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The selection of elite bud-sports is an important breeding approach in horticulture.
We discovered and evaluated a thornless pummelo bud-sport (TL) that grew more
vigorously and was more tolerant to Huanglongbing (HLB) than the thorny wild type
(W). To reveal the underlying molecular mechanisms, we carried out whole-genome
sequencing of W, and transcriptome comparisons of W, TL, and partially recovered
thorny “mutants” (T). The results showed W, TL, and T varied in gene expression,
allelic expression, and alternative splicing. Most genes/pathways with significantly
altered expression in TL compared to W remained similarly altered in T. Pathway and
gene ontology enrichment analysis revealed that the expression of multiple pathways,
including photosynthesis and cell wall biosynthesis, was altered among the three
genotypes. Remarkably, two polar auxin transporter genes, PIN7 and LAX3, were
expressed at a significantly lower level in TL than in both W and T, implying alternation of
polar auxin transport in TL may be responsible for the vigorous growth and thornless
phenotype. Furthermore, 131 and 68 plant defense-related genes were significantly
upregulated and downregulated, respectively, in TL and T compared with W. These
genes may be involved in enhanced salicylic acid (SA) dependent defense and
repression of defense inducing callose deposition and programmed cell death. Overall,
these results indicated that the phenotype changes of the TL bud-sport were associated
with tremendous transcriptome alterations, providing new clues and targets for breeding
and gene editing for citrus improvement.

Keywords: pummelo, bud sport, transcriptome, thornless, huanglongbing, alternative splicing, allelic expression
difference

INTRODUCTION

A bud-sport is a phenotypically distinct part of a plant, frequently observed in woody perennials
(Foster and Aranzana, 2018). Bud-sports usually harbor a limited number of mutations based
on the original plants and retain most of the original traits, making them an excellent
resource for breeding new cultivars. Many bud-sports have been developed into new cultivars in
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several important horticultural plants such as citrus (Usman
and Fatima, 2018), apple (Li et al., 2018), and grape (Xu
et al., 2019). In Citrus, which has a relatively long juvenile
period, the selection of bud-sports has been widely applied
in breeding. The most notable instance is the sweet orange
[Citrus sinensis (L.) Osbeck], in which more than one hundred
cultivars have been selected from bud-sports. Many cultivars
in another economically important cultivar group, grapefruit
(Citrus× paradise Macfayden), were also derived from bud-sport
selections (Uzun et al., 2010).

Bud-sports are a valuable source of new cultivars and
critical materials for studying molecular mechanisms underlying
essential traits. A study on Sicilian blood oranges (C. sinensis)
revealed that the translocation of a retrotransposon affected
the expression of an anthocyanin production activator-encoding
gene, Ruby, and caused the accumulation of anthocyanin in
the fruit (Butelli et al., 2012). Transcriptome profiling has been
widely used to identify the differentially expressed genes (DEGs)
between citrus bud sports and their corresponding wild types.
Studies on late-ripening mutants from sweet orange, clementine
(Citrus × clementina Hort. ex Tan.), and “Wuzishatangju”
(C. reticulata L.) identified tens to hundreds of DEGs at
different developing stages, respectively (Wu J. et al., 2014;
Wang J. et al., 2017; Wang L. et al., 2017; Terol et al.,
2019). Similar studies have also been conducted on an orange-
pericarp pummelo mutant (Guo et al., 2015), a wax deficient
sweet orange mutant (He et al., 2018), a sweet orange mutant
with impaired carotenoid biosynthesis (Romero et al., 2019),
two red flesh sweet orange mutants (Pan et al., 2012; Yu et al.,
2012), and two sweet orange mutants different in citrate content
(Lu et al., 2016).

Pummelo [C. maxima (J. Burman) Merrill] is one of the
economically important species in Citrus. Like most Citrus
species, pummelo has thorny branches during the juvenile stage,
which are believed to protect them from herbivores. In contrast,
new branches grown from mature trees usually have no or much
fewer and shorter thorns. Different early flowering transgenic
plants could be thorny or thornless (Peña et al., 2001; Velázquez
et al., 2016), indicating the pathways controlling the thorn
development and the juvenile period in citrus are only partially
overlapped. We also observed that some 4-year-old seedlings
of sour orange (Citrus aurantium L.) bearing fruits remained
thorny. In contrast, its thornless mutant and other thorny sibling
plants remained in the juvenile state. Thorns are supposed to be
modified lateral branches or axillary buds (Singh, 2019), whose
development is related to the crosstalk between cytokinin and
auxin (Schaller et al., 2015) and other plant hormones. Through
silencing two TCP transcription factor genes, TI1 and TI2, citrus
thorns were successfully transformed into branches (Zhang et al.,
2020). In this study, the thorns were repressed rather than
converted on thornless bud-sport (TL) branches.

When compared to the original plant (W), TL and its partially
recovered mutants with short thorns (T) showed enhanced
tolerance to Huanglongbing (HLB), a devastating disease of
citrus worldwide. HLB has a relatively short-recorded history
of fewer than 200 years (Killiny et al., 2018), and so far, no
HLB-resistant citrus cultivar is commercially available. However,

some citrus species/varieties did display different degrees of
tolerance (Manjunath et al., 2008; da Graça et al., 2016) and
higher expression levels of basal defense-related genes (Wang
et al., 2016), and typical plant defense responses, such as
callose deposition, were observed in Las-infected citrus leaves
(da Graça et al., 2016; Wang N. et al., 2017). Many efforts
have been carried out to breed HLB resistant/tolerant citrus
cultivars both by the citrus industry and scientific communities
(Wang, 2019), and the selection of HLB tolerant citrus is
considered an important approach. Moreover, a comparison of
bud-sports with enhanced HLB tolerance/resistance with their
maternal lines will unravel the molecular mechanisms of HLB
tolerance/resistance in citrus.

In this study, to unravel the underlying molecular
mechanisms of the phenotypical differences among
the three pummelo genotypes (W, TL, and T), we
compared their gene/pathway expression, alternative
splicing, and allelic expression through transcriptome
profiling and genotyping by genome sequencing. Several
genes putatively underlying the thornless mutation were
identified, and their expression was quantified in similar
bud-sports from two other Citrus species, grapefruit
and sour orange.

MATERIALS AND METHODS

Plant Materials
A relatively tolerant seedling of C. maxima (J. Burman) var.
“Mato Buntan” (accession no. PI 5359398) was selected via
inoculation by hot psyllid that carried high titers of Candidatus
Liberibacter asiaticus (Las) in the USHRL greenhouse, Fort
Pierce, FL. The infected plant displayed asymptomatic to very
mild symptoms though it carried high Las titers with Ct = 24.5.
Branches from the HLB tolerant seedling (wild type, W) were
grafted on sour orange rootstocks after treatment with ampicillin
and streptomycin, as described by Zhang et al. (2012). The
plants were maintained in the greenhouse, and a thornless bud-
sport was observed 18 months after grafting. The thornless
bud-sport was further propagated using bud-grafting, from
which both thornless plants (TL) and partial thorn-recovery
plants (T) were obtained. We also selected two thornless bud-
sports from a 3-year-old Duncan grapefruit (Citrus × paradisi
Macfad. var. Duncan) seedling and a common sour orange
(Citrus× aurantium L. var. Amara Engl.) seedling with relatively
higher HLB tolerance than their mother plants. The seedlings
of these two mutants were surveyed for gene expression
confirmation via qRT-PCR.

Evaluation of HLB Resistance/Tolerance
Clones of W, T, and TL were evaluated for HLB
resistance/tolerance via graft inoculation using an aggressive
Las isolate in an insect-proof greenhouse. The Las titer was
quantified with qPCR using the 16S rDNA primer and probe
(Li et al., 2006). Las quantification by qPCR was performed in
triplicate for each propagated plant and repeated every 6 months
since inoculation.
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RNA Extraction and Transcriptome
Sequencing
Newly expanded leaves from 3 W, 3 TL, and 4 T clonal
plants were subjected to RNA extraction and RNA-seq. Another
two transcriptomes (WT and TT) were sequenced using RNA
extracted from thorns of W, and T. Total RNA was extracted
from the leaves or thorn barks using the RNeasy Plant Mini
Kit (Qiagen Inc., Valencia, CA) following the manual. The
RNA concentration and quality were assessed by NanoDrop
ND-1000 spectrophotometer, and concentration ≥ 250 ng/µL,
OD260/OD280 = 1.8∼2.2, and OD260/OD230 ≥ 2.0 were
required. More than 20 µg RNA of each sample was sent to
BGI (Beijing Genomics Institute) Genomics (Shenzhen, China),
which carried out poly-A selection of mRNA, pair-end library
construction, and high-throughput sequencing on HiSeq2000
(Illumina, San Diego, CA) sequencing machine. More than 5 Gb
sequencing reads were obtained for each sample.

Differential Expression Analysis on the
Transcript and Gene Levels
The quality of sequencing reads was examined by FastQC
v0.11.8,1 after which Trimmomatic v0.38 was applied in read
cleaning (Bolger et al., 2014). Adapters and low-quality read ends
(average base quality < 15) were trimmed from reads. Sequencing
reads including ≥ 5% ambiguous bases (N) were discarded.

A strategy based on both assembly and mapping (Pertea et al.,
2016) was used to enhance the gene structure annotation of
the pummelo reference genome (Wang X. et al., 2017). The
reads from the 12 transcriptomes were mapped to the same
haploid pummelo genome used in the variant analysis by HISAT2
v2.1.0 (Kim et al., 2015). The obtained RNA-seq alignments
were further assembled into potential transcripts using StringTie
v1.3.4 (Pertea et al., 2015), and gene structures were inferred
from all the 10 assemblies, which were merged with the gene
structure annotation of the pummelo reference (Wang X. et al.,
2017) by StringTie v1.3.4 to generate one merged gene structure
annotation. Statistics on novel genes and transcripts were carried
out by comparing the merged gene structure annotation with
the reference gene structure annotation using gffcompare in
StringTie v1.3.4. The longest transcripts of the novel genes were
further aligned to the transcript sequences annotated in theCitrus
sinensis (Xu et al., 2013) and Citrus clementina (Wu G. A. et al.,
2014) reference genomes via blastn. Genes or transcripts with
targets sharing ≥ 95% nucleotide similarity, ≥ 50% alignment
coverage of the queries, and E-value ≤ 1E-3 were recognized as
annotated in the reference genomes.

Based on the merged annotation, the transcriptomes were
compared pairwise among W, TL, and T at the gene and
transcript (gene isoform) levels. The expression of transcripts
was estimated by StringTie v1.3.4 using the acquired RNA-
seq alignments. Data normalization and statistical analysis on
transcript levels were processed by R package ballgown v3 (Frazee
et al., 2015). For gene-level analysis, the raw read counts per
gene were calculated using Salmon v0.11.3 (Patro et al., 2017)

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

and Tximport v1.12.1 (Soneson et al., 2015). Gene read count
was normalized using the median of ratios method (Love et al.,
2014). The Wald test for the generalized linear model (GLM)
coefficients was applied in the differential expression test using
DESeq2 v1.28.0 (Love et al., 2014).

Gene expression correlation analysis, principal component
analysis (PCA), and hierarchical clustering were carried out
among the 12 transcriptomes using Pivot v1.0.0 (Zhu et al., 2018).
In hierarchical clustering, Euclidean distance was calculated
based on log10 (Normalized gene read counts), and the Ward.D2
method was applied in agglomeration.

Allelic Expression Difference (AED)
Analysis
Long-read sequencing of whole-genome DNA was applied to
detect exonic heterozygous variants in W. The genomic DNAs
were extracted from the leaves of W using the DNeasy Plant
Mini Kit (Qiagen Inc., Valencia, CA). The quality of the DNAs
was measured using NanoDrop ND-1000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA) and agarose gel
electrophoresis. Library construction and sequencing on the
PacBio RS II system (Pacific Biosciences, Menlo Park, CA)
was carried out by Yale Center for Genome Analysis (YCGA,
CT, United States).

Two different methods were applied to identify SNVs
(Single nucleotide variants) based on the sequencing reads. The
published haploid pummelo genome was used as a reference
in both methods. We first used the Resequencing Application
implemented in SMRT Analysis v6.0.0 (Pacific Biosciences,
Menlo Park, CA) for variation identification. Pbalign v0.4.1
was used for mapping the reads to the reference genome, and
then arrow v2.3.3 was applied to call both heterozygous and
homozygous variants with the option “diploid.” In the second
method, the subreads were transformed into fastq by SMRT
Analysis v6.0.0 and mapped to the reference by Minimap2
v2.17 using Pacbio read mode (Li, 2018). Variant calling was
performed by the UnifiedGenotyper algorithm in GATK v3.8
(McKenna et al., 2010), using the parameters suggested by
Carneiro et al. (2012). Then, variants detected by both methods
were identified as high-quality variants for further analysis. Based
on the acquired gene structure annotation, heterozygous exonic
SNVs were output by Bedtools 2.28 (Quinlan and Hall, 2010) and
applied in allelic expression analysis.

Based on the BAM files from mapping RNA-seq reads to
the reference in the previous step, allelic read counts were
output on all exonic SNVs using the ASEReadCounter command
in GATK 4.1.2.0 (McKenna et al., 2010). The reference allelic
expression ratio was calculated by dividing the reference allelic
count on an SNV by the total local read count (the sum of
reference and alternative allele read counts). Repeated G-tests of
Goodness-of-Fit test2 were carried out to check the alleles on
each SNV were expressed at the same ratios within each group
and among different groups (W, TL, and T). When both pooled
G-test p-value and total G-test p-value were ≤ 0.001, the allelic
expression was considered significantly different.

2https://rcompanion.org/rcompanion/b_09.html
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Enrichment Analysis of Differentially
Expressed Genes on Metabolic
Pathways and Functional Categories
Gene Ontology annotation of all the expressed genes was carried
out by Blast2GO v5.2.1 (Götz et al., 2008). Fisher’s exact test
was applied to test for significantly (FDR < 0.05) enriched GO
terms in biological process, molecular function, and cellular
component. The general enriched GO terms were removed using
Blast2GO v5.2.1 if a more specific term existed.

Gene set enrichment analysis (GSEA) was carried out using
GSEA v4.0.3 (Subramanian et al., 2007). We obtained the
gene sets from KEGG pathways, the WikiPathway database,
and the PMN database (Schläpfer et al., 2017). The orthologs
of all pummelo genes were identified in Arabidopsis thaliana
proteins (Lamesch et al., 2012) and Citrus clementina genes (Wu
G. A. et al., 2014) through searching for the best hit using
blastx or blastn, and ≥ 50% alignment coverage and ≤ 1E-3
E-value were required.

Corresponding protein sequences of all plant disease
resistance genes (R genes) were downloaded from PRGdb 3.0
database (Osuna-Cruz et al., 2018). All pummelo genes were
searched against the database using blastx, and any gene that
had a blastx hit with E-value ≤ 1E-3 and ≥ 50% coverage of the
target was considered as a putative R gene. The putative R genes
in our gene set were output in FASTA format and submitted to
Drago 2 server (Osuna-Cruz et al., 2018), which searched the
leucine-rich region, kinase domain, nucleotide-binding region,
Toll-interleukin region, coiled-coil, and transmembrane domain
with HMM modules. Based on the results, the R genes were
classified according to the domain combinations (Osuna-Cruz
et al., 2018). Other plant defense response genes were obtained
through their GO annotation.

RT-qPCR Quantification of Gene
Expression
cDNA synthesis was performed with oligo (dT) primers using
the M-MLV reverse transcriptase system (Promega Corporation,
Madison, United States) according to the manufacture’s
instructions. A 20 µL reaction was applied in qPCR, including
10 µL of 2 × FAST SYBR Green Master Mix (Quanta Bio)
reagent and 2 µL of DNA template. The following standard
thermal profile was used for all amplifications: 95◦C for 5 min,
followed by 40 cycles of 95◦C for 3 s and 60◦C for 30 s. Primer
sequences are listed in Supplementary Table 1, and ACT2 and
GAPDH primers from the study of Mafra et al. (2012) were used
as reference genes. Reactions were performed in triplicate, and
the 2−11 Ct method was used to calculate relative expression as
described by Pitino et al. (2015).

RESULTS

Phenotype Difference Among the
Analyzed Pummelo Genotypes
Among the three analyzed genotypes, the thornless genotype
(TL) was obtained from a bud mutation of the original seedling

(wild type, W) in Figure 1A. The partially recovered thorny
genotype (T) was derived from the bud propagations of TL with
a ∼50% ratio (14 of 30). The difference in phenotype was mainly
found in two aspects among W, T, and TL (Figures 1B,C). The
first is the thorn length. W and T branches are thorny, while
the TL plants are thornless. However, there was a significant
difference in the thorn length between W and T. The latter
had a 65% reduction compared with the wild type. The second
difference is in the growing vigor of the bud-sport. As shown in
Figure 1B, T and TL grew more vigorously than W. All the three
genotypes have shown high HLB tolerance in our tests compared
with the other original pummelo sibling seedlings. In our HLB
tolerance/resistance tests, at 6 months after inoculation with a
highly virulent Las isolate, no typical HLB symptom but only
slight growth retardation was observed on TL and T (Figure 1D).
However, on the tested non-tolerant grapefruit and W seedlings,
severe symptoms (yellow shoots) and mild symptoms were
observed, respectively. The RT-PCR results showed that the titers
of Las bacteria were not significantly different between W and
T or TL, but were significantly lower (p < 0.05 by t-test) than
those in grapefruit.

Novel Transcript and Gene Discovery
From RNA-Seq Data
We carried out RNA-seq on 10 leaf samples from 3 W, 3 TL,
and 4 T clonal plants and two thorn samples (WT and TT)
from W and T. An assembly-based strategy was applied to
discover novel genes and transcripts absent in the reference
annotation. 4,165 putative novel gene loci and 38,825 putative
novel transcripts were identified from the 12 transcriptomes
(Supplementary Table 2), which increased the number of
analyzed genes and transcripts by 14.1 and 89.2% compared to
the pummelo reference (Wang X. et al., 2017) gene models.
Of the 4,165 putative novel gene loci, 1,133 were present in the
gene annotation of Citrus sinensis (Xu et al., 2013) or Citrus
clementina (Wu G. A. et al., 2014). Among the rest 3,032 loci,
1,303 had homologous proteins in the NCBI nr database, while
the remaining 1,729 could be genes specific in Citrus (maxima)
or non-coding RNAs. On average, each expressed gene had
1.14 novel transcripts detected in this study. Among the novel
transcripts, 33,423 belonged to genes annotated in the reference
genome, and the rest 4,830 belonged to the 4,165 novel gene loci.

Transcriptome Profiling and Clustering
Gene expression correlation analysis showed that intra-group
transcriptomes generally had a higher Pearson correlation
coefficient than inter-group transcriptomes, except for the T leaf
transcriptomes. As shown in Supplementary Figure 1, T3 and T4
had higher correlation coefficients with most TL transcriptomes
than T1 and T2. The W and TL leaf transcriptomes were clustered
into separate clades by hierarchical clustering (Figure 2A), and
the two thorn transcriptomes (TT and WT) were clustered
together. The four T leaf transcriptomes clustered with the TL
clade, and both T3 and T4 were closer to TL leaf transcriptomes
than T1 and T2 (Figure 2A).
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FIGURE 1 | Pummelo thornless bud-sport selection and evaluation. (A) Asymptomatic HLB-tolerant Mato Buntan seedling (wild type W) with CT = 24.5 1 year after
Las inoculation. (B) Comparison of the growth of W (left) and thornless bud-sport (red arrow). (C) The branches of W, T, and TL. (D) The HLB-tolerant mutants (TL
and T) in the left show growth retardation, while the susceptible grapefruit plants on the right showed typical yellow shoot symptoms 12 months after inoculation with
an aggressive Las isolate.

In PCA, 11 principal components (PC) explain ∼100% total
variability of the transcriptomes (Supplementary Figure 2). The
first two components PC1 and PC2 accounted for 51.9% of the
total variance. On PC1 (28.3% of total variance), the distribution
of leaf transcriptomes was mainly explained by the origin
relationship among W, TL, and T (Figure 2B). PC2 (23.6%) could
mainly be explained by the thorn-related phenotype difference.
Since the two thorn transcriptomes, WT and TT, lay below all
the leaf transcriptomes, and W1-3 and T1-4 lay below TL1-
3 (Figure 2B).

Differentially Expressed Pathways in the
Bud Sports
Among pairwise comparisons, 3,496 and 4,057 differentially
expressed genes (DEG) were identified between W and
TL and between TL and T, respectively (Supplementary

Figure 3). Interestingly, the most DEGs (6,378) were
detected between W and T. A majority of DEGs
between TL and W (2290/3496) remained significantly
upregulated or downregulated in T compared with W
(Supplementary Figure 3).

Gene ontology (GO) and pathway enrichment analysis
revealed multiple pathways with significant expression alteration
in W to TL transition. Compared with W, 204 GOs/12 pathways
and 43 GOs/2 pathways were significantly (FDR < 0.05) over-
represented for genes upregulated (1,995) and down-regulated
(1,519) in TL, respectively (Supplementary Table 3). Multiple
upregulated pathways were related to photosynthesis (Figure 3A,
Supplementary Figure 4, and Supplementary Table 3). The
down-regulated pathways included the cell wall biogenesis
and several other pathways (Supplementary Figure 5A and
Supplementary Table 3).
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FIGURE 2 | Clustering of the transcriptomes. (A) Hierarchical clustering and gene expression heatmap. In the heat map, each row represents a gene, and each
column represents a transcriptome. The clustering trees based on transcriptomes and genes are shown on the top and to the left of the heat map. In the left top
legend, the horizontal axis denotes the normalized expression values of genes, and the vertical axis shows the normalized frequency of genes at the different
expression levels. (B) Distribution of samples along PC1 to 4 from the principal component analysis.

Compared to TL, 84 GOs/9 pathways, and 15 GOs/6
pathways were significantly over-represented for the upregulated
and downregulated genes in T, respectively. Genes involved
in cytokinin signaling, response to auxin, salicylic acid
(SA) metabolic process regulation, anatomical structure
development, cell cycle regulation, and several cell wall
metabolism-related pathways were enriched in upregulated
genes in T (Supplementary Table 3). Several processes down-
regulated in TL (compared with W) were upregulated in T
(compared with TL), including secondary cell wall biosynthesis,
xyloglucan biosynthesis, carbohydrate biosynthetic process,
lipid metabolism, and lignin metabolism (Figure 3B and
Supplementary Figure 6). A few GO terms and pathways were

also down-regulated in T compared with TL (Supplementary
Figure 5B and Supplementary Table 3).

DEGs and Pathways Putatively
Responsible for the Thornless Mutation
Because both W and T are thorny while TL is thornless,
common DEGs between TL and both W and T may
be responsible for the thornless mutation. Accordingly, we
identified 293 upregulated and 397 down-regulated DEGs in
TL compared to W and T (Supplementary Table 4). The
upregulated and downregulated genes were distributed in
multiple functional categories (Supplementary Figure 7), and
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FIGURE 3 | Enriched GO terms from the comparative transcriptomic analysis. Significantly enriched GOs in genes upregulated in TL compared with W (A) and those
upregulated in T compared with TL (B). The bars denote the proportion of genes (the left vertical axis) with each GO in the tested gene sets, and the black dots
indicate the –log10 (p-value of enrichment test) (the right vertical axis) of each GO.
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both included a response to stimulus, including phytohormones
and transcription factors. The transcription factors differentially
expressed in TL mainly were related to phytohormone or
involved in secondary cell wall biogenesis (Supplementary
Table 4). The expression levels of the genes mentioned in this
section below have been shown in Supplementary Figure 8.

We identified 1 upregulated and 7 down-regulated auxin-
related DEGs in TL compared to W and T (Supplementary
Table 4). PIN5 (auxin efflux carrier component 5, Cs6g02450)
was upregulated in TL, while two other auxin transporter
genes, LAX3 (auxin transporter-like protein 3, Cg3g016080)
and PIN7 (auxin efflux carrier component 7, Cs1g26700), were
significantly down-regulated. The rest down-regulated genes
included PTL (trihelix transcription factor, Cg2g035410), IAA16
(auxin-responsive IAA16, Cs4g17050), YUC2 (Indole-3-pyruvate
monooxygenase YUC2, Cs4g15810), PLC2 (phosphoinositide
phospholipase C 2, Cs7g31080), and SAUR78 (small auxin
upregulated RNA 78, Cs5g15740). Five cytokinin-related genes
were differentially expressed in TL compared to both W and T.
Among them, CYP735A1 (cytokinin hydroxylase, Cg6g019610)
was significantly upregulated in TL. LOG5 (cytokinin riboside
5′-monophosphate phosphoribohydrolase, Cs3g27020), ZOG1
(zeatin-O-glucosyltransferase, Cs7g32210), CYCD3 (Cyclin-D3-
1, Cg3g020940), and AHK2 (Histidine kinase 2, Cs4g02460) were
significantly down-regulated in TL.

Eleven secondary cell wall biogenesis-related genes were
significantly down-regulated in TL compared with both
W and T. Moreover, all the 11 genes were expressed
at lower levels in leaf transcriptomes than in the thorn
transcriptomes. Five of them were transcription factors,
including four NAC domain-containing transcription factor
genes, SND1 (secondary wall-associated NAC domain
protein 1, Cs5g01350), SND2 (secondary wall-associated
NAC domain protein 2, Cs2g16190), NST1 (NAC secondary
wall thickening promoting factor 1, orange1.1t00561), and
VND1 (vascular-related NAC-domain, Cs1g25100), and
MYB42 (MYB domain-containing transcription factor
42, Cg5g008830). The remaining six genes include two
fasciclin-like arabinogalactan protein-encoding genes FLA11
(Cg6g002120) and FLA12 (Cg8g020560), two UDP-glucuronate:
xylan alpha-glucuronosyltransferase encoding genes GUX1
(Cs1g05500) and GUX2 (Cs3g23600), IRX9 (beta-1,4-
xylosyltransferase, Cg6g002620), and CTL2 (chitinase-like
protein 2 gene, Cg9g001540).

Differentially Expressed Plant Defense
Genes Among the Genotypes
A total of 3,110 plant defense-related genes, including 1,594
putative R genes, were identified in the pummelo genome
through bioinformatic analysis. Since no difference in HLB
tolerance was observed between TL and T and both were more
tolerant than W, common DEGs in TL and T compared to
W may contribute to the higher HLB tolerance. Among the
defense-related genes, 221 and 365 were significantly upregulated
in TL and T compared with W, respectively, and 131 were
upregulated in both of them (Supplementary Table 5). Besides,

125 and 295 plant defense-related genes were down-regulated in
TL and T, respectively, and 68 down-regulated in both of them
compared with W (Supplementary Table 5). The expressions of
the genes mentioned below in this section have been shown in
Supplementary Figure 9.

Four positive regulators of SA-dependent defense were
significantly upregulated in both TL and T (Yang et al.,
2008; Birkenbihl et al., 2017), including WRKY70 (Cs7g29570),
CDR1 (constitutive disease resistance 1, Cg6g008170), and two
citrus orthologs (Cs1g23170 and Cs7g27540) of the Arabidopsis
methylesterase 1 gene (MES1). Two negative regulators of SA
-dependent plant defense (von Saint Paul et al., 2011; Liu
et al., 2015), UGT76B (UDP-Glycosyltransferase superfamily
protein UGT76B1, Cg7g000350) and WRKY33 (Cg6g009940),
were significantly down-regulated in both TL and T.

There were several DEGs related to the pathogen-associated
molecular pattern (PAMP)-triggered immunity (PTI) and (or)
effector-triggered immunity (ETI). Ten receptor-like kinases
of PTI, including six cysteine-rich receptor-like protein genes
(CRKs) and four L-type lectin-domain containing receptor kinase
genes (LECRKs), were significantly upregulated in both TL and
T (Supplementary Table 5). Eight resistance (R) genes involved
in ETI were upregulated in both TL and T (Supplementary
Table 5). Several genes involved in PTI or ETI were significantly
down-regulated in TL and T, including ACS6 (Cg5g002190),
OST1 (Cs5g07700), and SPL6 (Cs5g12260).

Defense induced callose deposition and cell-death were most
likely suppressed in TL and T. MLO (MLO-like protein gene,
Cs7g27330), a suppressor of callose deposition and second
oxidative burst of cell-death in plant defense response (Kusch
et al., 2019), had 46.4- and 29.8-fold expression abundance of W
in TL and T, respectively, and was the most highly upregulated.
Several genes putatively involved in defense-induced callose
deposition and programmed cell death (Takahashi et al., 2003;
Shindo et al., 2012; D’Ambrosio et al., 2017; Liu et al., 2017)
were significantly down-regulated in TL and T, including PLC2
(Cg8g024170), HSP90-1 (Cg5g002260), two orthologs of EP3
(Cg5g026680 and Cg5g026650), and RD21A (Cs3g23180).

qPCR Quantification of DEGs in Other
Thornless Citrus Genotypes
We also identified two thornless mutants with relatively
higher HLB tolerance in another two Citrus species, grapefruit
(C. × paradisi var. “Duncan”) and sour orange (C. × aurantium
L.) (Supplementary Figure 10). qPCR quantification was
executed on 15 candidate DEGs between W and TL in all the
selected lineages. As shown in Figure 4A, 12 of the 15 genes
showed consistent upregulated and downregulated patterns
between RNA-seq and qPCR analyses for TL. The gene expression
changes in thornless Duncan grapefruit (DC) were highly similar
and significantly correlated with those in TL, while sour orange
(SO) was more different (Figure 4).

Genes with similar expression alterations in different thornless
mutants were probably related to thorn development or
higher HLB tolerance. Two genes, SEP2 (Developmental
protein SEPALLATA 2, Cg7g016020) and EXPA1 (expansin-A1,
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FIGURE 4 | Expression of DEGs in more Citrus thornless bud-sports. The RNA-seq and qPCR results for the thornless pummelo bud-sport were shown as TL and
PU, respectively. The qPCR results for Duncan grapefruit (DC) and sour orange (SO) were shown in the graphs. Single and double asterisk(s) indicate statistical
significance at p < 0.05 and p < 0.001 levels, respectively. (A) Expression of 15 genes in bud-sports compared with their corresponding original types. The values in
the cells were log2(expression value in bud-sport/expression value in original type) for RNA-seq and – 11Ct for qPCR. (B) Correlation of gene expression on the 15
genes among the citrus genotypes.

Cg7g021320), were significantly upregulated in all three thornless
genotypes. PYR1 (abscisic acid receptor PYR1, MSTRG.23529)
and SAG21 (senescence-associated gene 21, Cg1g013170) were
significantly upregulated in TL, PU, and DC, while LAX3
(auxin transporter-like protein 3, Cg3g016080) and CYCD3
(CYCLIN D3, Cg3g020940) were significantly down-regulated
in them. A SAUR-like auxin-responsive protein family gene
(CgUng005460) and EXPA4 (expansin A4, Cg8g022540) were
both upregulated in TL, PU (qPCR results for TL), and SO.

Change in Alternative Splicing in
Bud-Sports
Gene alternative splicing was widely observed in the
transcriptomes. At least two transcripts were detected on
48.1–49.2% of the expressed genes in the transcriptomes
(Supplementary Figure 11). The proportions of genes with
different numbers of transcripts detected were highly similar
among the transcriptomes.

G-test of independence was performed to test the hypothesis if
the transcript expression ratio was consistent within each group.
The null hypothesis was rejected (p < 0.001) for 85.2—87.5% of
transcripts within each of the three leaf-transcriptome groups,
TL, W, and T (Supplementary Figure 11). The test was also
carried out between the two thorn transcriptomes, WT and TT,
and the null hypothesis was rejected for the majority (67.0%)
tested transcripts. These results suggested that the expression
ratios of most transcripts were distributed in a specific range
rather than at a fixed ratio.

We carried out a pairwise comparison on transcript
expression ratio among W, TL, and T. The results showed that
the expression ratio of the transcript was significantly different
(p < 0.001) for 77 (belonging to 64 genes), 70 (58), and 178

(146) transcripts between W and TL, T and TL, and T and W,
respectively (Supplementary Table 6). For instance, on ARF6
(auxin response factor 6, Cs2g09440.1), the 4th transcript had a
higher expression ratio (p= 0.077) in W than TL, while the 3rd
transcript was expressed significantly higher (p = 3.6e-7) in T
than in W (Figure 5). The 2nd transcript of BAT1 (bidirectional
amino acid transporter 1, Cs2g24220) was expressed at a
significantly (p < 0.001) lower ratio in TL than in T, W, WT, and
TT (Supplementary Figure 12).

Allelic Expression Difference (AED)
Among the Transcriptomes
Based on whole-genome sequencing of W, a total of 1,749,437
high-quality SNVs were detected, of which 1,007,731 were
heterozygous, and 738,319 were homozygous. In allelic
expression difference (AED) analysis, 287,115 heterozygous
exonic SNVs were applied.

The overall distribution of the reference allelic expression
ratios was highly similar among the different transcriptomes
(Figure 6A). The null hypotheses that both alleles were expressed
at the same level were rejected (p< 0.001) only for a small
percentage (≤ 3.2%) of the tested SNPs, suggesting that the
allelic expression ratios for most SNPs were stable within
each transcriptome group. Pairwise tests among the three leaf-
transcriptome groups were implemented to detect inter-group
AEDs. As shown in Figure 6B, AEDs (p< 0.001) were identified
between W and TL, W and T, and TL and T for 1067, 1263, and
782 SNVs, respectively, located in 602, 647, and 433 genes. The
433 genes on which AED was observed on at least two SNVs
between at least two genotypes were listed in Supplementary
Table 7. For 25 genes, significant AED was observed on at
least 2 SNVs between TL and both W and T (Figure 6C), and
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FIGURE 5 | Expression of ARF6 at the transcript level in the 12 transcriptomes. For each transcriptome, the expression quantities of the four different transcript
forms have been indicated by the color depth of the rectangles (exons) connected by dashed lines (introns) in the box.

on 66 genes, it was observed between W and both TL and T
(Supplementary Table 7).

DISCUSSION

Pummelo seedlings are derived from mono-embryonic seeds.
In this study, we first identified an HLB tolerant pummelo
seedling and then discovered a thornless bud sport from the
grafted clonal plants of the seedling. We also found similar
thornless bud sports from HLB tolerant Duncan grapefruit and
sour orange seedlings, respectively, at the middle of their juvenile
stage (Supplementary Figure 10). The correlation between HLB
tolerance and thornless mutation may provide new clues for
future selection and evaluation of a bud sport aimed at citrus
improvement, including HLB tolerance/resistance. Therefore, we
further conducted a comprehensive transcriptome comparison
and unraveled the potential molecular mechanisms conferring
the phenotypical changes of the bud sports, TL and T.

The changes in the transcriptomes of TL and T occurred in
multiple aspects. This study showed that there were thousands of
DEGs, hundreds of genes with differential allelic expression, and
tens of genes with different alternative splicing among W, TL,
and T. Allelic expression patterns have long been known to be

important in the development and associated with phenotypes in
parent-of-origin effects in both animals and plants (Lawson et al.,
2013). They also are correlated with environmental variables
and associated with some human diseases (McKean et al., 2016;
Knowles et al., 2017). Alternative splicing plays an essential role in
protein function/interaction and eukaryote development (Yang
X. et al., 2016). This study has confirmed their wide existence
between bud-sports and the original plants. Though the impact
of AEDs and alternative splicing have not been revealed in citrus,
they could have played essential roles in its phenotypic diversity.

Genes with full or partial recovered expression in T were the
most likely responsible for the TL-specific thornless phenotype.
Thorns are modified lateral branches on citrus shoots that grow
from lateral buds (Zhang et al., 2020). Crosstalk between auxin
and cytokinin, especially polar auxin transport, has been known
to play a determinant role in lateral bud activation (Müller and
Leyser, 2011), a precondition for thorn development. In this
study, a few auxin- and cytokinin-related DEGs were identified
between TL and both W and T, including three polar auxin
transporters, PIN5, PIN7, and LAX3. PIN5 has been reported
to be located at the endoplasmic reticulum and involved in
intracellular auxin transport in Arabidopsis (Mravec et al.,
2009). PIN7 mediates cell to cell auxin transport in Arabidopsis
and is involved in auxin export during shoot branching
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FIGURE 6 | Allelic expression difference (AED) in the pummelo genotypes. (A) Reference allelic expression ratio distribution on heterozygous exonic SNVs in the 12
transcriptomes. (B) Number of SNVs with significant AED in W, TL, and T and their overlapping relationship. (C) Allelic expression ratio on 25 genes in which
significant AED was observed between TL and both W and T. Each of the black and white rectangle represents a gene on top of the three panels, and each bin in
the bar graphs represents an SNV. The vertical axis denotes the allelic expression ratio. Reference allelic expression and alternative allelic expression are represented
by dark and light colors in the three panels.

(van Rongen et al., 2019). LAX3, which is necessary for lateral
root primordia origin in Arabidopsis through regulating cell
wall remodeling (Porco et al., 2016), was significantly down-
regulated in TL compared with leaf and thorn transcriptomes
from W and T, and it was also significantly downregulated
in the thornless Duncan grapefruit. Cell wall remodeling is
an important regulator of meristem morphogenesis and is
involved in initiating different plant organs (Yang W. et al.,
2016). In this study, cell wall biogenesis and modification-
related genes/pathways were generally downregulated in TL.
These results suggested the thorn bud activation on TL branches
could have been disturbed by altered auxin transport and cell
wall metabolism.

The high HLB tolerance in TL and T could be partially
derived from the enhanced SA-dependent defense response.
In citrus, SA-dependent defense is positively correlated
with HLB tolerance (Oliveira et al., 2019; Zou et al., 2019),
and SA-dependent systematic acquired resistance (SAR)
has been suggested to improve HLB tolerance in citrus

germplasms (Manjunath et al., 2008; Hu et al., 2018).
Several positive regulators of SA-dependent defense have
been reported to be significantly upregulated in HLB tolerant
citrus accessions, including PtCDR2, PtCDR8 (Rawat et al.,
2017), and CDR1 (Albrecht and Bowman, 2012). In TL
and T, four positive regulators of SA-dependent defense
response, including CDR1 were significantly upregulated,
and two negative regulators were significantly down-
regulated compared with W, implying the SA-dependent
defense was enhanced.

Repression of callose deposition in the phloem could have
enhanced HLB tolerance in TL and T. Though callose deposition
is an important defense response in plants, it has not worked
efficiently to block Las due to the slow response. Callose
deposition caused by Las infection has been hypothesized to
induce sieve pore blockage and starch accumulation in the
leaves, and unplugging the phloem has been proposed to relieve
HLB symptoms (Achor et al., 2020). Anatomical comparison
between HLB susceptible and tolerant citrus accessions showed
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that cellulose deposition, phloem cell collapse, and starch
accumulation were observed in HLB susceptible citrus, but not
in an HLB-tolerant rough lemon (Fan et al., 2012). In this
study, a repressor (MLO) of programmed cell death and callose
deposition was significantly upregulated in both TL and T. In
contrast, several genes positively related to programmed cell
death and callose deposition were significantly down-regulated
as shown in the results section, indicating repression of callose
deposition could have contributed to their high HLB tolerance.

CONCLUSION

In conclusion, we identified thornless bud-sports from pummelo,
grapefruit, and sour orange seedlings in the middle of their
juvenile stage. These individuals were selected as they were
more HLB-tolerant in the psyllid- or graft-based evaluation. The
transcriptome analyses of these thornless mutations revealed
many differences in gene expression, allelic expression, and
alternative splicing, though these bud-sports were derived from
asexual propagation. Furthermore, the identification of thornless
and HLB-tolerance-related genes may provide new clues and
targets for breeding and gene editing for citrus improvement.
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