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Leaf area index (LAI) is an important variable for characterizing plant canopy in crop
models. It is traditionally defined as the total one-sided leaf area per unit ground area and
is estimated by both direct and indirect methods. This paper explores the effectiveness
of using light detection and ranging (LiDAR) data to estimate LAI for sorghum and
maize with different treatments at multiple times during the growing season from both a
wheeled vehicle and Unmanned Aerial Vehicles. Linear and nonlinear regression models
are investigated for prediction utilizing statistical and plant structure-based features
extracted from the LiDAR point cloud data with ground reference obtained from an
in-field plant canopy analyzer (indirect method). Results based on the value of the
coefficient of determination (R2) and root mean squared error for predictive models
ranged from ∼0.4 in the early season to ∼0.6 for sorghum and ∼0.5 to 0.80 for maize
from 40 Days after Sowing to harvest.

Keywords: high-throughput phenotyping, remote sensing, LiDAR, leaf area index, machine learning, row crops

INTRODUCTION

Determination of Leaf Area Index (LAI) is essential for modeling the interaction between the
atmosphere and the biosphere (Zhu et al., 2020). It is an important biophysical parameter that
acts as a primary control for energy, water, and gas exchange within a vegetated ecosystem (Jensen
et al., 2008; Zheng and Moskal, 2009). Estimation of LAI is also important for crop modeling (Lobell
et al., 2015; Akinseye et al., 2017) and plant breeding (Blancon et al., 2019). Both direct and indirect
approaches have been investigated to estimate LAI. Direct methods, which are based on measuring
the area of the leaves directly, are accurate but costly, labor-intensive, and time-consuming. In
destructive sampling, plants are defoliated within a specific area, and the one-sided leaf surface
area is measured from imagery or with an electronic area meter (White et al., 2019) such as an
LI-3100C. The average leaf biomass fraction and specific leaf weight, which is defined as leaf dry
weight (the oven-dry mass), divided by the one-sided area of the fresh leaves are used to compute
LAI, for each plot and sampling date (Yang et al., 2021).
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Indirect optical methods estimate LAI from the canopy
gap fraction that is defined as the effective LAI (LAIeff). The
relationship between LAIeff and true LAI derived from a direct
method, which assumes that the leaves are randomly distributed
within the canopy, is shown in Eq. 1 (Chen et al., 2005; Ryu et al.,
2010).

LAIeff (θ)=� (θ)× LAI (1)

where � (θ) is the canopy clumping index that describes the non-
randomness of the leaf foliage distribution; it can be estimated
through the nonrandom distribution of gap fractions using the
logarithmic gap fraction averaging method, and θ is the solar
zenith angle (Fang et al., 2019).

Digital cover photography, digital hemispherical
photography, and the LAI-2200C plant canopy analyzer are
all used to obtain indirect optically-based estimates of LAI
(Fournier and Hall, 2017; Fang et al., 2019). Direct measurement
methods and some optical methods are also used as references
for indirect measurement techniques (Richardson et al., 2009).
Indirect methods have been developed for determining LAI
over large areas using both active and passive remote sensing.
Within the last decade, light detection and ranging (LiDAR)
has been used for mapping, modeling, and spatial analysis in
many applications, including estimation of LAI. The advantage
of LiDAR compared to other remote sensing technologies is that
it directly provides three-dimensional coordinates. Promising
results have been obtained from LiDAR (Jimenez-Berni et al.,
2018) and in combination with hyperspectral imagery (Masjedi
et al., 2018, 2019) in modeling biophysical characteristics,
including vegetation height and above-ground biomass for
agriculture applications (Nie et al., 2016; ten Harkel et al., 2020).
LiDAR has also been used to model forest canopy structure
(Lefsky et al., 2002) and to estimate LAI in forests (Zhao and
Popescu, 2009; Korhonen et al., 2011; Jung and Crawford, 2012;
Alonzo et al., 2015).

To estimate LAI from LiDAR, empirical models are developed
to represent the relationship between the ground reference LAI
and LiDAR-derived metrics. Two types of LiDAR metrics are
commonly used in LAI prediction, the Beer-Lambert law based
on the laser penetration index (LPI; Richardson et al., 2009)
and allometric measurements that are statistically-based features
(Pope and Treitz, 2013). Allometric-related features include the
mean height and standard deviation, maximum height of all
returns, and the coefficient of variation of height. Features based
on the Beer-Lambert law include gap fraction and LPI (Nie et al.,
2016). Pope and Treitz (2013) demonstrated the combined use
of airborne discrete return LiDAR data and WorldView-2 high-
resolution imagery to predict LAI in a boreal mixed wood forest.
Digital hemispherical photos were used as a ground reference,
and statistically significant LiDAR-based inputs for a stepwise
linear regression model included the ratio of the first return
and total return, the vertical distribution ratio, crown closure,
and a vertical complexity index (VCI) that represents structural
homogeneity with height (Ludwig et al., 1988; van Ewijk et al.,
2011; Pope and Treitz, 2013).

Few studies have focused on estimating LAI for row crops,
such as maize, e.g., Nie et al. (2016) and sorghum, e.g.,

Lang (1986). In addition, in most remote sensing focused studies,
discrete return LiDAR data are acquired by manned aircraft
and Unmanned Aerial Vehicles (UAVs), which have lower point
density and laser penetration than ground-based platforms.
Ground-based LiDAR data can acquire data at a very high spatial
resolution over shorter crops compared to airborne platforms,
and depending on the plant structure, can potentially penetrate
deeper into the canopy. Further, these platforms are not subject
to localized changes in position, elevation, and look angle that are
common with airborne platforms, but are restricted to operation
in field conditions during which they can drive and collect data.

Nazeri (2021) investigated the destructive sampling method as
a ground reference in estimation of LAI from LiDAR acquired
by a UAV over a sorghum field experiment. Three sets of
ground reference data collected by the Purdue team in 2019
to parameterize a crop growth model were provided as ground
reference data. The relationship between the LiDAR data and
LAI computed using destructively sampled ground reference data
was weak. The results were not unexpected, as the LiDAR data
are physically more closely related to the gap fraction than the
assumptions for LAI calculations based on destructive sampling
(Hammer et al., 2010; Fang et al., 2019; Yang et al., 2021). The
low R2 of models obtained using the destructive sampling ground
reference, coupled with the practical limitations for performing
extensive destructive sampling through the season motivated
this study of an indirect ground reference method coupled with
extensive data acquisitions during the 2020 growing season.

This paper is an exploratory study of LAI prediction using
LiDAR point cloud data acquired by a converted high-clearance
tractor/sprayer with a custom sensor boom and by low altitude
UAVs over sorghum and maize plant breeding experiments.
LiDAR platforms and systems with different laser units were
evaluated at multiple altitudes for obtaining LAI. Remote sensing
acquisitions were matched to the field-based LAI measurements
using near-coincident data acquisitions. Multiple strategies for
feature extraction were investigated for developing regression-
based predictive models, including stepwise multiple linear
regression (SMLR), partial least squares regression (PLSR), and
support vector regression (SVR). The predictive models were
developed based on the indirect ground reference method and
evaluated based on the resulting R2 values and the root mean
squared error of the residuals. Contributions of the study include
investigation of multiple LiDAR-based features for multitemporal
prediction of LAI via regression models and evaluation of the
capability of LiDAR sensors and platforms for acquiring data
to predict sorghum and maize LAI at multiple times during
the growing season.

MATERIALS AND METHODS

Study Area and Experiment Setting
The experiments for this study were conducted at the Agronomy
Center for Research and Education at Purdue University, West
Lafayette, IN, United States, to evaluate the potential of sorghum
varieties for biomass production. Both ground reference and
LiDAR data were acquired during the 2020 growing season. In
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FIGURE 1 | Plot variety layout (A) SbDivTc_Cal and (B) HIPS.
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FIGURE 2 | (A) Photograph of the SbDivTc_Cal panel (7/20/2020), (B) LiDAR-Based Height Map of SbDivTc_Cal Sorghum Panel (7/20/2020).

FIGURE 3 | Measured ground reference LAI of (A) SbDivTc_Cal and (B) HIPS
using LAI–2200C (2020).

this study, near concurrent ground-based and UAV LiDAR data
were analyzed. The LiDAR data were collected from the Sorghum
Biodiversity Test Cross Calibration Panel (SbDivTc_Cal) and
the maize High-Intensity Phenotyping Sites (HIPS) Panel. The
SbDivTc_Cal experimental design included 80 varieties two
replicates in a randomized block design planted in 160 plots (plot
size: 7.6 m × 3.8 m), ten rows per plot (row number is counted

from the west to east). All 160 plots were included in the analysis
for the SbDivTc_Cal data, as LAI ground reference data were
acquired for all the plots in the experiment. The HIPS maize
experiment contained 44 varieties of maize with two replicas,
including hybrids and inbreds. This experiment had 88 plots (plot
size: 1.5 m × 5.3 m), two rows per plot. In the early stages,
sorghum and maize have very similar plant structures, although
sorghum is planted at a higher density (∼200,000 plants/hectare)
compared to maize (∼75,000 plants/hectare). During the growing
season, the geometric structure of sorghum becomes more
complex as tillers develop, decreasing canopy penetration.
Figure 1 shows the layout of the SbDivTc_Cal and HIPS plots
based on the respective genotypes.

Differences between varieties can be seen clearly in terms of
physical characteristics shown in a photo (Figure 2A), and in
the LiDAR-based height map acquired by a UAV on 7/20/2020,
68 days after sowing (DAS; Figure 2B).

Field Ground Reference Data
In 2020, reference data were collected weekly from June 29
to July 27 for sorghum and from June 22 to July 13 using a
handheld plant canopy analyzer (LAI-2200C). The LAI-2200C
is a portable instrument for acquiring an indirect measurement
of LAIeff based on canopy gap fraction analysis (Welles and
Cohen, 1996; Sonnentag et al., 2007; Černý et al., 2019). In
sorghum, to avoid the impact of adjacent plots and destructive
sampling, LiDAR data from Rows 2 and 3 of each plot were
associated with each reference value for developing the predictive
models. Two sets of five measurements one measurement above
the canopy and four measurements below the canopy near the
ground between rows 2 and 3 in the direction of the rows (north-
south) were made according to the recommended protocol, then
a representative value per plot was calculated using the Field
Viewer 2200 (FV2200) software. These values were used as the
primary reference data for developing predictive models of LAI
based on the LiDAR remote sensing data. The ground reference
values ranged from 0.5 to 6 for sorghum and 0.5 to 5 for maize,
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increasing during the period of the growing season until sampling
was stopped after flowering. The box plots in Figure 3 show the
range of values of ground reference data for both crops within
±1.96 standard deviations for the LAI–2200C based on the date
of data collection and corresponding DAS. The values of LAI
exceeding 95% were from photoperiod sensitive varieties, whose
characteristics increasingly differ from the rest of the experiment
as the season progresses. The sequence of 2020 plant canopy
analyzer data was used as a ground reference for evaluating the
LiDAR-based metrics. Remotely sensed LiDAR data and ground
reference acquisitions were separated by no more than 3 days.
Table 1 summarizes the experiment over the SbDivTc_Cal and
HIPS 2020 experiments.

Light Detection and Ranging Point Cloud
Data Acquisitions
Platforms and Sensors
Remote sensing data were collected by the UAV weekly, first prior
to planting to develop the baseline terrain model and at intervals
of 1–2 weeks thereafter, depending on the weather, throughout
the growing season. Two M600P UAVs were flown over the study
area at altitudes of 20 and 40 m and speeds of 3–5 m/s. The UAVs
were equipped with a Velodyne VLP-Puck LITE and a Velodyne
VLP-32C, respectively. The Velodyne VLP-Puck LITE has 16
channels that are aligned vertically from −15◦ to +15◦, resulting
in a total vertical field of view (FOV) of 30◦. The point capture
rate in single return mode is ∼300,000 points per second. The
range accuracy is typically±3 cm, with a maximum measurement
range of 100 m (Velodyne VLP-Puck Lite, 2020). The Velodyne
VLP-32C has 32 channels that are aligned vertically from −15◦
to +25◦, in a total vertical FOV of 40◦. The point capture rate
in a single return mode is∼600,000 points per second. The range

accuracy is typically±3 cm, with a maximum measurement range
of 200 m (Velodyne VLP-32C, 2020). The UAVs were equipped
with an integrated global navigation satellite system/inertial
navigation system (GNSS/INS) Trimble APX-15v3 for direct
georeferencing (Hasheminasab et al., 2020). LiDAR data were
acquired by a wheel-based system, a LeeAgra Avenger agricultural
high-clearance tractor/sprayer with a custom boom and mounted
sensors, referred to in this study as the PhenoRover, on an
experimental basis. The boom is constructed from 2.75 m wide
T-slot structural aluminum, and the top of the boom can be
raised to a maximum of 5.5 m height from the ground. Sensors
mounted on the boom include a Headwall hyperspectral VNIR
machine vision camera, two FLIR RGB cameras, and a Velodyne
VLP-Puck Hi-Res LiDAR, as well as the GNSS/INS navigation
system. The VLP-Puck Hi-Res has similar sensor specifications
to the VLP-Puck LITE. Its FOV is−10◦ to+10◦ (Velodyne VLP-
Puck Hi-Res, 2020). The platform speed in the field was 1.5 miles
per hour. Figure 4 shows the PhenoRover and UAV platforms for
the 2020 data collection. PhenoRover data were acquired limited
times in 2020, subject to field conditions. Table 2 details the
platforms and their mounted sensor specifications for the 2020
data collection.

Table 3 summarizes the LiDAR data collection and the
corresponding ground reference measurements in terms
of DAS relative to the data collection dates and ground
reference measurements.

PhenoRover and Unmanned Aerial Vehicle Light
Detection and Ranging Data
The average point densities of the LiDAR data acquired by the
sensors on the UAVs depend on the type of sensor, the platform
flying height, FOV, and mission characteristics such as the sidelap

TABLE 1 | Experimental design for the 2020 growing season.

Experiment Genotype # of plots # of varieties Sowing date Harvest date

HIPS Hybrid/inbred 88 44 May 12 October 1

SbDivTc_Cal Hybrid 160 80 May13 August 15

FIGURE 4 | (A) PhenoRover platform with RGB/LiDAR/Hyperspectral/GNSS/INS sensors, (B) UAV-2 with RGB/LiDAR/GNSS/INS sensors in 2020.
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TABLE 2 | Platforms and mounted sensors specification in 2020.

Platform Sensor Unit Description

UAV-1

RGB camera 1 36.4 MP Sony Alpha 7R (ILCE-7R)

LiDAR sensor 1 Velodyne VLP 16-Puck LITE-range accuracy of ±3 cm

GNSS/INS 1 Trimble APX-15 v2

Hyperspectral Camera 1 Nano Hyperspectral (VINIR)

UAV-2

RGB camera 1 36.4 MP Sony Alpha 7R (ILCE-7R)

LiDAR sensor 1 Velodyne VLP 32-range accuracy of ±3 cm

GNSS/INS 1 Trimble APX-15 v2

PhenoRover

RGB camera 2 9.1 MP FLIR Grasshopper3 GigE

Hyperspectral camera 1 Headwall Machine Vision 270 band line-scanning with 4.8 mm lens

LiDAR sensors 1 Velodyne VLP-Puck Hi-Res

GNSS/INS 1 Applanix POS-LV 125

TABLE 3 | Days after sowing (DAS) relative to the available ground reference and LiDAR data in two experiments over SbDivTc_Cal and HIPS.

Experiment Platform Flying height Sowing date LiDAR data collection date DAS1 Ground reference date DAS2

HIPS UAV-1 N/A 05/12 06/25 44 06/22 41

PhenoRover N/A 06/26 45 06/29 48

UAV-2 20 m 07/07 56 07/06 55

UAV-1 20 m 07/11 60 07/13 62

UAV-2 20 m 07/11 60 07/13 62

UAV-2 20 m 07/13 62 07/13 62

PhenoRover N/A 07/13 62 07/13 62

SbDivTc_Cal PhenoRover N/A 05/13 06/26 44 06/29 47

UAV-1 40 m 07/02 50 06/29 47

UAV-2 20 m 07/07 55 07/06 54

UAV-2 20 m 07/13 61 07/13 61

UAV-1 40 m 07/17 65 07/20 68

PhenoRover N/A 07/20 68 07/20 68

UAV-1 40 m 07/20 68 07/20 68

UAV-2 20 m 07/20 68 07/20 68

UAV-1 40 m 07/28 76 07/27 75

UAV-2 20 m 07/28 76 07/27 75

DAS1: DAS with respect to data collection data; DAS2: DAS with respect to ground reference data.

TABLE 4 | Point density of sample data on 7/20/2020.

Platform Flying height DAS Point density (Points/ m2)

UAV-1 40 m 68 70

UAV-2 20 m 68 500

PhenoRover N/A 68 1,400

of the flightlines. In this study, point density is investigated based
on flying height and sensor type, and it is presumed that the rest
of the characteristics affecting point density are consistent across
the data acquisitions; these values are significantly lower than the
LiDAR point density from the PhenoRover because the sensor on
the PhenoRover operates at a much lower height (approximately
5 m from the ground). Table 4 shows the point density of the
sensors based on flying height. Figure 5 illustrates the resulting
3D point cloud from the UAV platforms and PhenoRover over

a sorghum sample row. As expected, the canopy penetration
achieved by the UAV sensors was lower than the PhenoRover
due to the higher platform altitude. UAV-2 with a Velodyne
VLP-32C had a higher point density, resulting in greater canopy
penetration compared to UAV-1 with a Velodyne VLP-Puck
LITE, due to the combined impact of being flown at 20 m and
the higher pulse rate of the sensor with more laser beams.

METHODOLOGY

Feature Extraction From Light Detection
and Ranging Data
In the HIPS experiment, LiDAR features were extracted at plot
level as there were two rows in a plot (Figure 6A), while in
the SbDivTc_Cal experiment, LiDAR features were extracted at
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FIGURE 5 | Example sensor point cloud sample data from (7/20/2020) from (A) PhenoRover, (B) UAV-2, and (C) UAV-1.

FIGURE 6 | Typical plot; (A) HIPS. (B) SbDivTc_Cal: rows 2 and 3 selected to extract features. The two arrows indicate rows 2 and 3. The orientation of the plot is
shown with arrows (E: Easting, N: Northing, and Z: Elevation).
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FIGURE 7 | Height of photoperiod sensitive variety SP SS405 FS relative to the surrounding plots 7/28/2020.

FIGURE 8 | Thematic region growing clustering steps: (A) Sample points.
(B) Initial clustering. (C) Finding common points in two close clusters.
(D) Connecting and joining two clusters.

the row-level within ten-row plots. Rows four, seven, and eight
were adjacent to rows that were destructively sampled. Rows
one and ten were “border” rows, so they were not necessarily
representative of conditions within the plot, particularly for
light accessibility when plots with tall varieties were adjacent to
plots with short varieties. Rows 2 and 3 were extracted from
the remotely sensed data and analyzed for this study. Features
were extracted from rows 2 and 3 as a spatially contiguous two-
row block (essentially equivalent to a two-row plot) where the
ground reference was collected. Figure 6B shows a typical plot
of the dataset, where rows 5 and 6 were destructively sampled

via machine harvesting, and manual destructive harvesting was
performed in row 9.

Three varieties of sorgum experiment (ATx623xDwfYellMilo,
ATx623xSC0044, and SP SS405 FS) are photoperiod sensitive, as
noted previously, and have a different plant structure than the
rest of the varieties, especially later in the growing season. For
example, “SP SS405 FS” was taller than the surrounding plots
by approximately 1.3 m on 7/28/2020 (Figure 7). The impact of
these varieties on the predictive models was investigated.

As noted in the Introduction, most LiDAR-based features
proposed in the literature are based on the height or moments
of the histograms of point cloud values in a 3D volume classified
as vegetation. The Digital Terrain Model (DTM) required to
determine plant heights was derived from a bare earth field
using UAV-based LiDAR point cloud data before planting and
assumed to be constant throughout the growing season. The
height of points was estimated by subtracting the DTM from the
“z” coordinate of each point in the dataset. Points with a height
of less than 10 cm were considered as ground points and not
included in the statistical analysis of the vegetation. The following
physically-based features were explored for this study.

Laser penetration index is defined as the fraction of laser
points that penetrate the canopy. The index can be calculated
in many ways. In this study, it is computed as the ratio between
the number of ground points (NGround) and the total number of
points in a given area (NGround + Nvegetation), which is assumed
here to be a row of a plot (Eq. 2). The number of non-ground
points is assumed to be equal to the number of points identified
as vegetation (Nvegetation):

LPI :
NGround

NGround + Nvegetation
(2)

Features commonly used for allometric relationships include
various statistically-based height features extracted from the non-
ground point cloud, including plant height at various percent
quantiles, mean height, standard deviation of the point cloud
height, coefficient of variation of height, skewness of height,
and Vegetation Complexity Index (VCI) described in Eq. 3
(van Ewijk et al., 2011).

VCI =
(−

∑HB
i=1 [pi × ln(pi)])

ln(HB)
(3)
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FIGURE 9 | Example of Clusters Area Plane (CAP) feature; (A) A typical third quartile of a row and (B) cross section at the third quartile.

FIGURE 10 | Sensitivity analysis: Feature correlation matrix (zero is the lowest
correlation and 1 is the highest correlation).

where HB = total number of height bins, pi=Proportional
abundance ( # of returns

Total # of returns ) in a height bin (i).
A new feature, referred to as the Clusters’ Area Plane (CAP),

which is based on horizontal characteristics of the point cloud
at a given height in a row, was proposed and evaluated in the
study. To obtain the CAP feature, a plane is intersected with the
point cloud within a row at a given height quartile with ±4 cm
thickness of this plate, and the associated points are extracted.
The points are clustered using a region-growing approach based
on the distance between points and the k-nearest neighbors as
follows: the points are represented using a KD tree data structure,
and the k-nearest neighbors to each point are determined within
a defined radius and assigned to the respective clusters. Then,
the clusters with common points are joined, and the cluster
number is updated iteratively until no further changes occur in
the clusters (Figure 8).

Finally, the area of clusters that is larger than a user-defined
threshold is calculated, and the total area is defined as the CAP
feature (Eq. 4).

CAP =
n∑

i=1

Ai (4)

While the feature does not have a direct physical interpretation, it
contains information for predicting LAI based on the horizontal
distribution of the plants within the canopy at a given quartile
(75% with ±4 cm thickness in this study). The CAP feature was
also calculated in other quartiles, e.g., 50% and 25%, but only
the 75% quartile provided statistically significant results for the
data in these experiments. The 50 and 25% quartiles did not
have an adequate number of samples to evaluate the index, both
due to penetration of the canopy and its geometric structure.
Figures 9A,B show a typical example of the CAP feature.

Correlation between features and LAI indicated that LPI has
the highest correlation with LAI, and the CAP feature has the
second-highest correlation with LAI. The correlation matrix in
Figure 10 also indicates that there is significant correlation
between many of the candidate features. For example, the value
of the correlation between the standard deviation of height and
the mean and third quartile height is greater than 0.9.

Regression-Based Predictive Models
Predictive models were developed using SMLR (Johnsson, 1992),
PLSR (Rosipal and Krämer, 2005), and SVR (Feng and Li,
2014). SVR models were investigated with four kernels (linear,
polynomial, RBF, and sigmoid), and their hyperparameters were
obtained via grid search. Eight features were considered as input
variables, including LPI, Height_mean, standard deviation, and
skewness, height (3rd Quartile), VCI, Volume of the vegetation
in a row based on the convex hull of the points, and CAP. In
this study, the training and test data were selected randomly
by 75% training and 25% test. Both replicates of each genotype
variety were randomly assigned to either training or test. Ten-
fold cross-validation was performed on the training set. The
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FIGURE 11 | R2 values for 2020 regression models for LAI estimation (A) SbDivTc_Cal and (B) HIPS; (PR: PhenoRover).

values of R2 for the respective models are reported in the
results section.

LEAF AREA INDEX PREDICTIVE MODEL
RESULTS

The results of the LAI predictive models are included based on
the date and the platform. SMLR, PLSR, and SVR with RBF
kernel models developed for the 2020 sorghum and maize data
are illustrated via bar charts. Figure 11A shows the results for

sorghum datasets. The models had low R2 statistics for the first
two dates acquired by PhenoRover and UAV-1 (0.28 and 0.38
for the SVR model). The primary reason was the small size
of the plants (∼35 and ∼50 cm) for 6/26/2020 and 7/02/2020,
respectively. The measurements from the LAI–2200C acquired
between the rows were also not representative of the true canopy
gap fraction at this height. The values of R2 for the rest of the
dates were consistent throughout the season, even as the plant
heights increased rapidly until flowering. Figure 11B shows the
results for maize datasets. The values of R2 for all dates were
consistent throughout the season and varied from 0.5 to 0.8. The
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FIGURE 12 | Predictions based on SVR RBF models showing R2 values and RMSE at midseason (7/20/2020) before and after removing photosensitive varieties for
three platforms: (A) UAV-1, (B) UAV-2, and (C) PhenoRover.
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results of maize show that the range of R2 in maize is consistant
with sorghum, but generally higher. This is attributed to the
maize experiment being planted less dense than sorghum (maize:
∼75,000 plants/hectare vs. sorghum: ∼200,000 plants/hectare)
and the lower complexity of the plant structure resulting in
greater laser penetration into the canopy later in the season.
The p-value from t-test statistics (0.94) showed that differences
in the mean of R2 values from pairwise comparisons of the
three regression models were not statistically significant at an α

of 0.05. The results also did not indicate significant differences
between the mean of R2 values from pairwise comparisons of
combinations of UAV-1 (VLP 16, flown at 40 m), UAV-2 (VLP
32 flown at 20 m), and the PhenoRover.

The three photoperiod sensitive varieties were removed from
the sorghum dataset, and R2 values of all models were calculated.
The p-value from t-test statistics (0.57) indicated no significant
difference between the mean of R2 obtained using data prior to
and after removing photoperiod sensitive varieties. For example,
the plots of one-to-one comparisons of reference vs. the predicted
values of SVR model from the UAVs and PhenoRover on
7/20/2020 before and after removing the photoperiod sensitive
varieties from the datasets are provided in Figure 12. The
plots show the model of UAV-1 (Figure 12A) and PhenoRover
(Figure 12C) slightly improved in terms of R2, but UAV-2 results
(Figure 12B) were essentially unchanged.

To evaluate the importance of the features, a leave-one-out
procedure was used with the SVR-RBF model, which had the
highest R2 value, and the resulting R2 (R2

new) was calculated
(Eq. 5),

Weight of feature =1−
R2

new
R2

original
(5)

where R2
new is an R2 of the model fit without the feature, and

R2
original is the R2 of the model with all features.

Figure 13 shows the feature importance in the models
developed for the three platforms on July 20, 2020.

Laser penetration index is the most highly ranked feature,
based on the correlation with the plant canopy analyzer data,
and the 2nd and 3rd ranked features are CAP and VCI, both
of which are also indicative of penetration of the canopy.
Additionally, the CAP feature is related to the horizontal
distribution of the canopy, as noted previously. The height-
related features are correlated and individually have a lower
impact on the model, while LPI and CAP represent physically
different characteristics. In complex vegetation such as sorghum,
which is planted at high density and has tillers, many laser
points are concentrated in the upper canopy, and few laser points
penetrate deeper in the canopy.

Although the sensor on the PhenoRover was much closer to
the canopy, typically between 2 and 5 m depending on the date,
and the speed of the PhenoRover was much slower, resulting
in increased point density and penetration of the canopy, R2

values of the models (Figure 11) based on data from PhenoRover,
UAV-1 (flying height 40 m) and UAV-2 (flying height 20 m) were
similar for comparable dates. In most cases, multiple stepwise
linear regression models had the lowest R2 value, and only LPI

FIGURE 13 | Feature weight evaluation using SVR (RBF) on 7/20/2020:
(A) UAV-1, (B) UAV-2, (C) PhenoRover.

and VCI features were significant at α = 0.05. As mentioned
earlier, the R2 value for the SMLR, PLSR, and SVR (with an RBF
kernel) models are generally similar, and the sample mean of the
R2 values over the season are not statistically different by pairwise
comparison in both sorghum and maize.

SUMMARY AND CONCLUSION

In this exploratory study, the capability of discrete return
LiDAR data was investigated for predicting LAIeff. The primary
contribution was to develop statistically significant predictive
models of LAI over two row crops based on physical features
from LiDAR data acquired by multiple platforms during the
growing season. In 2020, UAVs and a wheel-based LiDAR dataset
were collected and analyzed over two different experiments using
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a LAI-2200C plant canopy analyzer. The results based on R2

values indicate that the LiDAR data are capable of estimating
LAI after ∼60 DAS. The R2 results from maize were compatible
with the results from sorghum, and somewhat higher due to
less dense planting and complexity in canopy geometry. LiDAR
data acquired from the UAV-2 with a Velodyne VLP-32C were
higher density, and there was greater penetration of the canopy
compared to UAV-1 with a Velodyne VLP-Puck LITE. This was
due both to the sensor and the lower flight altitude. However, the
R2 values of the resulting models for LAI were not significantly
different. This implies either that the relationship to LAI was
dominated by the upper canopy structure or that the penetration
associated with more beams and lower flying height was not
enough greater to impact the models. Additionally, while the
lower height of the boom on the PhenoRover platform was
expected to provide improved models due to increased density
and penetration, the within-canopy scattering and movement
of plants by the platform, especially later in the season, were
offsetting problems. As the t-test showed, differences in the R2

values of the models obtained for the different platforms and
sensors were not statistically significant. In most datasets, the
UAV–based models had higher R2 values than wheel-based data
in 2020, especially later in the growing season when the complex
scattering between the near range LiDAR and the canopy
appeared to impact the models in both sorghum and maize
experiments. The inclusion of data from sorghum photoperiod
sensitive varieties did not have a significant impact on the results.

The study encountered multiple challenges, including the
limitation of acquiring more wheel-based data subject to weather
and field conditions throughout the season. The more frequent
remote sensing data acquisition and investigation of the plant
canopy analyzer data in 2020 were motivated by the need for
more frequent data acquisitions during the vegetative stages of
the growth cycle when the plants were growing rapidly and
during flowering. The LiDAR data were also impacted by multi-
path effects because of the complexity of plants associated with
plant density and geometry of sorghum. This motivates further
research on denoising approaches. In addition, data encoding
approaches may prove useful as an alternative to traditional

physical structure-based approaches. The study was conducted
in a local environmental condition, and the data were acquired
under consistent weather conditions. However, the impact of
multiple locations, years, different environmental conditions,
soil types, and edaphic factors need to be investigated for the
robustness of the models in the application of transfer learning.
Finally, further studies are also required, including investigation
of other sensor modalities and the sensitivity of the various
methods in providing ground reference data and their impact on
prediction models.
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