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Efficient and accurate methods of analysis are needed for the huge amount of biological

data that have accumulated in various research fields, including genomics, phenomics,

and genetics. Artificial intelligence (AI)-based analysis is one promising method to

manipulate biological data. To this end, various algorithms have been developed and

applied in fields such as disease diagnosis, species classification, and object prediction.

In the field of phenomics, classification of accessions and variants is important for basic

science and industrial applications. To construct AI-based classification models, three

types of phenotypic image data were generated from 156 Brassica rapa core collections,

and classification analyses were carried out using four different convolutional neural

network architectures. The results of lateral view data showed higher accuracy compared

with top view data. Furthermore, the relatively low accuracy of ResNet50 architecture

suggested that definition and estimation of similarity index of phenotypic data were

required before the selection of deep learning architectures.

Keywords: artificial intelligence, deep learning, classification model, phenotypic analysis, Brassica rapa

(Brassicaceae)

INTRODUCTION

One of the major features of modern science is convergent analyses using heterogeneous
technologies from multiple and independent fields to analyze huge amounts of data. To
manipulate these data, artificial intelligence (AI) technology has come into the spotlight.
Deep learning is a type of AI that uses computer algorithms based on artificial neural
networks (ANNs), which mimic the principles and structure of human neural networks to
emulate human cognitive processes (Chauhan et al., 2018). In an ANN, artificial neurons
(nodes) combine synapses to form a network and strengthen synapses through learning,
thus acquiring problem-solving capabilities. An ANN consists of three major components:
an input layer that receives data, an output layer that presents the results of analysis, and
hidden layers that exist between the input and output layers. To construct an analytic
model that uses deep learning, the numbers of nodes and hidden layers must be specified.
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Research has shown that the outcome of machine learning can
be improved by increasing the number of hidden layers in the
model. A machine learning method with two or more hidden
layers is referred to as a deep neural network (DNN).

An ANN consisting only of a single fully connected layer,
called a “fully connected neural network,” is usually used for
image analysis with one-dimensional input data, which requires
the dimensionality of the data to be reduced from three to one.
This results in a lack of information for the AI neural network
to use in extracting and learning features, resulting in limited
accuracy. To overcome the limitations of the fully connected
neural network, a different model called the convolutional neural
network (CNN) was developed for the analysis of image or video
data. A CNN consists of two layers: a convolutional layer and a
pooling layer (Lecun et al., 1998). The convolutional layer is a
prerequisite that reflects the activation function after applying a
filter to the input data. The pooling layer is used to reduce the
size of the activation map or to highlight specific data. Then,
features of images were extracted through sequential analyses
of two layers, namely, convolution and pooling layers. The fully
connected neural network, the CNN, maintains the dimensions
of the image data in each layer. For image analyses using
deep learning, new CNN architectures are developed every year
and presented in the ImageNet Large Scale Visual Recognition
Competition. Thus, year after year, errors are reduced and
accuracy is increased by changing the layer composition, depth,
and calculation methods used in CNNs. In previous studies,
several applications of CNN architectures showed outstanding
results in the competition in the past decade (Dhaka et al., 2021)
such as AlexNet (Krizhevsky et al., 2012), VGG19 (Simonyan and
Zisserman, 2014), Inception v3 (Szegedy et al., 2016), Inception
v4 (Szegedy et al., 2017), GoogLeNet (Szegedy et al., 2015), and
ResNet50 (He et al., 2016), DenseNet121 (Huang et al., 2017), and
SqueezeNet (Iandola et al., 2016).

As AI research becomes more popular, applications of AI have
rapidly expanded to various research fields. In biology, AI-based
analysis is used for detection, classification, and recognition with
genomic and phenotypic data from humans, animals, and plants.
In human research, AI-based approaches are used to classify
pathogens into genetic subgroups (Prajapati et al., 2017; Sardogan
et al., 2018), distinguish patient groups with different risk factors,
and detect objects in images that can be used for diagnosis
(Ubbens et al., 2018; Jiang et al., 2020). Animal data are also
used to classify or diagnose diseases (Banzato et al., 2018a,b; Choi
et al., 2018; Kim et al., 2019) and to study animal cognition (Hao
et al., 2019; Yudin et al., 2019;Mohammed andHussain, 2021). In
plants, AI-based image analyses can be used to recognize specific
tissues (i.e., flowers and fruits), detect diseases (Wozniak and
Połap, 2018; Maeda-Gutierrez et al., 2020), and classify species,
cultivars, and lineages (Lee et al., 2015; Grinblat et al., 2016;
Hedjazi et al., 2017).

Plant classification plays important roles in the preservation
of biodiversity, maintenance of economically important crops for
food security, and discovery of new therapeutic substances, such
as Tamiflu R© from star anise (Illicium verum) and Artemisinin
from sweet wormwood (Artemisia annua) (Ingram and Porter,
2015). The classification of plant accessions or species was

traditionally carried out by grow-out tests based on phenotypes
or morphologies. In recent decades, an explosion in next-
generation sequencing capabilities has led to the widespread use
of genetic information to classify plants. AI-based technologies
now have the potential to revolutionize basic plant science,
as well as breeding programs, by allowing rapid, noninvasive
identification of plant varieties on the basis of digital images that
can be easily acquired in high volume and at low cost.

We used four different CNN architectures to construct deep
learning models to classify accessions from the Brassica rapa core
collection on the basis of digital images. Each accession belongs
to one of four groups in the core collection: Chinese accessions,
early introduced accessions, Korean breeding accessions, and
non-pekinensis accessions. The task of the deep learning models
was to assign individual plants to the correct group using
data from a single image. Four image datasets of 156 different
accessions were generated. The first three datasets consisted of
images taken from above the plants (top view), whereas the
fourth dataset consisted of images taken from the side of the
plants (lateral view). Each dataset was divided into a training set
and a test set, and classification models were constructed using
the AlexNet, VGG19, GoogLeNet, and ResNet50 architectures
with over 50 iterations with randomly chosen data from the
training sets. The results showed that the accuracy was generally
higher for the lateral view images than for the top view images.
Comparisons among the four architectures revealed that the
GoogLeNet and VGG19 architectures had the highest accuracy
with the top view images and the lateral view images, respectively,
whereas the ResNet50 architecture had the lowest accuracy
regardless of the dataset used.

METHODS

Plant Materials and Generation of Plant
Images
We used 156 lines of the B. rapa core collection to produce
three datasets for the development of classification models based
on the morphology of Chinese cabbage (Pang et al., 2015).
The individual lines in the core collection are classified as
Chinese accessions, early introduced accessions, Korean breeding
accessions, or non-pekinensis accessions depending on their
geographic origin (Figure 1). The Chinese accessions include
species native to China. The early introduced accessions are a
group of lines that were imported to Korea in the early 1900s.
The Korean breeding accessions are lines that are currently used
by breeding companies in Korea. The non-pekinensis accessions
comprise various subspecies of B. rapa including oil seed types,
bok choy, turnip, and others. All accessions were cultivated in
trial fields at the Chungnam National University from 2018 to
2021 to generate the top view and lateral view images.

Images of individual plants were generated with a digital
single-lens reflex camera (Nikon D5300, 18-55mm VR II). To
create lateral view images of heading traits, plants were grown
for 10 weeks in trial fields with 10 replicates per accession in
2018. Ten individuals per accession were then harvested, and
a representative individual was selected to generate lateral view
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FIGURE 1 | Phylogenetic tree of Brassica rapa with phenotypic images. The phylogenetic tree shows breeding history of four different groups (Korean breeding

accession, early introduced accession, Chinese accession, and non-pekinensis) from Chinese cabbage in the east Asia (Ramchiary et al., 2011). Image data were

generated from top (four groups) and lateral views (three groups) of plants from the B. rapa core collections. The trait of forming leafy head is the main factor to

distinguish subspecies pekinensis.

images. The images were photographed from the cross-sectional
side of Chinese cabbages forming leafy heads. To generate
top view images, we considered environmental conditions for
core collection. The core collection contained various growing
conditions such as spring-, summer-, autumn-, and winter-
(southern part of Korea) harvest phenotypes. Thus, we grew
the core collection in two conditions: (1) from autumn in
2020 (top views 1 and 2) and (2) from spring to summer in
2021 (top view 3). In total, five plants per accession of core
collection were grown in the green house to maintain the
same growth condition. Images were generated at the end of
the 1st (2021), 7th (2020), and 9th (2020) week after planting
using a customized photograph booth to provide the same light
condition by blocking external light. Obtained phenotype data
from the 7th and 9th week were grouped as top views 1 and
2, respectively. Then, phenotype data from the 1st week were
grouped as top view 3. Among the 156 accessions, a total of
three accessions, one Chinese and two non-pekinensis, could not
be germinated and were excluded. In addition, three accessions
showed an early flowering phenotype and were also excluded.
In total, 2,138 images of 150 accessions were used for analysis
(Table 1).

Preparation of Datasets for the Image
Classification Models
Before analysis, the background of the subject in each image
was erased for effective identification. Next, the images were
resized to 224 pixels, which is a size commonly used in CNN
analysis (Zeiler and Fergus, 2014). Then, to obtain more images
for the training model, data augmentation was performed using
rotation by 90◦, 180◦, and 270◦ (Shorten and Khoshgoftaar, 2019)

(Supplementary Figure 1). In the case of the lateral view dataset,
we had more rotation augmentation with+/- 10 degrees because
of the relatively small sample size. Each dataset was divided into a
training set and a test set with a sample size ratio of 8–2 between
the two sets (Step 1 in Figure 2). The initial training set was
further divided into a final training set and a validation set, again
with a sample size ratio of 8–2 between the two sets (Step 2 in
Figure 2). The final training set was used to construct the models,
and the validation set was used to advance the model through
hyperparameter tuning.

Application of the Four Pretrained CNN
Models
Weused four pretrained CNNmodels, namely, AlexNet, VGG19,
GoogLeNet, and ResNet50, to classify each accession on the
basis of phenotypic image data (Figure 3). Each architecture has
characteristics that distinguish it from the others. AlexNet is
composed of five convolutional layers and three fully connected
layers and uses a “dropout” function to avoid overfitting by
switching off certain neurons. It performs parallel computation
with two graphics processing units (GPUs). VGG19 consists of 19
layers and uses a large 3×3 kernel size filter, which can increase
the depth of the network. GoogLeNet comprises 22 layers and
has an “inception module” consisting of 1×1, 3×3, and 5×5
convolutions, which enables dimensionality reduction. ResNet50
creates an identity block with a shortcut connection that skips
one or more layers on the basic multilayer structure. The analysis
performances of CNN architectures, such as GoogLeNet and
VGG19 with deep layers, were better than those with fewer layers
like AlexNet (Table 2). However, constructing too many layers
is inefficient because it takes much time and effort to calculate.
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TABLE 1 | Datasets used for analysis.

Accessions (accessions/images)

Chinese Korean breeding Early introduced Non-pekinensis

Top view 1 45/220 54/266 33/164 18/86

Top view 2 35/171 53/250 30/144 4/16

Top view 3 47/235 53/265 30/150 13/65

Lateral view 25/51 25/37 9/18 –/–

Total 47/677 54/818 33/476 18/167

FIGURE 2 | Analysis scheme for phenotypic classification. Each dataset was divided into training, validation, and test sets for construction of classification models.

The size ratio of the training and test sets was 8:2 for the model evaluation (Step 1). The training set was subdivided at an 8:2 size ratio for the model construction and

validation (Step 2).

Among pretrained models with more than a certain number of
layers, a model with a large number of hyperparameters such
as ResNet50 has good analysis performance. If precise tuning of
hyperparameters was involved, the accuracy was relatively higher
than that of the model with deeper layers (Dhaka et al., 2021).

Improvement of the Models Through
Hyperparameter Tuning
To optimize each pretrained model for each dataset (top view
or lateral view), we tuned the hyperparameters by changing
the learning rate and optimizer. The batch size was determined
based on the sample size of each dataset. “Softmax” was used
as an activation function, which is a common practice in
CNN analysis. Two optimizers were considered, “A Method
for Stochastic Optimization” (ADAM) (Kingma and Adam,
2018) and “Stochastic Gradient Descent” (SGD) (Bottou, 2010).
“Categorical Crossentropy,” which is known to be suitable for
classification, was used as a loss function to reduce loss, or
the difference between actual and predicted values. To prevent
overfitting, an “earlystopping” function that stops the training of
the model under certain conditions was applied using the loss of
the validation set.

Each model was tested with 50 iterations using the training set
with random sampling and replacement. For each architecture,
the model showing the highest accuracy after validation was

selected as the final classification model. Then, the final
classification models were tested using the test datasets, which
were not used at all in the construction of the classificationmodel.
Four pretrained models were created with python (interface) and
keras (framework). In addition, all analyses were executed using
a Tesla V100 GPU with 32 GB video random access memory
(VRAM) and a 112 core process central processing unit (CPU).

RESULTS

Construction of the Deep Learning
Classification Models
We carried out CNN analysis using the four pretrained models
and four different image datasets (three top view and one lateral
view). To implement a model suitable for each dataset, we
tuned hyperparameters such as batch size, optimizer, epoch, and
learning rate by iterative validation. The batch size was tuned
according to the sample size of the dataset, resulting in a batch
size of 2 for the top view datasets and 17 for the lateral view
datasets. SGD was chosen as the optimizer for all models and
datasets except for the ResNet50 architecture with the top view
1 dataset, for which ADAM was selected. The learning rate was
adjusted according to overshooting or learning time, and an
appropriate rate from 0.0001 to 0.001 was set for each dataset and
architecture. The epoch was set to 500 for all datasets (Table 3).
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FIGURE 3 | The basic structure of a convolutional neural network (CNN) analysis with image data as input. The classification model is composed of multiple

convolution and pooling layers.

TABLE 2 | Features of the four pretrained models.

Architecture Year # Layers (Convolutional + fully connected) Model description

LeNet-5 1998 7 (5+2) Introduction of CNN Concepts

AlexNet 2012 8 (5+3) Parallel computing with 2 GPUs

VGG19 2014 19 (16+3) Multiple layers

GoogLeNet 2014 22 (21+1) Inception module

ResNet50 2015 50 (49+1) Skip connection

SqueezeNet 2016 Squeeze + Expand layers Lightweight model with small size

Inception v3 2016 52 (42+10) Improvement from GoogLeNet

Inception v4 2017 75 convolution layers More layers with better performance rather than inception v3

DenseNet-121 2017 117 convolution + 3 transition + 1 classification layers Connected with all layers

TABLE 3 | Optimized hyperparameter for model advancement.

Hyperparameter Value

ResNet50 AlexNet GoogLeNet VGG19

Batch size Top: 2

Lateral: 17

Activation Softmax

Optimizer ADAM SGD SGD SGD

Learning rate Top 1: 1e−4 Top 1: 1e−5 Top 1: 1e−4 Top 1: 1e−3

Top 2: 1e−5 Top 2: 5×1e−4 Top 2: 1e−4 Top 2: 5×1e−4

Top 3: 1e−4 Top 3: 1e−4 Top 3: 1e−4 Top 3: 5×1e−3

Lateral:1e−4 Lateral:1e−4 Lateral:5×1e−4 Lateral:1e−4

Epoch 500

Early stopping 5

Loss function Categorical cross-entropy

Classification of Individual Top View
Images Using the CNN Models
A classificationmodel was designed for each of three independent
top view datasets (top view 1, top view 2, and top view
3). For the top view 1 dataset, the average classification
accuracy based on 50 iterative validations was 43.44%. The
minimum accuracy was 26.77% with ResNet50, and the
maximum accuracy was 64.06% with GoogLeNet (Figure 4 and
Supplementary Table 1). A model showing high accuracy for

each architecture was selected as the final classification model

(Supplementary Figure 2). Evaluation of the final classification

model using 154 images in the test set showed accuracies

of 45.64% (AlexNet), 46.98% (VGG19), 49.66% (GoogLeNet),

and 37.58% (ResNet50) (Figure 4). Whereas the classification

for non-pekinensis accessions and Korean breeding accessions
was accurate regardless of the architecture, Chinese accessions
often varied depending on the architecture, and most cases of
misclassification were classified as Korean breeding accession. In
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FIGURE 4 | Validation and evaluation of the classification models.(A) Prediction accuracy of top view datasets based on 50 iterative validations. (B) Prediction

accuracy using the test set of top view datasets. (C) Prediction accuracy of top and lateral view datasets based on 50 iterative validations. (D) Prediction accuracy

using the test set of top and lateral view datasets. The horizontal axis indicates the analytical architectures, and the vertical axis indicates the prediction accuracy (%).

Orange, yellow, purple, light blue, and pink colors stand for types of image dataset.

case of early introduced accession, the prediction performance
was the lowest, and it was misclassified into Korean breeding
accession or Chinese accession (Supplementary Table 2).

For the top view 2 dataset, the average prediction accuracy
based on 50 iterative validations was 39.78%. The minimum
accuracy was 19.00% with ResNet50, and the maximum was
57.43% with GoogLeNet (Figure 4 and Supplementary Table 3).
Evaluation of the final classification model using 116 images
in the test set showed accuracies of 48.28% (AlexNet),
40.52% (VGG19), 51.72% (GoogLeNet), and 30.17% (ResNet50)
(Figure 4 and Supplementary Figure 3). The classifications for
Chinese accessions and early introduced accessions varied among
the different architectures. For the Chinese accessions, accuracy
differences of more than two times were shown in accordance
with architecture. According to the CNN architecture, the
classification test accuracy of early introduced accession of the

model was large difference until 31.03%, and most misclassified
cases were classified as Korean breeding accession or Chinese
accession (Supplementary Table 4).

For the top view 3 dataset, the average prediction accuracy
based on 50 iterative validations was 41.06%. The minimum
accuracy was 13.13% with ResNet50, and the maximum was
60.19% with GoogLeNet (Figure 4 and Supplementary Table 5).
Evaluation of the final classification model using 116 images
in the test set showed accuracies of 47.41% (AlexNet),
46.55% (VGG19), 44.83% (GoogLeNet), and 23.28% (ResNet50)
(Figure 4 and Supplementary Figure 4). Among them, test sets
from the group of Chinese accession were misclassified as the
group of Korean breeding accession or group of early introduced
accession. In addition, classification errors classified as the group
of Chinese accession or Korean breeding were also occurred
in the group of early introduced accession. Like top views 1
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and 2, top view 3 dataset also showed high differences among
architectures shown as top views 1 and 2 in the group of
Chinese and early introduced accession while Korean breeding
accessions were correctly classified regardless of architectures
(Supplementary Table 6).

Classification of Whole Top View Images
Using the CNN Models
To confirm performance of classification for the top view
phenotypic images regardless of developmental stages,
classification analysis of the top view dataset was performed
using all of the top view data including top view 1, 2, and 3.
For all of the top view dataset, the average prediction accuracy
based on 50 iterative validations was 37.46%. The minimum
accuracy was 18.26% with ResNet50, and the maximum was
51.69% with VGG19 (Figure 4 and Supplementary Table 7).
Model with highest validation accuracy, 64.00, 67.16, 65.17
and 63.29% was selected as the final classification model, each
architecture respectively.. Evaluation of the final classification
model using 116 images in the test set showed accuracies of
39.89% (AlexNet), 44.66% (VGG19), 37.64% (GoogLeNet), and
31.74% (ResNet50) (Figure 4 and Supplementary Figure 5).
As more data were acquired, it is encouraging that non-
pekinensis classification accuracy increases. In individual
datasets, it was difficult to classify non-pekinensis due to the
small number of data available for model construction and
testing, but more numbers of data gathered together and the
prediction increased to non-pekinensis. Similar to individual
top view datasets, the Korean breeding accession was best
predicted with high accuracy, followed by Chinese accession.
Early introduced accession was incorrectly classified as Korean
breeding access or Chinese accession in all models except
ResNet50 (Supplementary Table 8).

Furthermore, a combination of training set and test
set was designed to investigate classification accuracy by
developmental stages (Supplementary Table 9). For example,
similar developmental stages, top views 1 and 2, were used as
training set and early developmental stage, top view 3, was used
as test set. Accuracy of test set in top view 1 was predicted
as 44.12% (Supplementary Table 9), and top view 2 was
predicted as the accuracy of 46.00% (Supplementary Table 10).
However, top view 3 was predicted as the accuracy of
36.82% (Supplementary Table 11). These results suggested that
phenotypes of core collection in early developmental stages
were different from those of mature stages and that similar
developmental stages were required to construct a classification
model in early developmental stages.

Classification of Lateral View Images
Using the CNN Models
For the lateral view dataset, the deep learning analysis was carried
out with ±10◦ rotation augmentation. In addition, no lateral
view images of the non-pekinensis accessions were generated.
Therefore, the deep learning analysis was carried out using
images of only three groups. The classification accuracy based
on the validation results ranged from 13.04 to 88.89%, with
an average of 58.34% (Figure 4 and Supplementary Table 12).

Evaluation of the final classification model with the test
images showed classification accuracies of 48.48% (AlexNet),
69.70% (VGG19), 66.67% (GoogLeNet), and 51.52% (ResNet50)
(Figure 4 and Supplementary Figure 6). Both the Korean
breeding accessions and the Chinese accessions were well
classified. For the Chinese accessions, 9 of the 16 test images
were correctly classified with all the architectures. In the case of
the early introduced accessions, three test images were classified
incorrectly by all of the architectures (Supplementary Table 13).

To compare the classification accuracy of lateral and top
view datasets, classification of top view 2 dataset except
non-pekinensis was carried out using four architectures. Top
view 2 and lateral view datasets were generated at a similar
developmental stage. The average prediction accuracies of the
lateral view dataset based on 50 iterative validations were 52.00,
63.27, 65.22, and 59.57% from AlexNet, VGG19, GoogLeNet,
and ResNet50, respectively. The evaluation of the top view
2 (three groups) classification model showed accuracies of
46.43% (AlexNet), 55.36% (VGG19), 64.29% (GoogLeNet), and
37.50% (ResNet50). For all architectures, the accuracy of lateral
view was higher than that of top view classification results
(Supplementary Figure 7).

Comparison of CNN Architecture
Performances
Final classification models were constructed using the four
different pretrained CNN architectures. The accuracies of
classification for the test set of the top view 1 dataset were 45.64%
(AlexNet), 46.98% (VGG19), 49.66% (GoogLeNet), and 51.52%
(ResNet50). For the top view 2 dataset, the accuracies for the
validation set were 48.28% (AlexNet), 40.52% (VGG19), 51.72%
(GoogLeNet), and 30.72% (ResNet50). For the top view 3 dataset,
the accuracies for the test set were 47.41% (AlexNet), 46.55%
(VGG19), 44.83% (GoogLeNet), and 23.28% (ResNet50). For the
lateral view dataset, the classification accuracies for the test set
were 56.94% (AlexNet), 72.22% (VGG19), 61.59% (GoogLeNet),
and 41.61% (ResNet50). The GoogLeNet architecture gave the
most accurate classifications for top view 1 and 2 datasets, and
lateral view and all top view dataset were classified with high
accuracy from the VGG19 model. The highest accuracy for any
architecture was 69.70% for the VGG19 architecture with the
lateral view dataset. The highest accuracies for the AlexNet and
GoogLeNet architectures with the lateral view dataset were 48.48
and 66.67%, respectively. The ResNet50 architecture showed the
lowest accuracies of 37.58, 30.17, 23.28, and 28.65% for the
top view 1, top view 2, top view 3, and all top view datasets,
respectively. These results suggested that ResNet50 was not
appropriate for the classification of our B. rapa phenotypes
because of its analytical algorithm.

Pairwise Comparisons Between Pairs of
Accession Types
We tested the ability of the final classification model to correctly
classify pooled images of pairs of accession types from the top
view 1 dataset with each of the four architectures (Figure 5). The
non-pekinensis accessions were classified as the most accurate
overall in the pairwise tests. The highest accuracy for any pair of
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FIGURE 5 | Classification accuracy in pairwise tests using the four types of accessions (Chinese, early introduced, Korean breeding, and non-pekinensis) with four

different architectures: (A) AlexNet, (B) VGG19, (C) GoogLeNet, and (D) ResNet50.

accession types was achieved with the non-pekinensis accessions
and the Korean breeding accessions, which produced an average
accuracy of 87.72% over 50 iterations and a maximum accuracy
of 90.75% with the GoogLeNet architecture (Figure 5C). The
average accuracies achieved with the non-pekinensis accessions
and the Chinese and early introduced accessions were 79.34
and 78.37%, respectively. In contrast to the non-pekinensis
accessions, the early introduced accessions were relatively poorly
classified overall, reaching only 58.54% accuracy in pairwise tests
with the Korean breeding accessions and 61.79% accuracy in
pairwise tests with the Chinese accessions. These results suggest
that the early introduced accessions share some phenotypic
features with the Korean breeding and Chinese accessions, which
led to classification errors.

DISCUSSIONS

Huge amounts of phenotypic data are accumulating in the
biological sciences. As the technology for smart farms advances,

the generation and analysis of image-based phenotypic data will
play a curial role in agriculture. Hence, the development of
classification models using deep learning is important for both
basic research and applied science. To this end, we performed
deep learning-based classification analyses using images of B.
rapa. Our results showed that deep learning architectures were
able to correctly classify top view images of B. rapa plants
more accurately at 7 weeks after planting (top view 1 dataset,
average accuracy = 43.44%) than at 1 week after planting
(top view 3 dataset, average accuracy = 41.06%), 9 weeks
after planting (top view 2 dataset, average accuracy = 39.78%),
and top view dataset of several timepoint (top view dataset,
average accuracy = 37.46%). The final classification models
used to classify each dataset were determined on the basis
of 50 iterations with validation image sets and subsequently
evaluated with independent data. The evaluation results showed
that the accuracy of classification for the top view 1 dataset
was 2.29% higher than that for the top view 2 dataset and
4.45% higher than that for the top view 3 dataset. These
results indicated that similar developmental stages were shown
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better performance compared with different development stages
(Supplementary Tables 9–11). In addition, more images are
needed to construct classification models for various timepoint
datasets. The prediction accuracies for the lateral view dataset
were higher than those for the top view datasets. This is because
the lateral view images showed diverse colors and more features
than the top view images, such as the thickness of the leaves and
the entire shape and stem of the plant.

The classification accuracies for the validation sets (step 1)
and the test sets (step 2) depended on the type of architecture
used (Figure 4). In the validation step, VGG19 showed the
highest accuracy for the lateral view dataset, whereas GoogLeNet
had the highest accuracy for the top view datasets. GoogLeNet
showed the highest accuracy for all top view datasets in the test
step. ResNet50 showed the lowest accuracy for all the datasets
and was about 20% less accurate than GoogLeNet using the
top view dataset in the test step. In previous studies, ResNet50
showed a relatively low performance to classify homogenous or
highly similar images (Rudakov et al., 2018; Hassan et al., 2021).
Therefore, the low accuracy of ResNet50 in our experiments
might have been caused by a high degree of similarity among
the images.

To investigate that hypothesis, we tested the architectures
using pairs of accession types. The pairwise tests indicated
that the classification of non-pekinensis together with any of
the other three accession types was highly accurate, whereas
that of the early introduced accessions was relatively inaccurate
regardless of the other type of accession used. The classification
accuracy for the Korean breeding accessions increased gradually
depending on the other accession type in the pairwise test,
with the early introduced accessions producing the lowest
accuracy, the Chinese accessions producing higher accuracy,
and the non-pekinensis accessions yielding the highest accuracy.
According to the phylogenetic tree, the Korean breeding
accessions are genetically close to the early introduced accessions
and genetically distant from the non-pekinensis accessions
(Figure 1). This suggests that phenotypic variances between
the non-pekinensis accessions and the other accession types
due to genetic dissimilarity led to high performance in the
classification tests. The Korean breeding accessions were often
classified accurately regardless of the deep learning architecture
used, whereas the classifications of the Chinese accessions and
early introduced accessions were inconsistent. These results
further suggest that low accuracy in the classifications was caused
by genetic differences between the accession types (Figure 1).
Almost all of the early introduced accessions were imported from
China in the early 1900s and have since been used as breeding
sources. These accessions showed heterogenous phenotypes. On
the other hand, the Korean breeding accessions have acquired
homogenous phenotypes due to long-term breeding activities.
In addition, the image depth for classification might affect
the accuracy. The numbers of individual accessions used in
the current analysis were not sufficient to train and evaluate
deep learning models with very high accuracy for phenotypic
classification. More images of various developmental stages
would improve the accuracy of the models. Furthermore,
tissue-specific and trait-specific images can be used in the

future to identify trait-associated genes by correlation with
genotypic data.

For applications of deep learning classification models in
industrial fields, top view images are more suitable than lateral
view images, although we achieved higher accuracy using the
lateral view. Classification models like the ones presented in this
study can be applied for nondestructive inspection of accessions
and cultivars; however, improved models need to be developed,
which can identify different types of plants with high accuracy
using top view images.
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