange orchard in the Sichuan Province, China, where most of
the fruits were ripe and yellow. The data were collected through a
standard orchard manner by controlling a robotic cart that travels
through the orchard and by controlling the angle and position
of the shot using a DJI Osmo Action camera mounted on the
cart. The trolley must travel at a constant speed parallel to the
direction of the trees, and the camera is set up at an angle of
90◦ to the direction of the tree growth. Simultaneously, to ensure
the complexity and diversity of the dataset, data were collected
from random locations in the orange orchards under a variety of
leaf shading and fruit stacking conditions on different days and
in different seasons. To ensure the effectiveness and practicality
of fruit monitoring, the dataset contains images of orange fruits
of different sizes for several different fields. Figure 7A shows the
small-sized target images taken when the distance between the
rover and the trees in the orchard is such that both the top of
the orange tree canopy and the bottom of the tree trunk can be
included in the image. Figure 7B shows an image of a small-
sized target captured in an overcast scene with insufficient light
intensity. Figure 7C shows an image of a medium-sized target
taken at a vertical height covering only the area from the top
to the bottom of the tree canopy. We have made the dataset
public and uploaded it to the GitHub link1. The robustness
and generalization ability of the algorithm can be effectively
improved by training and testing the images at different scales
and shooting angles.

Tomato Dataset
The tomato dataset was obtained from the public dataset Laboro
Tomato2. It contains images of tomato fruits at different stages of
growth. The dataset was obtained from a farm using two cameras
simultaneously and included two subsets of tomatoes, large- and
small-sized tomatoes. Each subset contains images of various fruit
colors and sizes acquired under complex scenarios (background

1https://github.com/I3-Laboratory/orange-dataset
2https://github.com/laboroai/LaboroTomato#overview

FIGURE 8 | (A) Shows an image of large ripe tomato. (B) Shows an image of
large immature tomato, (C) shows an image of small ripe tomato, and (D)
shows an image of small immature tomato.

and overlapping), as shown in Figure 8. An image of the large
ripe tomatoes is shown in Figure 8A. The images of an immature
large tomato, a ripe small tomato, and an immature small tomato
are shown in Figures 8B–D, respectively.

Apple Dataset
The apple dataset is obtained from a public apple dataset,
MinneApple dataset (Häni et al., 2019). The image collection
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contained 17 different rows of apple trees including different
species of apple trees. Images were acquired using a Samsung
Galaxy S4 cell phone. During data collection, video footage was
acquired by facing the camera horizontally on one side of a
row of trees and moving along the trees on foot at a speed of
approximately 1 m/s; moving the camera at a low speed mitigates
motion blur effects. One image was acquired every five frames.
Data, including apple targets under various light conditions,
such as, from the sunny or shady side of the tree rows, were
collected over a 2-year time span on different days, as shown
in Figure 9. The MinneApple dataset is based on the images
of apples acquired from arbitrary angles and scenes in a highly
chaotic environment that is highly demanding, in terms of the
algorithm performance. The acquisition method of this dataset
is similar to the method of agricultural robots capturing fruit
images that is highly suitable for the application of the algorithm
proposed in this study.

Figure 9A shows images of ultra-small-sized apple targets
captured in a remote scene. Figure 9B shows an image of a red
apple under smooth light. Figure 9C shows an image of a red
fruit against a backlit scene.

Training Strategies
We trained the different datasets separately. Finally, several
different detection models were obtained. Moreover, the images
were randomly split into training and test sets at a ratio of 7:3.
Few of the key training parameters included the following: the
gradient was optimized using the SGD optimizer, the momentum
was set to 0.9, the weight decay was set to 0.0005, the initial
learning rate was set to 0.01, the batch size was set to 8, and
the epoch was set to 30,000. The training is done by randomly
selecting a scale at certain iterations. The network was trained
by compressing the original images by several scales of 320, 416,
and 512 in equal proportions. Images of different scales were
used as the input and selected randomly at regular intervals for
training. The trained model is robust and can accept any size
of image as input. The problem of low accuracy of small-sized
target detection can be effectively improved (He et al., 2015). For
data augmentation, Mosaic data augmentation (Yun et al., 2019)
was chosen to increase the number of samples and improve the
small-sized target detection ability.

Evaluation Metrics
In this study, the precision (P) and recall (R) at the equilibrium
point, as well as the average detection precision (AP), detection
speed (FPS), number of model parameters (Params), floating
point operations per second (FLOPs), and weight size (Weights)
are used as the evaluation metrics to assess the accuracy of the
target-detection performance, where the IoU threshold is set to
0.5 that is used to quantify the model accuracy, balance precision,
and recall performance. Here, the P-value can be calculated using
Eq. 4, and the R-value can be calculated using Eq. 5:

P =
TP

TP + FP
, (3)

R =
TP
GT

, (4)

where TP represents the number of fruits with correct detection
and classification results and FP represents the number of
samples that incorrectly detect non-fruit targets as fruits in the
fruit dataset. GT represents the number of fruit samples obtained
using the manual annotation methods.

Average detection precision is used as a standard measure to
evaluate the sensitivity of the network in detecting target fruits.
This metric reflects the overall performance of the network and
the physical meaning is the area of the P-R curve that is the
average of the P-value as the R-value varies in the interval 0–1
and can be calculated using Eq. 6:

AP =
∫ 1

0
P(R)dR, (5)

where P(R) represents the P, and P is a function of the R at different
confidence levels. Because the performance comparison results
of P and R obtained at different confidence levels are different,
this study mainly determines the performance of the different
networks based on the value of AP. The higher the AP value,
the better is the network performance. The rest of the evaluation
values will be provided in the paper for further study and analysis.
For the lightweight model, this study uses frames per second
(FPS) to evaluate the detection speed of the algorithm, and its
calculation can be expressed by Eq. 7:

FPS =
N
tN

, (6)

where tN represents the total time taken by the model to detect
N images. The number of parameters of the network model
(Params) can be used to measure the complexity of the network
model. The larger the size and number of convolution kernels,
the larger is the number of parameters. The number of FLOPs
indicates the speed of the network model. The evaluation metric,
Weights, was used to measure the size of the network model.
These three metrics were used to determine whether the network
model was sufficiently light.

Comparative Analysis of Experimental
Results
Comparison Experiments
The purpose of this experiment is to investigate the performance
of the proposed lightweight network model for fruit detection.
Moreover, the experiment verifies whether the algorithm can
perform real-time detection on edge devices to be deployed
in robots. Therefore, all test results and evaluation metrics of
this experiment are tested on the edge devices. Three different
edge devices are used in this experiment: NVIDIA Jetson Xavier
NX, NVIDIA Jetson TX2, and NVIDIA Jetson NANO. We
tested our proposed algorithm on orange, tomato, and apple
datasets; thereafter, we experimentally compared the single-
stage mainstream YOLO series algorithms mentioned above. The
results are presented in Tables 2, 4 respectively, where the values
in bold indicate the method proposed in this study.

As shown in the table, the proposed algorithm can achieve
the accuracy of 0.93, 0.847, and 0.85 for the orange, tomato,
and apple datasets, respectively. All three metrics achieved
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FIGURE 9 | (A) Shows an image of ultra-small-sized apples. (B) Shows an image of red apples under sufficient light condition. (C) Shows an image of red fruit
against a backlit scene.

TABLE 2 | Test results for the orange dataset.

Model P R AP Params (M) FLOPs (G) Weights (M) FPS

NX TX2 NANO

YOLOv3 0.88 0.86 0.905 61.52 116.3 492.8 8.0 4.7 2.0

YOLOv4 0.862 0.877 0.911 99.2 165.7 794.8 4.5 3.1 1.3

YOLOv3-tiny 0.786 0.788 0.793 8.66 9.7 69.5 37.0 18.5 8.5

YOLOv4-tiny 0.853 0.792 0.817 6.06 13.2 48.7 32.2 16.9 13.9

Light-CSPNet (Proposed) 0.856 0.901 0.930 5.96 27 48 21.3 13.9 6.3

TABLE 3 | Test results for the tomato dataset.

Model P R AP Params (M) FLOPs (G) Weights (M) FPS

NX TX2 NANO

YOLOv3 0.847 0.804 0.803 61.52 116.3 492.8 8.1 5.0 1.7

YOLOv4 0.831 0.777 0.774 99.2 165.7 794.8 4.6 5.4 2.0

YOLOv3-tiny 0.716 0.718 0.728 8.66 9.7 69.5 40.0 16.7 5.5

YOLOv4-tiny 0.639 0.709 0.702 6.06 13.2 48.7 52.6 20.4 6.8

Light-CSPNet (Proposed) 0.804 0.804 0.847 5.96 27 48 24.8 14.1 5.0

TABLE 4 | Test results for the apple dataset.

Model P R AP Params (M) FLOPs (G) Weights (M) FPS

NX TX2 NANO

YOLOv3 0.835 0.821 0.822 61.52 116.3 492.8 8.2 5.0 2.3

YOLOv4 0.749 0.722 0.751 99.2 165.7 794.8 7.5 5.2 2.6

YOLOv3-tiny 0.686 0.679 0.662 8.66 9.7 69.5 50.0 16.1 9.9

YOLOv4-tiny 0.629 0.596 0.583 6.06 13.2 48.7 43.5 26.3 14.3

Light-CSPNet (Proposed) 0.812 0.792 0.850 5.96 27 48 21.7 14.5 8.5

the state-of-the-art (SOTA) performance. Our algorithm is
sufficiently lightweight, based on the three metrics, the number
of parameters, FLOPs, and weight size. Both the number
of parameters and weight size were the smallest among the

compared network models. Moreover, the computational FLOPs
are larger than that for the YOLOv3-tiny and YOLOv4-tiny
network models because the proposed network is designed
with few relatively complex network structures for an improved
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FIGURE 10 | Examples of the results of detection algorithms tested on different datasets. (A) Citrus dataset; (B) tomato dataset; (C) apple dataset.

TABLE 5 | Component ablation experiments on the orange dataset.

Method MFDA Down-sampling method (proposed) Deep–shallow-layer fusion AP FPS

NX TX2 NANO

Light-CSPNet-1 0.894 25.1 15.4 6.7

Light-CSPNet-2
√

0.917 22.2 14.9 6.5

Light-CSPNet-3
√ √

0.928 21.4 14.1 6.4

Light-CSPNet-4
√ √ √

0.930 21.3 13.9 6.3

The three algorithms, MFDA module, down-sampling method based on the variation of the feature-map size, and deep–shallow-layer fusion module, are compared to
improve the algorithm performance.

TABLE 6 | Component ablation experiments on the tomato dataset.

Method MFDA Down-sampling method (proposed) Deep–shallow-layer fusion AP FPS

NX TX2 NANO

Light-CSPNet-1 0.802 28.6 15.6 6.1

Light-CSPNet-2
√

0.815 25.6 15.2 5.8

Light-CSPNet-3
√ √

0.829 25.1 14.3 5.6

Light-CSPNet-4
√ √ √

0.847 24.8 14.1 5.0

The three algorithms, MFDA module, down-sampling method based on the variation of the feature-map size, and deep–shallow-layer fusion module, are compared to
improve the algorithm performance.

TABLE 7 | Component ablation experiments on the apple dataset.

Method MFDA Down-sampling method (proposed) Deep–shallow-layer fusion AP FPS

NX TX2 NANO

Light-CSPNet-1 0.820 27.8 15.9 11.1

Light-CSPNet-2
√

0.825 25.1 15.6 10.3

Light-CSPNet-3
√ √

0.829 21.8 14.9 9.1

Light-CSPNet-4
√ √ √

0.850 21.7 14.5 8.5

The three algorithms, MFDA module, down-sampling method based on the variation of the feature-map size, and deep–shallow-layer fusion module, are compared to
improve the algorithm performance.

propagation of the gradients, while retaining the ability
to improve the feature representation. When deploying the
proposed algorithm in Jetson Xavier NX, the detection speed
reaches up to 21.3, 24.8, and 21.7 FPS for the three datasets
(higher than 20) and the purpose of real-time detection is
achieved. The detection speed on Jetson TX2 can reach 13.9,

14.1, and 14.5 FPS, and the detection speed on Jetson NANO can
reach 6.3, 5.0, and 8.5 FPS. We belief that this experiment can
provide a reference basis for agricultural practitioners intending
to deploy algorithms on edge devices. It is worth noting that few
frameworks and algorithms can further improve the inference
speed of object detection algorithms. If GPU acceleration is
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FIGURE 11 | Comparison of the average AP and detection speed performance metrics of different algorithms on the three datasets of orange, tomato, and apple.

applied, the detection speed will be further improved by a
large factor, nonetheless the difference between the compared
algorithms and the overall trend does not change. Therefore, this
study does not use GPU acceleration and model quantization
to further improve the inference speed in the detection speed
test. Figure 10 shows the visualization of test results of our
detection algorithm tested on different datasets more intuitively,
where the fruit targets at different scales in the image can be
detected accurately.

Ablation Experiment
To verify the improvement of each module proposed in
this paper for detection performance, component ablation
experiments were conducted to compare the performance
in this study. In the initial case, Light-CSPNet is used as
the backbone network, conventional maximum pooling layer
for down-sampling, and feature pyramid networks (FPN) for
feature fusion. In this experiment, we tested the performance
improvement of the network by adding the MFDA module
and replacing the traditional maximum pooling layer with a
down-sampling method based on the variation of the feature-
map size and replacing the FPN feature-fusion module with
a deep–shallow-layer feature-fusion module, respectively. This
experiment compares the respective AP and the detection speed
(FPS) for each dataset, as shown in Tables 5, 7 respectively.

It can be concluded from the table that further improvement
in the fruit-detection accuracy can be achieved by introducing
the dual-attention multiscale fusion module, the down-sampling

method based on the variation of the feature-map size, and the
deep–shallow-layer fusion module. We tested three different edge
devices. The dual-attention multiscale fusion module improves
the average precision by 2.3, 1.3, and 0.5% for the orange,
tomato, and apple datasets, respectively; the down-sampling
method based on the variation of the feature-map size improves
the average precision by 1.1, 1.4, and 0.4%, respectively, and
the deep–shallow-layer fusion module improves the average
precision by 0.2, 1.8, and 2.1%, respectively, with different
degrees of average precision improvement for each component
in different datasets. Each component brings different degrees
of improvement in accuracy for different datasets. In practice,
different components can be added or removed depending on
the specific speed and accuracy requirements. In this study,
the average detection performance of the network model with
different components was compared with that of the mainstream
YOLO series network model for three datasets: orange, tomato,
and apple. The results are shown in Figure 11.

To distinguish the three edge devices, NX, TX2, and NANO,
the different symbols in the figure represent the different
algorithm results, and the different colors represent the tests
performed on the different edge devices, where red indicates
the tests performed on NX, blue indicates the tests performed
on TX2, and green indicates the tests performed on NANO.
Light-CSPNet-1, Light-CSPNet-2, Light-CSPNet-3, and Light-
CSPNet-4 are the network models use only the backbone network
proposed in this paper and adding the dual-attention module
for multiscale fusion, the down-sampling method based on the
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variation of the feature-map size, and the deep–shallow-layer
fusion module, respectively, can enhance the performance.

From the comparison of the different algorithms in Figure 11,
we conclude that: (1) using only the proposed backbone network
without adding any components can achieve an average detection
accuracy close to that of the YOLOv3 network model. The
detection speed is much faster than that of YOLOv3 and
YOLOv4. (2) YOLOv3-tiny and YOLOv4-tiny are approximately
twice as fast as the algorithm proposed in this paper because
the network structure of the algorithm in this study is relatively
complex for an improved detection of small fruit targets. (3) The
detection accuracy of the algorithm increases with the addition
of different components, nonetheless there is a decreasing trend
in terms of the detection speed. Different components can be
added for practical applications according to the requirement of
the actual scenario for fruit detection in different scenarios.

CONCLUSION

This paper proposes an efficient and lightweight fruit-detection
network model. The algorithm is composed of two main parts.
The backbone network adopts Light-CSPNet with a high speed
and accuracy; a down-sampling method based on the variation of
the feature-map size is employed to compensate for the problem
encountered in the conventional single down-sampling method
wherein the characteristics of the feature maps at different scales
are not considered. The feature-fusion module designs three
shallow fusion feature extraction branches for the detection of
small-sized fruits. The multiscale fusion of the dual attention
module is used to enhance the feature representation and
further improve the accuracy of fruit detection. We compare the
AP and the detection speed between the conventional single-
stage target-detection algorithm YOLO series and the proposed
algorithm and tested them on NVIDIA edge devices, namely,
Jetson Xavier NX, TX2, and NANO. The detection accuracy
can exceed that of the large network models, YOLOv3 and
YOLOv4. AP for the orange, tomato, and apple datasets were
0.93, 0.847, and 0.850, respectively, reaching the highest SOTA
performance. When the algorithm was deployed on NX, the
detection speed for the three datasets reached 21.3, 24.8, and
21.7 FPS, respectively. When the algorithm is deployed on
TX2, the detection speed can reach 13.9, 14.1, and 14.5 FPS
for the three datasets. When the algorithm is deployed on

NANO, the detection speed can reach 6.3, 5.0, and 8.5 FPS,
for the three datasets. None of the experiments in this study
employed GPU acceleration, model quantization, or any other
method, to accelerate the compilation of the target detection
model. The proposed algorithm and experimental results could
be a guideline for applying target-detection algorithms in the
field of horticulture. Different edge equipment can be selected
according to the actual requirements, to meet the speed and cost-
price requirements. Moreover, the proposed algorithm provides a
component add/remove function to afford the flexible adjustment
of the model structure, considering the trade-off between the
detection accuracy and speed in practical usage. In the future we
will try to train and test more fruit datasets in order to better
solve the problems of practical applications. We believe that our
research can provide a theoretical basis for the development of
modern horticulture applications and can be implemented in
actual orchards.
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