
fpls-12-740414 November 29, 2021 Time: 14:38 # 1

ORIGINAL RESEARCH
published: 03 December 2021

doi: 10.3389/fpls.2021.740414

Edited by:
Yiannis Ampatzidis,

University of Florida, United States

Reviewed by:
Saeed Hamood Alsamhi,

Ibb University, Yemen
Abbas Atefi,

California Polytechnic State University,
United States

*Correspondence:
Xianting Wu

xiantwu@whu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Sustainable and Intelligent
Phytoprotection,

a section of the journal
Frontiers in Plant Science

Received: 20 August 2021
Accepted: 28 October 2021

Published: 03 December 2021

Citation:
Liang T, Duan B, Luo X, Ma Y,

Yuan Z, Zhu R, Peng Y, Gong Y,
Fang S and Wu X (2021) Identification

of High Nitrogen Use Efficiency
Phenotype in Rice (Oryza sativa L.)
Through Entire Growth Duration by

Unmanned Aerial Vehicle Multispectral
Imagery. Front. Plant Sci. 12:740414.

doi: 10.3389/fpls.2021.740414

Identification of High Nitrogen Use
Efficiency Phenotype in Rice (Oryza
sativa L.) Through Entire Growth
Duration by Unmanned Aerial Vehicle
Multispectral Imagery
Ting Liang1,2,3†, Bo Duan4†, Xiaoyun Luo1,2,3, Yi Ma3,5, Zhengqing Yuan1,2,3,
Renshan Zhu1,2,3, Yi Peng3,5, Yan Gong3,5, Shenghui Fang3,5 and Xianting Wu1,2,3,6*

1 State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China, 2 College of Life Sciences, Wuhan University,
Wuhan, China, 3 Lab of Remote Sensing for Crop Phenomics, Wuhan University, Wuhan, China, 4 Oil Crops Research
Institute, Chinese Academy of Agricultural Sciences, Wuhan, China, 5 School of Remote Sensing and Information
Engineering, Wuhan University, Wuhan, China, 6 Crop Research Institute, Sichuan Academy of Agricultural Sciences,
Chengdu, China

Identification of high Nitrogen Use Efficiency (NUE) phenotypes has been a long-
standing challenge in breeding rice and sustainable agriculture to reduce the costs of
nitrogen (N) fertilizers. There are two main challenges: (1) high NUE genetic sources
are biologically scarce and (2) on the technical side, few easy, non-destructive, and
reliable methodologies are available to evaluate plant N variations through the entire
growth duration (GD). To overcome the challenges, we captured a unique higher NUE
phenotype in rice as a dynamic time-series N variation curve through the entire GD
analysis by canopy reflectance data collected by Unmanned Aerial Vehicle Remote
Sensing Platform (UAV-RSP) for the first time. LY9348 was a high NUE rice variety with
high Nitrogen Uptake Efficiency (NUpE) and high Nitrogen Utilization Efficiency (NUtE)
shown in nitrogen dosage field analysis. Its canopy nitrogen content (CNC) was analyzed
by the high-throughput UAV-RSP to screen two mixed categories (51 versus 42 varieties)
selected from representative higher NUE indica rice collections. Five Vegetation Indices
(VIs) were compared, and the Normalized Difference Red Edge Index (NDRE) showed
the highest correlation with CNC (r = 0.80). Six key developmental stages of rice varieties
were compared from transplantation to maturation, and the high NUE phenotype of
LY9348 was shown as a dynamic N accumulation curve, where it was moderately high
during the vegetative developmental stages but considerably higher in the reproductive
developmental stages with a slower reduction rate. CNC curves of different rice varieties
were analyzed to construct two non-linear regression models between N% or N% × leaf
area index (LAI) with NDRE separately. Both models could determine the specific
phenotype with the coefficient of determination (R2) above 0.61 (Model I) and 0.86
(Model II). Parameters influencing the correlation accuracy between NDRE and N% were
found to be better by removing the tillering stage data, separating the short and long GD
varieties for the analysis and adding canopy structures, such as LAI, into consideration.
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The high NUE phenotype of LY9348 could be traced and reidentified across different
years, locations, and genetic germplasm groups. Therefore, an effective and reliable
high-throughput method was proposed for assisting the selection of the high NUE
breeding phenotype.

Keywords: UAV, high throughput phenotyping, entire growth duration, canopy nitrogen content, high NUE
phenotype

INTRODUCTION

Nitrogen (N) is one of the essential nutrients for plants and
plays a central role in photosynthesis, energy transmission,
morphological construction, and biomass synthesis (Xu et al.,
2012). Nitrogen is absorbed from the soil, transported through
the vascular bundles, assimilated into N-containing organic
compounds, decomposed, and remobilized to maintain a balance
in the nutrients within plants. This is regulated by a systematic
network of genes at multiple levels that are involved in many
important physiological pathways, such as carbon metabolism
(Evans, 1989; Robertson and Vitousek, 2009; Dechorgnat et al.,
2011; Kant et al., 2011; Xu et al., 2012; Hu and Zhang, 2014; Han
et al., 2015; Sun et al., 2016; Li et al., 2017; Xuan et al., 2017;
Perchlik and Tegeder, 2018; Wang Y. et al., 2018; Xin et al.,
2019). Therefore, overcoming the soil N limitation by chemical N
application is crucial to increase the harvest index (HI) and yield
for field management (Robertson and Vitousek, 2009; Lassaletta
et al., 2016; Liang et al., 2017).

In the past 6 decades, global N fertilizer usage increased
more than ten times from 11.3 Tg/year in 1961 to 118.7 Tg/year
in 2020 to produce food for the rapidly growing population
(Swarbreck et al., 2019). In China, cereal grain yield increased
by 65% due to an increase in N fertilizer consumption by 512%
from 1980 to 2010 (Chen et al., 2011; Zhang et al., 2011). The
cost of damages caused by excess N application is estimated to
be US$91–466 billion per year in Europe (Han et al., 2015).
However, the increase in yield is not proportional to the increase
in N fertilizer application, and a plateau has been reached (Ju
et al., 2009; Wang and Peng, 2017). Higher N input causes lower
Nitrogen Use Efficiency (NUE) because of the rapid N loss by
denitrification, volatilization, surface runoff, and leaching into
the soil and water, resulting in serious environmental problems
(Robertson and Vitousek, 2009). Fertilizer costs worth US$2.3
billion can be saved annually if the Nitrogen Uptake Efficiency
(NUpE) is increased by 1% (Raun and Johnson, 1999).

Rice (Oryza sativa L.) is a staple food crop for almost 50% of
the world population. Rice production in China is the highest
in the world. Although the average N input in the paddy fields
of China is the highest between 180–209 kg/ha (world average:
105 kg/ha) (FAO, 2015; Guo et al., 2017), the efficiency of
N usage is only approximately 30–35% (Gu et al., 2017; Guo
et al., 2017; Wang and Peng, 2017). Optimizing N fertilizer
management has been performed to significantly increase NUE
in rice production and reduce N input to 150–165 kg/ha (Li et al.,
2012; Liu et al., 2013; Wang and Peng, 2017). However, to reach
the maximum yield potential at 10–15 Mt/ha, N inputs for most
super rice varieties have to be more than 300 kg/ha (Li et al., 2012;

Sun et al., 2013; Wei et al., 2016; Liang et al., 2017). Therefore,
only relying on N fertilizer cannot be a fundamental solution to
improve cultivation. The selection of high-yielding rice varieties
with a higher NUE at a lower N input level is the key strategy
for cost-effectiveness. However, a lack of known reliable high
NUE phenotypes is the main barrier to the selection of high NUE
rice varieties during the breeding and sustainable development of
agriculture (Bueren and Struik, 2017).

The main goal of the high NUE studies is to screen for
both the high NUpE and Nitrogen Utilization Efficiency (NUtE)
phenotypes. The focus of the NUpE phenotype is the selection
of the rice varieties with higher yields and reduced exogenous
N input, which is relatively easier to perform by controlling N
fertilizer dosages for field screening. However, identifying NUtE
phenotypes is aimed to increase the efficiency of endogenous N
assimilation and transformation within plants, which is regulated
by a complicated gene network and balanced at multiple levels
of metabolism. Therefore, significant progress has been made
in the NUpE studies, while the NUtE screening progress has
been relatively slower. The main challenges are the following: (1)
Sources of high NUE varieties, especially high NUtE varieties, are
rare. Super rice and green super rice breeding programs in China
were proposed to select high yield NUE rice varieties (Wang and
Peng, 2017; Huang et al., 2018). However, most of the varieties
tested were mainly from the Wild Abortive Cytoplasmic Male
Sterility (WA-CMS) germplasm. Different from the WA-CMS
and Baotai CMS (BT-CMS) varieties, many varieties with green
phenotypes, such as high NUE (both NUpE and NUtE) and
broader biocompatibility, were generated from the Honglian type
CMS (HL-CMS) variety (Li and Zhu, 1988; Liu et al., 2004; Wu
et al., 2016). Therefore, it is worth characterizing the high NUE
phenotypes of these varieties, such as LY9348. (2) High NUE
phenotypes are hard to define and trace since canopy nitrogen
content (CNC) or leaf nitrogen content (LNC) change with the
field N supply levels, root absorption and transportation abilities,
different developmental stages, and genetic variation (Li et al.,
2017; Lian et al., 2019; Marshall-Colon and Kliebenstein, 2019;
Watt et al., 2020). Difficulties in phenotype identification may
have been one of the reasons for not cloning NUE genes by map-
based cloning methods so far (Good et al., 2004; Han et al., 2015).
(3) High NUE phenotypes are compound agricultural traits with
complicated gene network regulations (Liang et al., 2021). Using
Marker-Assisted Selection (MAS) at the molecular level based
on one or a few genes does not provide enough support to
reliably select phenotypes for breeding purposes. Gene chips,
single nucleotide polymorphism (SNP) assisted high-throughput
selection can provide broader gene information. However, high
NUE genes are not well-defined to support a genome-wide
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selection of molecular markers (Yang et al., 2014; Sandhu et al.,
2019; Tang et al., 2019). Lastly, (4) High NUE phenotypes are
hard to trace less laboriously in real-time by using traditional,
non-destructive, and sensitive techniques (Wang J. et al., 2019;
Bacenetti et al., 2020). Thus, new techniques should be explored.

Remote sensing (RS), as a non-destructive measurement
technique, has an enormous potential to determine NUE
phenotypes. RS can efficiently obtain vegetation spectral data,
which contains a lot of information on the interactions between
vegetation and solar radiation (Thenkabail et al., 2011). It
has been shown that leaf pigments strongly absorb visible
light, thus reducing the reflectance of vegetation in the visible
range (Woolley, 1971). Therefore, many optical devices have
been developed to estimate the pigment content based on the
RS mechanism. Additionally, some handheld devices, such as
the Soil Plant Analysis Development (SPAD)-502 chlorophyll
meter and the N-pen nitrogen meter, are used to obtain leaf
reflectance data for determining the leaf pigment content (Liu
et al., 2017). At the close-range canopy level (1 m above the
canopy), the Analytical Spectral Devices (ASD) Field Spec 4
spectrometer is often used to collect canopy reflectance in
the visible and near-infrared range, and the vegetation index
calculated from the reflectance of the different spectral bands is
used to estimate the pigment content (Schlemmer et al., 2013; Ge
et al., 2019; Li et al., 2019). Although the leaf-level and canopy-
level devices can estimate pigment content non-destructively, it
is still hard to implement them for large-scale measurements in
field breeding practices. Recently, the Unmanned Aerial Vehicle
Remote Sensing Platform (UAV-RSP) with multispectral sensors
has become an easy operational base for high-throughput field
phenotyping (HFP) in large-scale field studies (Yang et al., 2017),
which can be used to discover dynamic novel traits invisible to the
human eye, such as leaf area index (LAI), N accumulation in the
canopy, drought adaptive traits, and yield estimation (Kyratzis
et al., 2017; Condorelli et al., 2018; Zheng et al., 2018; Blancon
et al., 2019; Duan et al., 2019a,b; Prey et al., 2020).

Unmanned Aerial Vehicle Remote Sensing Platform (UAV-
RSP) becomes an increasingly significant technology in the
industry 4.0 applications supporting multiple devices to build the
Internet of Things (IoT) network in the 5G era and beyond 5G
(B5G) (Syed et al., 2020; Alsamhi et al., 2021). Great achievements
in crop monitoring are constructed between UAV-RSP, Wireless
Sensor Networks (WSNs), and IoT. These efforts would give
far-reaching consequences on UAV-WSN-IoT roles in smart
farming and precision agriculture system construction (Saif et al.,
2017; Almalki et al., 2021). In addition, with the development
of artificial intelligence, UAV-RSP can take advantage of high
throughput to monitor the nutrient level, plant disease, and insect
pest automatically (Freitas et al., 2020; Tetila et al., 2020; Lpo
et al., 2021). Therefore, UAV-RSP, coupled with IoT and 5G
technology, plays a more and more important role in building
the intelligent monitoring network for smart inspection of plant
growth status (Syed et al., 2020; Almalki et al., 2021). However,
the application in breeding selections is seldomly explored due
to the complexity of plant phenotype extraction and lack of
growth models for important agricultural traits, which is the key
challenge for the seeds industry and modern agriculture. To our
best knowledge, this is the first comprehensive research to extract

NUE phenotype in rice as a dynamic time-series N variation
curve through the entire GD analysis by canopy reflectance
data collected by UAV-RSP, especially for NUE phenotypes
identification and construction of N smart inspection models.

In the past decades, LNC was measured non-destructively by
RS using linear or non-linear models constructed to establish
relationships between spectral features and CNC/LNC (Li D.
et al., 2018). The Shortwave infrared region (SWIR, 1,000–
2,400 nm) can accurately estimate LNC from dried leaves but not
fresh leaves. The Visible and near-infrared region (VNIR, 400–
1,000 nm) can be better correlated with chlorophyll and N in fresh
leaves (Afandi et al., 2016; Li D. et al., 2018). Vegetation Indices
(VIs), such as the Normalized Difference Vegetation Index
(NDVI), the Normalized Difference Red Edge Index (NDRE),
the Red Edge Chlorophyll Index (CIrededge), and the Green
Chlorophyll Index (CIgreen), have been used for chlorophyll and
N estimations in maize, wheat, and rice (Fitzgerald et al., 2010;
Shiratsuchi et al., 2011; Cao et al., 2013; Schlemmer et al., 2013;
Inoue et al., 2016; Klem et al., 2018; Wen et al., 2018). However,
the accuracy of estimation is influenced by soil backgrounds,
genetic differences, and climate change, and varies across seasons
and locations. The NDVI is a good index to measure wheat NUE
above the canopy at 0.8 m (Klem et al., 2018). The near-infrared
band index, such as the Red Edge Spectral Index (REDVI), is
a good estimator of the rice N nutrition index (NNI) using a
multispectral sensor, collected from < 1 m above the canopy
(Cao et al., 2013). Based on UAV multispectral imagery, the
Normalized Difference Texture Index (NDTI) was found to be
strongly correlated with plant N content (PNC) (Zheng et al.,
2018), while the NDRE showed a good relationship with leaf N
accumulation (LNA) and plant N accumulation (PNA), but not
with LNC and PNC (Zheng et al., 2020). These studies focused
on specific growth stages such as booting or grain filling stages by
comparing among a few or only between two rice cultivars. Thus,
applying these during field screening is difficult as the challenge
for NUE phenotype screening is to evaluate N variations in
multiple varieties across the entire growth duration (GD).

To apply UAV-RSP at the HFP level for the selection of
higher NUE phenotypes, several aspects should be considered:
(1) Dynamic N accumulation across the entire GD is critical
for the identification of high NUE phenotypes, which could
be novel phenotypes, distinguishing higher NUE rice varieties
from normal or lower NUE varieties; (2) GD is an important
factor influencing many important agricultural parameters such
as panicle initiation, flowering time, yield, and biomass (Li F.
et al., 2018; Liu et al., 2020; Won et al., 2020). Therefore, when
many rice varieties are tested at the high-throughput level, the
influence of GD on N measurement needs to be addressed from
an agricultural standpoint; (3) The phenotypes identified should
be stable and traceable across years and locations to make reliable
decisions while screening; (4) CNC measurements of hundreds
or thousands of rice varieties can be performed in a uniform
background of soil and climate. Therefore, besides selecting
VIs, the parameters that influence the accuracy of N inspection
can be compared; (5) Phenotypes can be easily analyzed by
breeders to make reliable decisions while characterizing higher
NUE varieties. To find solutions for these aspects, this study
aimed to use a high NUE Oryza sativa indica rice variety LY9348,
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mixed with two different O. sativa indica groups (Li et al., 2014)
(NUE is higher in O. sativa indica than in O. sativa japonica
rice) (Hu et al., 2015), to test the following hypotheses: (1) CNC
changes in LY9348 through the entire GD can be detected as
a dynamic but specific N accumulation phenotype for assisting
high NUE breeding selections; (2) GD differences among rice
varieties may impact the accuracy of N estimation; (3) Factors
such as canopy structures, genetic variations, and developmental
stages may influence N estimation accuracy; (4) This phenotype
can be traced using the UAV-RSP for breeders to select plants with
high NUE in mixed field trials; (5) The cost can be lowered if
the plot size is reduced to assist large-scale or super-large-scale
selection of high NUE phenotypes at the high-throughput level.

MATERIALS AND METHODS

Field Nitrogen Dosage Analysis for the
Evaluation of Nitrogen Use Efficiency in
LY9348
Plant material information was listed in Experiment 1 (Table 1).
Previous field trials had shown that LY9348 had a similar yield
to that of the Huanghuazhan rice variety (a popular variety
cultivated in the southern regions of China) with 25% less N
input (data not shown). Based on the previous result, LY9348 and
FLY4H (a standard high yield control (CK) for the National Rice
Variety Regional Test in China) were planted and treated with
one of four nitrogen dosages (N0 = 0 kg/ha, N8 = 120 kg/ha, N12

= 180 kg/ha, and N16 = 240 kg/ha). LY9348 and FLY4H were
planted adjacent to one another in one experimental block for
each dosage of nitrogen (Supplementary Figure 1). Each plot
was approximately 30 m2 (10 m × 3 m) and divided into two
halves for LY9348 and FLY4 (15 m2, 5 m × 3 m for each half).
Margin balks (0.4 m wide) were built and covered by plastic films
during the entire experiment to avoid N leaching or permeating
into the other experimental blocks (Supplementary Figure 1A).
Three blocks for each dosage analysis were arranged randomly
as replicates in the field for a total of 12 experimental blocks
(Supplementary Figure 1B).

In each half block, 432 individual plants of each variety were
arranged at a hill spacing of 15 cm × 18 cm in 24 rows with 18

plants per row, occupying the 15 m2 field space. Superphosphate
(90 kg/ha P2O5) and potassium sulfate (180 kg/ha K2O) were
applied as basal fertilizers in all blocks before transplanting. Urea
(N) applied for each dosage was divided into three parts to be
applied in the seedling, tillering, and booting stages separately to
each experimental block. After transplanting, 5 cm water depth
was maintained in each block. Water maintained in the plot was
drained for ten days before the harvest to facilitate harvesting.
Insects, diseases, and weeds were intensively controlled to avoid
yield loss, besides the regular field management practices.

Yield-related phenotypes were statistically characterized. If
one panicle contained more than five full grains, the panicle
was counted as one effective panicle. All panicles from the main
shoot and all tillers were summed to obtain the effective panicle
number (EPN) value of each plant. Panicle length (PL) was
measured based on the length of the effective panicles from
the bottom node to the top tip. All full grains were counted
and divided by the total EPNs of each plant to calculate the
grain number per panicle (GNP). From each plant, 200 grains
were weighed, and the value was multiplied by 5 to obtain the
value of the thousand grains weight (TGW). The seed setting
rate (SSR) per panicle was calculated by the following equation:
(number of full grains/number of total grains) × 100%. All
full grains were weighed to obtain the grain yield per plant
(GYP). All the yield-related parameters were calculated by the
average value of 30 individual plants (10 plants randomly chosen
from each dosage plot and three replicate plots for each dosage
treatment). Grain yield (GY, kg/ha) was obtained based on 100
harvested plants from the equation: GY = [(GYP × plants
counted)/field area occupied by plants counted in m2] × 10,000
(1 hectare = 10,000 m2). Grain yield per kg N (NUE) was
estimated based on the grain yield from 100 harvested plants
from the central area of each plot and adjusted by deducting
13.5% standard moisture content for the calculation. NUE was
determined by the equation: NUE = NUpE × NUtE = grain
weight gained/soil nitrogen amount supplied (Xu et al., 2012).

Plant Materials for the Nitrogen Use
Efficiency Dynamic Curve Analysis
Information on plant materials was listed in Experiments 2, 3,
and 4 (Table 1). Fifty-one rice varieties were planted in scheduled

TABLE 1 | The details of the four experiments conducted in Hainan and Hubei from 2017 to 2018.

Sowing date and
transplanting date

Location Number of rice
varieties

Plant number and
size of one plot

Altitude of UAV
flight

Field measurement Data analysis

Experiment 1 December 10th, 2017
January 6th, 2018

Hainan 2 864 plants
10 m × 3 m

— PL, EPN, GNP, SSR,
TGW, GYP, GY

Yield traits

Experiment 2 May 10th,2017
May 31st,2017

Hubei 51 60 plants
1.2 m × 1.6 m

50 m SPAD, N%N-Pen,
N%EQA, ASD

GD analysis

Experiment 3 December 10th, 2017
January 6th, 2018

Hainan 51 60 plants
1.2 m × 1.6 m

50 m SPAD, N%N-Pen,
N%EQA

Model I

Experiment 4 December 10th, 2017
January 5th, 2018

Hainan 42 1500 plants
6.0 m × 11.0 m

200 m N%EQA, LAI Model II

PL, panicle length; EPN, effective panicle number; GNP, grain number per panicle; SSR, seeds setting rate; TGW, thousand grains weight; GYP, grain yield per plant;
GY, grain yield; N%EQA, nitrogen content measured by elementary quantitative analysis (EQA); SPAD, SPAD value measured by SPAD-502 chlorophyll meter; N%N-Pen,
nitrogen content measured by N-pen meter; ASD, close-range canopy reflectance collection by ASD Field Spec 4 spectrometer; LAI, leaf area index; GD, growth duration.
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fields in the Wuhan University Rice Experiment and Research
Base, Ezhou, Hubei Province, China (30◦22’31.4N, 114◦44’50.6E)
and the Wuhan University Hybrid Rice Experiment and
Research Base, Lingshui, Hainan Province, China (18◦31’47.1N,
110◦03’34.9E). They were selected from the 3000 rice genome
project (Li et al., 2014), which is a representative global rice
germplasm collection (Supplementary Table 1). Li et al., had
classified 3,000 rice accessions into five groups (japonica, indica,
aus/boro, basmati/sadri, and intermediate). N accumulations
in the indica and the intermediate groups were found to be
more efficient than that in the other three groups, and N
accumulation in the aus/boro group was in between (Hu et al.,
2015). Therefore, for the NUE analysis, 51 varieties, including
LY9348, were selected from the classified indica and intermediate
groups, including two aus/boro varieties, for comparisons to form
the experimental test collection. The GD of the varieties among
this collection varied and was divided into longer and shorter
duration groups for the GD influence analysis.

Forty-two varieties were planted in one field in Lingshui,
Hainan, China. To select the 42 varieties (Supplementary
Table 2), two main aspects were considered: (1) Many varieties
from the 3,000 rice genome project were germplasm collections
and not used in field practices because of their lower-yielding,
varied GD, and/or weak agricultural traits. Therefore, LY9348
was mixed with currently cultivated rice varieties for evaluation.
In addition, two higher-yielding cultivated Japonica rice varieties
were also included for comparison; (2) LY9348 was the hybrid
rice generated from the Honglian type male sterile line LH4A
as the female donor and CH9348 as the male donor. Thus,
many other Honglian-type hybrid rice varieties were added to the
group to exclude the effects of a homogenous background for the
identification of the high NUE phenotypes.

The total rice growth period was divided into six typical
phenotypic stages as tillering stage (TS), jointing stage (JS),
panicle initiation stage (PIS), booting stage (BS), full heading
stage (FHS), and milk ripen stage (MRS). For the 51 rice varieties
with six developmental stages, all average N values were recorded
as 306 data points for each experiment. Similarly, for the 42 rice
varieties with six developmental stages, all average N values were
recorded as 252 data points in this study.

Field Management
Planting densities in Experiments 2, 3, and 4 were arranged in
two planting modes: (1) Small plot size trials in Ezhou, Hubei
(2017) and in Lingshui, Hainan (2018), where 60 plants of each
rice variety were transplanted in six lines with 20 cm line spacing,
and 10 plants in each line were planted with 16 cm row spacing
(1.6 m × 1.2 m). One empty line was maintained between every
six-line plot for the ease of identification of the different varieties
and processing of the UAV data (1.8 m × 1.2 m); 2) Large
block size in Lingshui, Hainan (2018), where 1,500 plants were
planted in 1/10 Chinese mu (equals to 66.67 m2), which was a
standard plant density maintained in the field with lesser than
2,25,000 plants per hectare (average 22.5 plants per square meter,
d = 22.5) (Table 1).

The total growth period from sowing to the maturation of
seeds was between 6 and 7 months, depending on differences

in the varieties. Compound fertilizer (375 kg/ha; the ratio of N,
P, and K was 15% each) was applied uniformly across the field.
Regular rice field management was performed by a field manager.
During each experiment, one UAV flight was arranged to obtain
the images of all the rice plots, and each plot was scheduled
to be measured five times repeatedly to get an average value
for statistical analysis. After the UAV flight (from 10 a.m. to 2
p.m.), the corresponding ground measurements were performed
immediately in situ.

Nitrogen Content Measurement by
Elementary Quantitative Analysis
To quantify the N-uptake ability of LY9348, leaves of LY9348,
and those of its parents (LH4B, CH9348) and the other 48 rice
varieties were analyzed for N accumulation in six key growth
stages. At each developmental stage, leaf samples were collected
from each rice variety for accurate N measurements.

In the early developmental stages, before the flag leaf emerged,
the fully spread leaf from the top of each plant was collected
to measure the N content. In the later stages, after the flag leaf
had emerged, the second leaf (when counting downwards from
the flag leaf), defined as the functional leaf in rice, was selected
for the N measurement of each plant. Three individual plants
were selected randomly from each block to collect leaves for
the analysis. Leaves were dried at 80◦C in an oven (AFD-270L-
200, AoFeiDa Instrument and Equipment Co., Ltd., China) for
hours until the dry weight was stable. Dry leaf samples were
mechanically ground by a ball milling machine (JXFSTPRP-
576, Jingxin Instrument, and Equipment Co., Ltd., China), and
a fine powder was obtained by filtering through a 100-mesh
sieve (ϕ100 mm, 2.36–0.038 mm, JinHe Machinery Co., Ltd.,
China). The nitrogen content was measured by a Stable Isotope
Ratio Mass Spectrometer (IsoPrime100 IRMS, Isoprime Ltd.,
United Kingdom) following the protocol provided in a previous
study (Sun et al., 2016). Data from each leaf was recorded as one
LNC value for that plant, and the average LNC data of three plants
was recorded as the LNC value for each rice variety at each stage.

N-pen Meter Measurements
As an instrument that uses optical methods for the estimation
of N levels in leaves, the N-pen meter [Photon Systems
Instruments (PSI), spol.s.r.o, Czechia] was used to measure the
reflectance of the 51 rice varieties to obtain the Normalized
Difference Greenness Index (NDGI). The nitrogen content of
each rice variety was measured as reported in maize, wheat,
and barley, and the nitrogen content was calculated from a
correlation with the NDGI (Klem, 2008). Since the N-pen meter
measures the N levels non-destructively, measurements from
the same leaf could be taken multiple times, and the optical
data could be collected before the leaf was removed for the
Elementary Quantitative Analysis (EQA) analysis. Each selected
leaf was measured repeatedly six times, and the average value
from these six measurements was recorded as the N value of
the plant. The average value of three individual plants was
recorded as the final N value and displayed in percentage
(60 plants/plot). Data transfer and many additional features
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for data presentation in tables and graphs were processed by
the Comprehensive FluorPen 1.1 software (Photon Systems
Instruments, spol.s.r.o., Czechia).

Soil Plant Analysis Development
Measurements
Chlorophyll contents were measured by a SPAD-502 Chlorophyll
Meter (SPAD-502 Plus, Konica Minolta, Japan), and SPAD values
were recorded. Since chlorophyll content is closely related to N
content (Ercoli et al., 1993; Baret and Fourty, 1997), SPAD is
used to estimate N in agricultural practices, besides the N-pen
meter. Therefore, SPAD was used as one of the leaf level N
estimation optical methods in this study. Since SPAD measures
the chlorophyll content non-destructively, measurements from
the same leaf could be taken multiple times, and the optical
data could be collected before the leaf was removed for the EQA
analysis. Each selected leaf was measured repeatedly five times,
the average value of these measurements was recorded as the
value for the plant, and the average value of three individual
plants was recorded as the final SPAD value (60 plants/plot).

Close-Range Canopy Reflectance
Measurements
The close-range canopy reflectance (350–2,500 nm) of rice was
measured by an ASD Field Spec 4 spectrometer (Analytical
Spectral Devices Inc., Boulder, CO, United States). Data were
collected at 1 m vertical height exactly above the plant canopy
every five days when the weather was sunny and clear between
10 am and 2 pm. Each plot was measured repeatedly five times,
and the average value of these five measurements was recorded
as the canopy reflectance of the plot. Instrumental noise that
affected the actual spectral measurements caused by weather
variations was reduced by using a standard whiteboard during
calibration. The waveband spectral data between 1,301 and
2,500 nm (approximately) was removed from the analysis because
of the low level of signal-to-noise ratio (SNR) within this range.

Leaf Area Index
Five plants were selected randomly from the plots of each
variety of rice at every developmental stage (the 42-variety
group, 1,500 plants/plot). For each plant, all the leaves were
examined before measurements. If more than 50% of a leaf
was yellow, the leaf was designated as a yellow leaf. If a plant
had more than 50% of yellow leaves, it was not selected for
further analysis. Since this study used a destructive method to
measure rice materials and multiple developmental stages were
considered for the tests, two individual plants with many green
leaves were chosen from the five selected plants as representative
samples of each rice variety and for each stage. The selected
plants, including all tillers, were dug out from the soil along
with their roots. These plants were placed in a plastic bucket
with a water supply and taken back to the laboratory for
analysis after collecting all the samples. All green leaves from
the two plants of each rice variety were plucked from the
stem for scanning by a Leaf Area Meter LI-3100C (LI-COR
Corporate, Lincoln, NE, United States). The scanning DPI was

approximately between 0.1 and 1 mm2. The average area of all
the leaves of the two plants was used as a representative value
of the single plant leaf area (LAS) of the rice plot. From the
plant density in one square meter of each rice variety (d = 22.5),
the LAI value of each plot was calculated from the equation:
LAI = LAS × d.

Unmanned Aerial Vehicle Data Collection
and Processing
To collect rice canopy level reflectance, images of target research
plots were taken using a Mini-multiple camera array (MCA)
system mounted on a UAV (S1000, SZ DJI Technology, Co., Ltd.,
China) every 5–7 days depending on sunlight conditions after
the rice plants were transplanted until maturation. The Mini-
MCA system consisted of an array of twelve individual miniature
digital cameras (Mini-MCA 12, Tetracam, Inc., Chatsworth, CA,
United States). Each sensor channel could produce 10-bit super
extended graphics array (SXGA) data. Each camera imager was
equipped with a customer-specified bandpass filter centered at
a wavelength of 490, 520, 550, 570, 670, 680, 700, 720, 800,
850, 900, and 950 nm, which are bands commonly used for the
analysis of VIs.

The MCA system was attached to the UAV on a gimbal to
avoid any unwanted effects caused by the movement of the UAV,
and the camera misregistration effect was controlled through
the co-registration by12 cameras before the flight, as previously
described (Duan et al., 2019a). All UAV flights were performed
under clear sky conditions with little cloud cover between 10
am and 2 pm local time, when the changes in the solar zenith
angle were minimal at the location of the experiment. For the
experiments with the 51 rice varieties, the altitude of UAV flight
was 50 m above the target plots at a spatial resolution of 2.7 cm
around. For the experiments with the 42 rice varieties, the altitude
of UAV flight was 200 m above the target plots at a spatial
resolution of 10.8 cm around.

An empirical linear correction method was used to transform
the Digital Numbers (DN) of the images into surface reflectance
(ρλ) as previously described (Duan et al., 2019a,b). The imaging
radiometric correction was modified by a standard consisting
of six calibration ground targets, which were placed in the field
of view of the cameras before each flight. The research plots
and all calibration ground targets were included in the image
taken from the Mini-MCA system. In this study, the calibration
targets provided relatively stable reflectance of 0.03, 0.12, 0.24,
0.36, 0.56, and 0.80 from the visible wavelength to the near-
infrared (NIR) wavelength, respectively, which is commonly
applied for the radiometric calibration of aerial images. Since a
linear relationship was assumed between DN and ρλ, the rice
variety reflectance equation used was

ρλ = DNλ × Gainλ + Offsetλ

(λ = 490, 520, 550, 570, 670, 680, 700, 720, 800,

850, 900, and 950 nm) (1)

In this study, ρλ and DNλ are the surface reflectance and the
digital numbers of the image of a given pixel at wavelength λ;
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Gainλ and Offsetλ are camera gains and bias at different
wavelengths. For each wavelength, Gainλ and Offsetλ were
calculated by the method of least squares from ρ and DN values
(referring to DN.03, DN.12, DN.24, DN.36, DN.56, and DN.80)
of six calibration targets.

0.03
0.12
0.24
0.36
0.56
0.80


=



DN0.03
DN0.12
DN0.24
DN0.36
DN0.56
DN0.80


× Gainλ + Offsetλ (2)

Statistical Analysis and Vegetation Index
Calculations
Data analysis in this study was conducted using the IBM
SPSS Statistics (Statistical Product and Service Solutions
22.0, IBM, Armonk, NY, United States). Graphs were made
in the GraphPad software (Version 5.0., Harvey Motulsky
and Arthur Christopoulos, San Diego, CA, United States).
Statistical evaluation of the N%, SPAD, and LAI datasets
was performed according to standard requirements and was
shown to be normally distributed. Correlation and regression
analysis were conducted, and Pearson’s correlation coefficient
(r) has been reported as the result of the correlation analysis.
Adjusted R squared (R2) and p-values were analyzed and
compared by following the standard analysis instructions for all
regression analyses.

The VIs were shown to be related to plant growth
conditions or the efficiency of photosynthesis. For example,
NDRE was closely related to plant chlorophyll content and
was used as a parameter to evaluate photosynthesis in plants
(Gitelson and Merzlyak, 1994; Gitelson et al., 2003; Duan
et al., 2019a,b). Other VIs, such as NDVI, CIrededge, CIgreen,
and NDGI, were also tested in this study. All five VIs are
listed (Table 2).

Methodology and Definition of Terms
The internal N of plants was measured by the chemical
quantification method (EQA). EQA measurements were used as
the reference to evaluate all the RS optical methods and denoted
by N%EQA in this study. For N estimation in leaves by RS, SPAD
and N-pen were the optical methods used, and they were denoted
by SPAD and N%N−Pen in this study. For N estimation in the
close-range canopy by RS (1 m above the canopy), ASD was the
optical method used and denoted by NDREASD in this study.

For N estimation in the canopy by RS (50 and 200 m above the
canopy, depending on the experimental plot size), MCA mounted
on the UAV-RSP was the optical method used and denoted by
NDREUAV in this study (Figure 1).

RESULTS

LY9348 Was Identified as a High Nitrogen
Use Efficiency Rice Variety With High
NUpE and NUtE
The total growth duration (GD) was divided into six key
phenotypic stages as TS, JS, PIS, BS, FHS, and MRS. Compared
to its parents (LH4B, CH9348) and the other two rice varieties
(R8108 and LY8H), N accumulation in the leaves of LY9348
was higher from JS to the end of MRS, as shown by the EQA
analysis (Figure 2A). Especially lower N levels were detected
in both the male and female parents of LY9348 for the five
growth stages, which suggested that the higher N accumulation
ability of LY9348 was not inherited from the parents but was
due to the hybrid vigor. The higher nitrogen accumulation in
the shoot of LY9348 proved that it had higher NUpE since
the five varieties were grown in the same field under the same
fertilizer management.

To determine whether LY9348 was a high NUE rice variety
with high NUtE, the nitrogen field dosage experiment was
conducted. At 0 kg/ha N treatment, effective panicle number
(EPN) was 9.2 per plant in FLY4H, and 10.3 per plant in LY9348
(EPN was a critical parameter since rice initiated multiple tillers
but not all tillers could produce grains), and panicle length
(PL) was 20.2 cm in FLY4H (CK) and 20.8 cm in LY9348.
No significant differences in EPN and PL between FLY4H and
LY9348 were found, but the thousand grains weight (TGW)
of FLY4H (31.24 g) was higher than that of LY9348 (28.94 g).
However, the GY of LY9348 was significantly higher than that of
FLY4H (9,427.37 vs. 5,687.81 kg/ha) for the 0 kg/ha N treatment
(Table 3). Moreover, compared to FLY4H, the grain number per
panicle (GNP, Figure 2C, 140.6 vs. 120.0), seed setting rate (SSR,
Figure 2D, 92.1 vs. 56.3%) per panicle, and grain yield per plant
(GYP, Figure 2E, 38.5 vs. 20.6) of LY9348 were higher than those
of FLY4H in the 0 kg/ha N treatment and in the 120, 180, and
240 kg/ha N treatments. Grain yielding per kg N, an evaluation
parameter for NUtE, indicated that LY9348 produced higher
yield at lower but not higher N treatments (Figure 2F). Therefore,
LY9348 was a variety with higher NUtE than FLY4H.

In conclusion, LY9348 was a high NUE rice variety, with
high NUpE and NUtE.

TABLE 2 | The details of the vegetation indices used in this study.

Vegetation indices Formula References

Normalized Difference Vegetation Index (NDVI) (ρ800 – ρ670)/(ρ800 + ρ670) Rouse et al., 1974

Normalized Difference Red Edge Index (NDRE) (ρ800 – ρ720)/(ρ800 + ρ720) Gitelson et al., 2003

Red Edge Chlorophyll Index (CIrededge) ρ800/ρ720 – 1 Gitelson, 2005

Green Chlorophyll Index (CIgreen) ρ800/ρ550 – 1 Gitelson, 2005

Normalized Difference Greenness Index (NDGI) (ρ800 – ρ570)/(ρ800 + ρ570) Klem, 2008
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FIGURE 1 | Schematic overview of measured parameters by different methods and devices. NDRE, Normalized Difference Red Edge Index; NDREUAV, NDRE
calculated with the canopy reflectance obtained by UAV; NDREASD, NDRE calculated with the close-range canopy reflectance obtained by ASD; SPAD, SPAD value
measured by SPAD-502 chlorophyll meter; N%N-Pen, nitrogen content measured by N-pen meter; N%EQA, nitrogen content measured by elementary quantitative
analysis (EQA).

N Estimation by the SPAD-502
Chlorophyll Meter and the N-pen Meter
at the Leaf Level
To determine the differences in N content estimation between the
SPAD-502 chlorophyll meter and the N-pen meter, N%EQA was
used to verify the N estimation accuracy at the leaf level. As shown
in Figure 3, SPAD and N%N-Pen both exhibited a strong linear
relationship with N%EQA, with R2 of 0.89 and 0.90, respectively.
This indicated that these two optical meters accurately estimated
rice N content during the entire GD. Additionally, a strong linear
relationship was also found between SPAD and N%N-Pen. It can
be inferred that the performance of these two optical meters was
similar for N estimation at the leaf level.

However, as shown in Figure 2B, the N-pen meter failed
to distinguish N content difference among the five varieties at
MRS, and the N%N-Pen values clustered around 2%. To determine
the difference in N content estimation at different growth
stages, correlation analysis was further conducted between
N%EQA and SPAD, and between N%EQA and N%N−Pen at five
key stages (Table 4). Generally, SPAD and N%N-Pen showed
strong correlations with N%EQA at different growth stages
with Pearson’s correlation coefficients above 0.81. Besides, the
correlation between SPAD and N%EQA was consistent with the
correlation between N%N−Pen and N%EQA. Among the five
stages, the strongest correlation was found at BS, followed by JS
and FHS, and the correlations at PIS and MRS were relatively
weak. Pearson’s correlation coefficient between N%N−Pen and
N%EQA was 0.81 at MRS, which was the weakest correlation
among the five stages, and thus, the N-pen meter failed
to distinguish N content difference among the five varieties

at MRS (Figure 2). Therefore, the SPAD-502 meter and
N-pen meter estimated N content better at BS, JS, and FHS
than at PIS and MRS.

N Estimation Using the Analytical
Spectral Devices Spectrometer at the
Close-Range Canopy Level
Previous studies suggested that NDRE performed the best
in estimating the N nutrition parameters among all the VI
candidates (Zheng et al., 2020). To test the accuracy of N
estimation at the close-range canopy level, ASD was used to
estimate N levels in the six key stages during the entire GD to
determine the best growth stage by NDRE. Pearson’s correlation
analysis was conducted among the 51 rice varieties (Table 5).
The correlation between NDREASD and SPAD was generally
better than that between NDREASD and N%N−Pen for all stages
analyzed. In BS, NDREASD showed the weakest correlation
with both SPAD (r = 0.28) and N%N−Pen (r = 0.01). The
correlation between SPAD and NDREASD in MRS (r = 0.68)
and JS (r = 0.68) was better than in PIS (r = 0.52) and TS
(r = 0.40). In addition, N%N−Pen showed weak correlations with
NDREASD (r < 0.5) in all stages besides FHS (r = 0.70) and
MRS (r = 0.61). Thus, FHS was identified as the stage that
showed the strongest correlation with both SPAD (r = 0.81)
and N%N−Pen (r = 0.70). FHS was the stage when rice plants
developed morphological structures, biomass was fundamentally
built, and the NDREASD estimations were comparably stable.
Rapid morphological changes in vegetative development in TS
and JS, panicle and inflorescence initiations in PIS and BS,
along with canopy and grain color changes in MRS, disturbed
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FIGURE 2 | The nitrogen use efficiency analysis of the rice variety LY9348. The nitrogen content was measured by (A) EQA (N%EQA) and (B) N-pen meter (N%N-Pen)
of different rice varieties. The difference between FLY4H and LY9348 in (C) grain number per panicle, (D) seed setting rate, (E) grain yield per plant, and (F) nitrogen
use efficiency (NUE) for different nitrogen treatments (N treatment) (n = 30). Asterisks denote statistically significant differences between FLY4H and LY9348
(*P < 0.05; **P < 0.01; ***P < 0.001) analyzed by Student’s t-test. Rice varieties: LY9348 (circle); LY8H (square); CH9348 (upright triangle); LH4B (inverted triangle);
and R8108 (diamond). EQA: elementary quantitative analysis. TS, tillering stage; JS, jointing stage; PIS, panicle initiation stage; BS, booting stage; FHS, full heading
stage; MRS, milk ripen stage.

the reflectance data during the VI analysis at the close-
distance canopy level.

Growth Duration Influenced N Estimation
Accuracy
Growth duration is known to influence plant growth, biomass
accumulation, flowering time, and yield (Li F. et al., 2018;
Liu et al., 2020; Won et al., 2020). Therefore, to test the

impacts of GD on N accumulation, 51 rice varieties with GD
variations were used. Longer GD was a criterion to separate
middle-season rice from early-season and late-season rice in
breeding and agricultural practices. Middle-season rice usually
grew for more than 100 days, while the others grew for
less than 90 days. Thus, 100 days from transplanting to the
maturation stage was set as the selection cut-off value to
separate 51 rice varieties into two groups: early maturation
varieties (EM) with shorter GD and late maturation varieties
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TABLE 3 | The yield traits of FLY4H and LY9348 for different nitrogen treatments.

N treatment (kg/ha) Varieties PL (cm) EPN TGW (g) GY (kg/ha)

0 FLY4H 20.16 ± 0.50 9.22 ± 0.65 31.24 ± 0.17 5687.81 ± 455.23

LY9348 20.83 ± 0.32 10.33 ± 0.59 28.94 ± 0.01* 9427.37 ± 339.41*

120 FLY4H 19.65 ± 0.21 10.50 ± 0.29 30.08 ± 0.29 6899.36 ± 907.66

LY9348 20.70 ± 0.10* 10.37 ± 0.46 28.25 ± 0.69* 9468.34 ± 276.28*

180 FLY4H 19.90 ± 0.03 9.90 ± 0.50 30.45 ± 1.11 6813.30 ± 1041.14

LY9348 20.67 ± 0.25* 10.90 ± 0.40* 28.54 ± 0.09* 9972.17 ± 617.55*

240 FLY4H 19.91 ± 0.12 10.09 ± 1.55 30.41 ± 0.43 7323.83 ± 395.71

LY9348 20.24 ± 0.56 11.33 ± 0.95 28.40 ± 0.40* 8894.49 ± 388.84*

N treatment: nitrogen treatments include 0, 120, 180, and 240 kg/ha. Values were shown by mean ± standard deviation (n = 30), ha: hectare (1 ha = 10000 m2).
Statistically significant differences between FLY4H and LY9348 (*P < 0.05) were analyzed by Student’s t-test and labeled with Asterisks.

FIGURE 3 | The relationship of (A) the nitrogen content measured by EQA (N%EQA) and Soil Plant Analysis Development (SPAD) value measured by the SPAD-502
chlorophyll meter (SPAD), (B) the nitrogen content measured by EQA (N%EQA) measured by the N-pen meter (N%N-Pen), and (C) SPAD and N%N-Pen; **P < 0.01.

(LM) with longer GD (Supplementary Table 1). To determine
whether GD influenced the correlation of NDREASD with SPAD
and N%N−Pen, NDREASD from FHS was determined by linear
regression analysis. For each group, R2 increased as expected.
The R2 between NDREASD and SPAD increased from 0.66 (mixed
51 varieties, Figure 4A) to 0.78 (EM, Figure 4B) and 0.73
(LM, Figure 4C). The R2 between NDREASD and N%N−Pen also
improved considerably from 0.49 (mixed 51 varieties, Figure 4D)
to 0.62 (EM, Figure 4E) and 0.63 (LM, Figure 4F). The improved

TABLE 4 | Pearson’s correlation coefficients for the correlation analysis between
Nitrogen content measured by EQA (N%EQA) and Soil Plant Analysis Development
(SPAD), and between N%EQA and N-pen meter (N%N-Pen).

JS PIS BS FHS MRS

SPAD 0.89** 0.81** 0.90** 0.87** 0.87**

N%N-Pen 0.91** 0.86** 0.93** 0.90** 0.81**

**Correlation is significant at the 0.01 level (two-tailed).

TABLE 5 | Pearson’s correlation coefficients for the correlation of Normalized
Difference Red Edge (NDRE) index (based on ASD) with SPAD and N%N-Pen at
different growth stages.

TS JS PIS BS FHS MRS

SPAD 0.40 0.68** 0.52** 0.28 0.81** 0.68**

N%N-Pen 0.25 0.17 0.46 0.01 0.70** 0.61**

**Correlation is significant at the 0.01 level (two-tailed).

relationships indicated that the shorter or longer maturation
duration of rice varieties influenced the accuracy of estimation
of SPAD and N%N−Pen by reflectance features.

N Estimation by Multiple Camera Array
Mounted on Unmanned Aerial Vehicle
Remote Sensing Platform at the Canopy
Level
To determine the relationship between rice N accumulation
and spectral features captured by MCA mounted on UAV-RSP
at the canopy level, correlation analysis of 51 rice varieties
was conducted between N%EQA (chemical measured N%) and
different VIs, such as CIgreen, CIrededge, NDRE, NDVI, and NDGI,
across the entire GD (Table 6). Spectral features for calculating
VIs were extracted from the canopy reflectance at different
wavelength bands (550, 570, 670, 720, and 800 nm). Overall,
the results showed that all VIs had positive correlations with
nitrogen (r-value was between 0.25 and 0.80). However, for each
VI tested, the correlations with N%EQA showed considerable
differences. NDRE showed the strongest correlation (r = 0.80),
and CIgreen showed the weakest correlation (r = 0.25). The
correlation between N%EQA and the different VIs decreased from
CIrededge (r = 0.78) and NDGI (r = 0.76) to NDVI (r = 0.74).
Therefore, NDRE was selected as the optimal VI to estimate
N in rice at the canopy level by MCA mounted on UAV-RSP.
Interestingly, in previous studies, LNA and PNA also exhibited
better linear relationships with NDRE (R2 = 0.74 and 0.68) in
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FIGURE 4 | The relationship of NDREASD with SPAD and N%N-Pen. The relationship of NDREASD with SPAD for (A) all varieties, (B) early maturation varieties, and (C)
late maturation varieties. The relationship of NDREASD with N%N-Pen for (D) all varieties, (E) early maturation varieties, and (F) late maturation varieties; **P < 0.01.

rice by UAV multispectral imagery (Zheng et al., 2020), which is
consistent with the above conclusion.

N Estimation for the Entire Growth
Duration Using Unmanned Aerial Vehicle
Remote Sensing Platform
To determine whether NDREUAV-assisted N estimation could be
applied to the entire GD from transplanting to the harvesting
stage, image data of 51 rice varieties were analyzed. RGB
image (Figure 5A) and NDREUAV illustration (Figure 5B) were
displayed for the six growth stages. One purple rice variety
(Supplementary Table 1: #9 MA LAI Hong) was included in
the test group as an internal control since it contained more
anthocyanin than chlorophyll, which was expected to be different
from the other varieties for reflectance features during data
processing. During the GD of all the varieties, the NDREUAV
value increased gradually from TS and JS to PIS and decreased
sharply after BS. The minimum and maximum NDREUAV values
for the 51 rice varieties at the different developmental stages
were as follows: TS (0.41–0.55), JS (0.46–0.62), PIS (0.38–0.58),
BS (0.35–0.54), FHS (0.19–0.41), and MRS (0.15–0.33). Among
them, the peak NDRE value was observed in variety #33 (Qingtai
Ai) in TS, JS, PIS, and BS and variety #1 (LY9348) in FHS and

TABLE 6 | Pearson’s correlation coefficients for the correlation analysis between
N%EQA and different vegetation indices across the entire growth duration (GD).

CIgreen CIrededge NDRE NDVI NDGI

N%EQA 0.25** 0.78** 0.80** 0.74** 0.76**

**Correlation is significant at the 0.01 level (two-tailed).

MRS. Higher values (above 0.5) were observed in JS, PIS, and
BS for all varieties, which was associated with rice development,
since JS was the stage for rapid biomass increment during
vegetative growth and PIS/BS was the transition stage from
vegetative growth to reproduction growth. In these stages, more
energy was needed for the growth of leaves and stems, along with
the production of flowers and seeds later. The lowest NDREUAV
value was observed in the five varieties as #17 (ARC11777, TS),
#4 (LH4B, JS, and PIS), #16 (MA MA GU, BS), #7 (ZUIHOU,
FHS), and #28 (MO MI, MRS). However, the exact maximum
NDREUAV value, the time to reach and drop from the maximum
NDREUAV value varied across these 51 varieties in each stage or
each variety at different stages, indicating that N accumulation
variations across developmental stages and different rice varieties
were captured and illustrated by NDREUAV. Thus, NDREUAV
was applicable for the evaluation of N accumulation for the rice
varieties through the entire GD.

Model I Was Constructed to Determine
the Relationship Between NDREUAV and
N%EQA
To determine the accuracy of N estimation by NDREUAV using
UAV-RSP, correlation analysis between NDREUAV and N%EQA
was conducted in different growth stages; 306 data points of
the 51 rice varieties from six growth periods were analyzed
(Figure 6A). UAV fly height of 50 m was enough to cover
each plot (60 plants per plot). After transplanting, rice plants
developed from a small size (40 cm height, 5–6 leaves) to a
large size (120 cm height, 16–18 leaves). Since biomass changes
and canopy modifications were due to nitrogen accumulation,
the value should increase from seedling to maturation stages as
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FIGURE 5 | Shown are the RGB image and NDREUAV that were obtained by the Unmanned Aerial Vehicle Remote Sensing Platform (UAV-RSP) in the six key
developmental stages. (A) RGB image: (a) TS; (b) JS; (c) PIS; (d) BS; (e) FHS; (f) MRS. (B) NDREUAV illustration: (a) TS; (b) JS; (c) PIS; (d) BS; (e) FHS; (f) MRS.
NDREUAV value varied between 0: cold blue color and 1: warm red color; warmer color indicates higher N accumulations than colder color in rice plants.

FIGURE 6 | The data plots and regression Model I constructed from 51 rice varieties were based on the UAV-RSP for the six developmental stages. (A) Relationship
between N%EQA and NDREUAV (n = 306): TS (red); JS (purple); PIS (yellow); BS (green); FHS (blue), and MRS (black); (B) regression model of N%EQA and NDREUAV

for the five stages (R2 = 0.61, n = 255; **P < 0.01). The circle in (A) highlights the data points of TS.

Frontiers in Plant Science | www.frontiersin.org 12 December 2021 | Volume 12 | Article 740414

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-740414 November 29, 2021 Time: 14:38 # 13

Liang et al. High Nitrogen Use Efficiency Phenotype

TS < JS/PIS/BS. After maturation, chlorophyll decomposition
and leaf senescence should cause N reduction to a low level from
FHS to MRS. In the scattered plot, it was observed that nitrogen
content had a high correlation with NDREUAV from JS, PIS to BS,
but a lower correlation from FHS to MRS, as expected. However,
the values in TS were unexpectedly higher than in all the other
stages. Considering the low biomass, narrow leaves, and small
plant size at this stage, the uncovered water part, which exhibited
low reflectance in all wavelength bands, might have increased the
NDREUAV amount and overestimated the value. Therefore, data
from TS was removed for nitrogen estimation, and the data after
JS, when the plant canopy fully covered the water in the field, was
processed to reduce data overestimation by NDREUAV.

By removing the TS data, a non-linear regression model
was constructed for the relationship between N%EQA and
NDREUAV. A stronger relationship between NDREUAV and
N%EQA was shown with R2 = 0.61 (Figure 6B). Since the
N%EQA was measured from individual leaf samples of the 51
rice varieties in the five key growth stages, the regression model
(y = 5.75× 2

+ 8.17x+ 0.58) was considered as an RS estimation
model for CNC based on actual measurements and set as Model I.

Model II Was Constructed to Determine
the Relationship Between NDREUAV and
N%EQA × LAI
To determine whether the canopy structure could influence
the correlation between nitrogen and NDREUAV in the
different growth stages, a training dataset of 42 rice varieties
(Supplementary Table 2), which were different from the 51
varieties (Supplementary Table 1) tested above, was used for
the analysis. The experimental plot for each variety was larger,
containing 1,500 plants in each plot. Therefore, UAV-RSP
data collection was performed at 200 m above the canopy to
guarantee image collection. LAI and N%EQA were measured from
the collected leaf samples, and NDREUAV was calculated. To
monitor the canopy structure in the model, instead of using
N%EQA, N%EQA × LAI was calculated as the parameter for the
analysis. A non-linear model was constructed, and the evaluated
regression coefficient R2 was 0.86 (Figure 7A). The correlation
was stronger than that in Model I (R2 = 0.61). Therefore, by
taking the canopy structure, such as LAI, into consideration,
nitrogen estimations by NDREUAV improved, and the regression
model (y = 1.06e4.57x) was set as Model II.

To determine whether the constructed Models I and II could
be used to detect N related phenotypes, N accumulations of
LY9348 variety along with its male and female parents and two
other rice varieties, i.e., R8108 and LY8H, were simulated by
NDREUAV estimation through Model I (Figure 7B) and Model
II (Figure 7C), respectively. In both model estimations, the
same pattern was found, i.e., LY9348 accumulated a higher N
level than the other four rice varieties from PIS, BS, FHS, to
MRS (Figures 7B,C), which was consistent with the previous
measurements (Figures 2A,B). However, in Models I and II,
nitrogen values were modified from TS to BS, which was similar
for LY9348 and the other varieties, as shown in the N%EQA
(Figure 2A) and N%N-Pen (Figure 2B) analysis for these four
early developmental stages. However, higher N levels in FHS

FIGURE 7 | Model II was constructed from 42 rice varieties, and comparisons
were performed between Models I and II for nitrogen (N) estimation in LY9348.
(A) Non-linear regression model constructed between N%EQA × LAI and
NDREUAV during the entire growth period based on the UAV-RSP (R2 = 0.86,
n = 252; **P < 0.01); (B) N% based on UAV data (N%UAV) estimated by
Model I (y = 5.752 + 8.17x + 0.58, x: NDREUAV; y: N%UAV); (C) N% × LAI
based on UAV data (N% × LAIUAV) estimated by Model II (y = 1.06e4.57x, x:
NDREUAV; y: N% × LAIUAV). Each data point in (B,C) are the six
developmental stages (TS, JS, PIS, BS, FHS, and MRS).

and MRS, which were associated with the high NUE phenotype
of LY9348, could still be detected in Model I (Figure 7B) and
Model II (Figure 7C) but could not be detected by the N-pen
meter (Figure 2B). Therefore, Model I and Model II were more
sensitive than the N-pen meter method in capturing the high
NUE phenotype of LY9348 at later stages in the field, although
the actual values obtained from each model were different.

Comparisons Between Model I and
Model II for Identification of the High
Nitrogen Use Efficiency Phenotype
To test the performance and accuracy of Models I and II in
larger population selections for the characterization of high NUE
phenotypes, data of 51 rice varieties from six growth stages were
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used for the simulation. The N%EQA of LY9348 showed a median
high N level in all stages for the 51 varieties but stayed at the
top only in MRS (Figure 8A). Both Models I and II detected the
highest nitrogen level in FHS and MRS (Figures 8B,C). However,
the N estimation curves across the different stages of the 51 rice
varieties from TS, JS, PIS, to BS differed between the two models.
Particularly, the line was flattened in Model I but fluctuated in
Model II. Since the canopy structure rapidly changed from TS to
BS, the sensitivity of Model II, after considering LAI, captured
the changes. Therefore, the detection sensitivity and accuracy of
Model II were better than those of Model I.

Box plots showed that N%EQA was scattered randomly around
the median for all stages checked (Figure 9A). However, the N%
estimated by Model I showed a tighter distribution around the
median in TS, JS, PIS, and BS compared to that in FHS and MRS
(Figure 9B). On the contrary, the N% estimated by Model II
showed a less tight distribution around the median in TS, JS, PIS,
and BS compared to that in FHS and MRS (Figure 9C).

To determine which model was suitable for high NUE
phenotype detection, especially in high-throughput scale for
high NUE phenotype identification, the N%EQA and the N level
estimated by UAV-RSP data across the whole GD of LY9348 were
presented in one figure (Figure 9D). The line of N%UAV in Model
I was similar to the line obtained from the EQA measurement
in all stages except in JS, where a lower estimation was observed.
The N%× LAIUAV estimation by Model II had a value two to four
times higher than the value in Model I, and the fluctuation among
stages was also greater in Model II than the fluctuation in Model
I and that found in the EQA measurement. Both models were
capable of determining high N accumulation levels in the LY9348
variety, especially in FHS and MRS, which were specifically
associated with the high NUE phenotype of LY9348 (Figure 9D).
Therefore, both models could identify the high NUE phenotype.

DISCUSSION

High N Accumulation in Full Heading
Stage and Milk Ripen Stage
Demonstrated the High Nitrogen Use
Efficiency Phenotype
This study showed that the high NUE variety LY9348
demonstrated a specific N dynamic curve, which distinguished
it from other varieties and its ability to maintain the highest N
level after the complete emergence of the panicles, as estimated
by NDREUAV. Since a higher N accumulation was also detected
by leaf EQA measurement, the authenticity of NDREUAV was
validated (Figures 2A, 9A,B). Besides LY9348 and LY8H, 49
rice varieties were selected from the 3000 genome project
(Li et al., 2014), representing higher NUE rice variety groups
(indica, intermediate, aus/boro) to build regression Model I
(Supplementary Table 1) and 38 indica and 2 japonica rice
varieties, different from the above 49 varieties, were selected
from breeding programs for agricultural practices in China
to construct regression Model II (Supplementary Table 2).
Although the genetic backgrounds for model construction

were different, the specific higher N accumulation status of
LY9348 was detected in both the models at FHS and MRS
(Figures 7B,C, 8B,C), which indicated that this phenotype could
be traced reliably across different locations (Ezhou, Hubei, 2017
versus Lingshui, Hainan, 2018) and from genetically mixed
sources (51 versus 42). Therefore, maintaining a relatively higher
level of N after the initiation of the panicles was shown as a
representative character, or interpreted as a specific phenotype,
for the high NUE rice variety LY9348.

Many previous studies had shown that an increase in the
N supplies at the panicle and grain filling stages, either by
medium level application of exogenous soil N, top-dressed N
fertilizer, or efficient N remobilization from senescent organs,
could modify panicle density type and significantly increased
the filled grain numbers, the seed setting rate, and the weight
of the grains (Sikder and Gupta, 1976; Wang, 1981; Murty and
Murty, 1982; Mohapatra et al., 1993, 2011; Tang et al., 2011; Li
et al., 2012; Siebenmorgen et al., 2013; Yoneyama et al., 2016;
Wang B. et al., 2018), which was consistent with our results
that LY9348 generated more grain numbers, increased the seed
setting rate by 20%, and doubled the grain yield per plant in the
0 kg/ha N treatment field trials compared to the results of FLY4H
(Figures 2C–E and Table 3), which is a standard high yield CK
from the National Rice Industrial Technology System for rice
variety certification authorization in China. Besides, excess N
supply at the flowering and grain filling stages was also critical for
functional leaves, such as the flag leaf, to stay green, to maintain
the stability of photosynthetic enzymes, and to guarantee energy
supply for improving grain quality and increasing grain weight
(Evans, 1989; Thomas and Howarth, 2000; Tang et al., 2005;
Dawson et al., 2008; Zhang et al., 2010; Wang et al., 2014; Gu
et al., 2017; Luo et al., 2018; Woo et al., 2019). Therefore, a high
level of N accumulation in the maturation stages was identified as
a high NUE phenotype of rice.

Moderate-High N Accumulation Level in
Vegetative Developmental Stages Was
an Important Part of the High Nitrogen
Use Efficiency Phenotype
Although the obvious N accumulation differences between
LY9348 and other varieties were observed in the panicle and
grain developmental stages, the N level in the earlier stages
was also important. Many previous studies concluded that N
fertilization added at TS and BS were effective in increasing
tiller numbers, biomass, and photosynthesis products. However,
over-application of N in these stages initiated more ineffective
tillers, shallow roots, unhealthy shoot morphological structures,
and delayed transition from vegetative to reproductive growth,
causing a greater loss in yield (Pan et al., 2011; Andrew et al.,
2013; Sui et al., 2013; Hu and Zhang, 2014; Zhu et al., 2016).
Moreover, proper N addition at PIS and BS increased the number
of panicles, spikelets per panicle, the seed setting rate, and
grain weight. However, these yield-related traits decreased when
too much N was applied. Compared to the NDREUAV value
among the 51 rice varieties in TS (0.41–0.55), JS (0.46–0.62),
PIS (0.38–0.58), and BS (0.35–0.54), the LY9348 variety displayed
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FIGURE 8 | The nitrogen accumulation dynamic curve of 51 rice varieties through the entire growth duration by actual measurement (N%EQA, A) and estimation by
Model I (N%UAV, B) and Model II (N% × LAIUAV, C). Model I: y = 5.75 × 2 + 8.17x + 0.58, x: NDREUAV; y: N%UAV. Model II: y = 1.06e4.57x, x: NDREUAV; y:
N% × LAIUAV. FHS and MRS are highlighted by the square regions.
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FIGURE 9 | High Nitrogen Use Efficiency (NUE) phenotype determined in LY9348. (A) Statistical box plot of N% by actual measurement (N%EQA) in 51 rice varieties
for the six developmental stages; (B) statistical box plot of N% estimated by Model I (N%UAV) in 51 rice varieties for the six developmental stages; (C) statistical box
plot of N% estimated by Model II (N% × LAIUAV) in 51 rice varieties in the six developmental stages; (D) nitrogen accumulation dynamic curve of LY9348 by actual
measurement (N%EQA), and estimation by Model I (N%UAV) and Model II (N% × LAIUAV): N%EQA (square), N%UAV (circular), and N% × LAIUAV (triangle). The black
line in (B–D) represents data median, and different letters indicate significant differences (P < 0.05, one-way ANOVA, Tukey’s HSD test).

a relatively higher, but not the highest, NDREUAV value in TS
(0.50), JS (0.56), PIS (0.54), and BS (0.51). Variety #33 (Qingtai
Ai) showed the highest NDREUAV value in all the four stages but
was not a high NUE variety. Therefore, control N accumulation
at a moderate-high level during the vegetative and transition
developmental stages should be considered to be a part of the
high NUE phenotype for overall evaluation. To determine if
the N accumulation phenotypes of LY9348 in all the stages are
representative, phenotypic and field analysis should be conducted
in the future to test two hypotheses: (1) these phenotypes are true
for all high NUE varieties; and (2) a new variety can be inferred to
be using N efficiently if its N phenotypes mimic that of LY9348.

Dynamic N Curve Captured by
Unmanned Aerial Vehicle Remote
Sensing Platform Was Identified as a
New High Nitrogen Use Efficiency
Phenotype
Attempts have been made to select high NUE breeding varieties;
however, the progress has been slow. Because variation in N levels
is found in both the spatial (canopy morphological changes)
and temporal (developmental variation through the entire GD)
modes, it is hard to capture the changes of N in plants in
either mode. The RS technology is the ideal way to determine

N fluctuation with low effort and cost, in real-time and non-
destructively, and can replace the traditional methods that are
tedious and destructive. However, the challenges are to determine
what the high NUE phenotypes should be from the perspective of
RS and whether the N dynamics demonstrated by RS are reliable
and repeatable in the breeding trials.

Accumulation and remobilization of N within plants is a
dynamic balance of environmental N supplies, plant N needs,
and plant N accumulation and transportation abilities (Han et al.,
2015). Phenotypic descriptions of N levels in plants should be
analyzed as time-series data, although due to the technical and
methodological limitations, it has been analyzed as a snapshot or
fragmental dataset by traditional methods. UAV-RSP combines
statistics, reflectance, and calculus-based computational data to
construct and digitalize N-related temporal biological changes,
which allows the dynamic N curve phenotypes to be evaluated in
a video-mode view across the entire GD range. This study showed
that the high NUE phenotype maintained a moderate-high level
of CNC in the earlier developmental stages from TS, JS, PIS to BS
and the highest, but gradually decreasing, level of CNC in FHS
and MRS. This time-series N dynamic phenotype could be used
as a new high NUE phenotype for field screening.

Moreover, LAI increased the accuracy of the analysis of
this phenotype in Model II estimation which also suggested
that spatial-series data with canopy structure differences could
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provide more information. The combination of time-series and
spatial-series data might better illustrate the accumulation and
distribution of N in future studies regarding changes in NUE.

High Nitrogen Use Efficiency Variety Was
the Key Source to Identify High Nitrogen
Use Efficiency Related N Accumulation
Phenotypes
For breeding purposes, phenotype identification is very
important, and the phenotype identified must be traceable. For
example, the yield of jasmine rice is low, but high yield rice
has no aroma (Usman et al., 2020; Dhondge et al., 2021). If
breeders want to create high-yield aroma rice, they need to select
aroma rice and high-yield rice as parents and perform crosses
and backcrosses for several generations. In each generation,
thousands of offspring of each cross must be evaluated for
phenotypes of aroma and yield. Since these two phenotypes can
either be measured (yield) or tasted (aroma), it is possible to
create high-yield aroma rice. However, it is difficult to create
high NUE rice varieties because neither NUpE nor NUtE
phenotypes are well-defined. In previous studies, NUpE varieties
were selected since absorption of N could be quantified, and
plant N transporter genes were cloned and analyzed intensely
in the past decades. However, evaluating NUtE was challenging
because it was hard to quantify how much N, after absorption by
plants, was being used to increase the grain yield and improve
grain quality, instead of being used to grow bigger leaves or
increase biomass. The lack of well-defined traceable phenotypes,
especially for NUtE, was the limiting factor for the generation of
higher NUE varieties.

High NUE rice germplasm is the key source to identify high
NUE phenotypes. However, NUE varieties are rare. Specifically,
very few NUtE rice varieties have been reported. The over-
application of N for agricultural purposes has a considerable
adverse impact on the environment. The rice variety LY9348,
which contains both the high NUpE and NUtE phenotypes,
showed great efficiency and productivity value and should be
studied intensely to provide clues and ideas for future studies
regarding increasing NUE. We adopted RS technologies to
identify the specific N accumulation phenotype of LY9348
and tried to determine an easier method to accelerate the
identification of the high NUE phenotypes.

Through UAV-RS, we identified the specific N accumulation
phenotype of LY9348, and this was the first study to show a
dynamic N accumulation phenotype across the whole GD in a
mixed genetic background (51 and 42 collections). Since LY9348
was unique in NUE, its N accumulation dynamic curve was quite
different from that of the other varieties. Therefore, its dynamic
N curve phenotype could be highlighted as a single specific curve
in different genetic backgrounds across locations and years. This
phenotype provided a valuable way to quantify NUE and can
be used to select high NUE varieties when LY9348 is used as
a high NUE donor, which is promising for the generation of
NUE varieties in the future using the UAV-RS method and the
established models.

Enlarged Gene Pools for the Selection of
High Nitrogen Use Efficiency Varieties
In traditional NUE selection, breeders usually choose high NUE
parents to create higher NUE hybrids. Interestingly, we found
that LY9348, as a hybrid rice variety, had high NUE, but its male
(CH9348) and female (LH4B) parents had low NUE (Figure 2A).
This indicated two important aspects regarding the generation
of high NUE varieties: (1) The high NUE phenotype of LY9348
might have been generated by hybrid vigor and not inheritance.
Higher NUE varieties in hybrid lines formed through heterosis
from lower NUE parental lines were also reported in maize
(Wang Z. et al., 2019); (2) High NUE varieties might be created
through multiple maternal and paternal combinations, even if the
parental varieties do not show high NUE phenotypes. Hence, a
larger gene pool can be used for the selection and generation of
high NUE varieties.

Shorter or longer GD influenced the accuracy of estimation
of SPAD and N-pen of rice varieties at the leaf level. From an
agricultural standpoint, variations in biomass accumulation, leaf
color, nitrogen remobilization and canopy structure in different
varieties were all influenced by GD. Although GD did not
affect the high NUE dynamic curve identified in LY9348, for
agricultural inspections and phenomics studies, GD should be
considered as an important parameter, especially when hundreds
or thousands of varieties with different genetic backgrounds need
to be evaluated simultaneously.

Moreover, studies should determine if the specific high NUE
phenotype can be genetically transferred from LY9348 to its
offspring population through backcrosses or crosses with low
NUE rice varieties. If the same high NUE phenotype can be
traced in the population for segregation, genetic tools such
as molecular markers might be identified to assist in the
selection process. Phenomics, genomics, and metabolomics in
specific phenotypic stages might simultaneously provide more
information to understand the high NUE networks along with
their mechanisms and regulations.

Minimum Experimental Requirements for
Field Screening
For high-throughput phenomics analysis and large population
breeding selections, minimum experimental plot size and
minimum individual plants needed for determining a reliable
phenotype should be tested to minimize expenses and increase
selection efficiency in agricultural practices. Several trials were
conducted in Ezhou, Hubei (2017) and Lingshui, Hainan (2018).
Plots of 1.2 m× 1.6 m with 60 plants (6 rows and 10 plants/row)
were technically sufficient for the NDREUAV analysis in our
experiments for N inspections. Plots smaller than this would have
reduced the evaluation accuracy (data not shown). Compared
to the traditional 1,500 plants/66.67 m2 plot design in Lingshui,
Hainan (2018) and 4.5 m × 8 m or 5 m × 6 m plots (Parco et al.,
2020) in other nitrogen-related studies, the cost was considerably
lower. We also found that a 20 cm space between each plot was
helpful in image processing, especially in the later developmental
stages when the plant biomass increased dramatically. Therefore,
the cultivation of hundreds or even thousands of rice varieties in
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one small field for N inspection by this method was shown to be
possible, which supported the screening of NUE phenotypes in a
controlled experimental background.

For UAV flight density, our trial showed that N inspection
and data collection every 5–7 days was enough for the entire
GD. In the future, collection of data every 7–10 days or even
after a longer duration can be tried to establish less laborious but
reliable protocols for high-throughput phenomics and effective
agricultural management.

Factors That Influence the Tracing of
High Nitrogen Use Efficiency Phenotypes
To resolve the application-related problems of high-throughput
phenomics in field trials and make the life of breeders easier, we
tested three aspects for determining the effects on the reliable
identification of high NUE phenotypes.

(1) Five VIs were compared, and NDRE was relatively better
for estimating N contents in rice plants, which was
confirmed by the studies of other researchers where
the UAV platform was used (Zheng et al., 2020).
Besides, we tested different scales of reflectance data
such as NDREASD, using the UAV platform at 50 m
(NDREUAV50) and 200 m above (NDREUAV200) the canopy.
SPAD, N%N−Pen, and N%EQA were also compared.
There was a strong linear relationship between N%N-Pen
and N%EQA with R2 above 0.65 in MRS and 0.86 in
BS. Interestingly, although N%N-Pen showed a higher
correlation with N%EQA, it failed to distinguish N%
contents of LY9348 from other varieties at FHS and MRS
because the saturation of reflectance features measured
and estimated by the N-pen meter could not detect
N% below 2% (Figure 2B). However, NDRE, calculated
by UAV-RSP from different canopy heights (50 m;
200 m), detected the N dynamic phenotypes of LY9348
(Figures 7B,C, 8B,C), which indicated that the flight height
did not influence the high NUE phenotype tracing and
discrimination in the field trials. From the perspective of
effort and expenses, N%EQA > NDREASD > NDREUAV200:
N%EQA × LAI > N%N-Pen > NDREUAV50: N%EQA.
Therefore, Model I was more efficient and less expensive
for inspecting the high NUE phenotype than Model II,
although the sensitivity of Model II was better than Model
I. Breeders can choose different methods according to their
needs and budgets in the future.

(2) In the estimation of Models I and II, we did not separate
leaves and panicles for N estimation and included all the
reflectance features captured from our experimental plot of
each variety for a mixed N estimation. The results showed
that the high NUE phenotype could be detected and easily
identified, especially in FHS and MRS. This suggested
that the measurements of LNC and CNC separately might
not be necessary for the identification of high NUE
phenotypes, which simplified data extraction and reduced
the complexity of the analysis.

(3) The indica rice showed higher NUE ability than the
japonica rice (Hu et al., 2015). However, N accumulation
in LY9348 was even higher than that in the indica rice

groups, especially in FHS and MRS. This confirmed
that the high NUE phenotype we identified was specific
and could be traced in mixed genetic backgrounds. This
suggested that high NUE phenotypes cannot be masked by
N variations among different varieties in large-scale genetic
screening. Further studies should test whether the high
NUE phenotype can also be detected in mixed japonica
rice varieties and whether the dynamic N curves vary with
lower or higher N treatments.

The N dynamic time-series phenotype identified in LY9348
can assist high NUE phenotype field screening in rice as
a screening standard. More high-NUE phenotypes might be
captured if other known high NUE varieties are evaluated
by this method. Technical improvements could greatly speed
up the process of screening for high NUE rice varieties
to overcome the long-standing challenge of decreasing the
application of N in agricultural practices; thus, reducing costs and
environmental damages.

CONCLUSION

The specific high NUE phenotype of LY9348 was first identified
and illustrated by two models built with NDRE as the selected VI
with N%EQA and N%EQA × LAI among two genetically selected
rice varieties (n = 51, 42) using multispectral data in the paddy
field through UAV-RSP. The phenotype was characterized as
a N dynamic time-series curve with moderate higher N level
from TS till BS but the highest N level maintained after FHS till
MRS compared with any other varieties tested. Several impact
parameters were evaluated: (1) The identification of the high
NUE phenotype was not influenced by the genetic background
and flight height of UAV-RSP; (2) Mixed varieties with longer
and shorter GD during analysis reduced the strength of the
relationship between NDREASD and N%N-Pen (to R2 below 0.5).
Hence, it was better to analyze them separately; (3) Reflectance
of water in paddy fields caused problems of overestimation.
Therefore, tillering stage data was excluded from the model
analysis; (4) Canopy structure was a key factor in influencing
the sensitivity and accuracy of N measurement by NDREUAV.
Thus, N% × LAI was a better parameter to predict N% in large
field selections; (5) Minimum field plot size (1.2 m × 1.6 m)
and plant sample size (n = 60) for valid assessments by
the method were determined and were shown to be effective
for data extraction and analysis. In the future, not only the
identified phenotype can support large or super-large scale high-
throughput N-related phenomics analysis and reliably select high
NUE varieties to reduce environmental problems caused by N,
but also N inspection and high NUE phenotype selections by
this method or other platforms explored would be useful for the
system construction of smart breeding and precision agriculture.
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