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Real-time dynamic monitoring of orchard grape leaf diseases can greatly improve the

efficiency of disease control and is of great significance to the healthy and stable

development of the grape industry. Traditional manual disease-monitoring methods are

inefficient, labor-intensive, and ineffective. Therefore, an efficient method is urgently

needed for real-time dynamic monitoring of orchard grape diseases. The classical deep

learning network can achieve high accuracy in recognizing grape leaf diseases; however,

the large amount of model parameters requires huge computing resources, and it

is difficult to deploy to actual application scenarios. To solve the above problems, a

cross-channel interactive attention mechanism-based lightweight model (ECA-SNet) is

proposed. First, based on 6,867 collected images of five common leaf diseases of

measles, black rot, downy mildew, leaf blight, powdery mildew, and healthy leaves,

image augmentation techniques are used to construct the training, validation, and test

set. Then, with ShuffleNet-v2 as the backbone, an efficient channel attention strategy

is introduced to strengthen the ability of the model for extracting fine-grained lesion

features. Ultimately, the efficient lightweight model ECA-SNet is obtained by further

simplifying the network layer structure. Themodel parameters amount of ECA-SNet 0.5×

is only 24.6% of ShuffleNet-v2 1.0×, but the recognition accuracy is increased by 3.66

percentage points to 98.86%, and FLOPs are only 37.4M, whichmeans the performance

is significantly better than other commonly used lightweight methods. Although the

similarity of fine-grained features of different diseases image is relatively high, the average

F1-score of the proposed lightweight model can still reach 0.988, whichmeans themodel

has strong stability and anti-interference ability. The results show that the lightweight

attention mechanism model proposed in this paper can efficiently use image fine-grained

information to diagnose orchard grape leaf diseases at a low computing cost.

Keywords: grape leaf diseases, diseases recognition, fine-grained image, attention mechanism, lightweight

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.738042
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.738042&domain=pdf&date_stamp=2021-10-22
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yangshuqin1978@163.com
mailto:hdj168@nwsuaf.edu.cn
mailto:Hillfinder@163.com
https://doi.org/10.3389/fpls.2021.738042
https://www.frontiersin.org/articles/10.3389/fpls.2021.738042/full


Wang et al. Grape Leaf Diseases Recognition

INTRODUCTION

Grape leaf disease is the main factor that causes a large-scale
reduction in orchards and restricts the healthy and stable
development of the grape industry. Realizing real-time dynamic
monitoring of orchard diseases is of great significance for
the early prevention and control of orchard diseases and the
cultivation of disease-resistant varieties. In recent years, with the
development of computer vision technology and the continuous
improvement of computing power, researchers have used deep
learning methods in the field of crop disease diagnosis and have
achieved remarkable results in general disease recognition tasks
(Lu et al., 2017; Priyadharshini et al., 2019; Chen et al., 2020; Liu
et al., 2020). For instance, Ma J. et al. (2018) proposed a deep
convolutional neural network to identify three types of cucumber
diseases and achieved an accuracy of 93.4%. Liu et al. (2018)
proposed a network based on AlexNet and GoogLeNet, which
used deep learning to diagnose apple leaf diseases for the first
time. The accuracy on the test set reached 97.62%, which was
better than traditional machine learning methods. Ferentinos
(2018) tested five classical convolutional neural networks to
identify plant leaf diseases, and the results showed that all of
them can achieve ideal accuracy. Although the convolution
neural network-based classification models mentioned above
can achieve superior recognition results, it has the imperfection
of highly dependent on the hardware performance of the
device. The huge amount of network parameters leads to
huge computational overhead, which cannot be afforded by
ordinary devices, and it is difficult to deploy to the terminals
for promotion.

In view of the high computational cost of large-scale models,
many scholars have carried out pieces of lightweight model
research. Xception (Chollet, 2017) was a lightweight model
improved by Google based on the Inception-v3 (Szegedy et al.,
2016). The deep separable convolution was used to reduce the
parameters, but the computational cost was increased. Compared
with traditional convolutional neural networks, while using
deep separable convolution, MobileNet-v1 (Howard et al., 2017)
introduces two hyperparameters that control the number of
convolution kernels and the resolution of the input image. This
model leveraged a stack layer structure; although the number of
parameters was reduced, there still exists the model degradation
problem. Sandler et al. (2018) suppressed the degradation of the
model by introducing the Inverted Residuals structure. By using
a linear activation function to effectively retain low-dimensional
features, the parameters of the model were further reduced,
and the accuracy was improved. Howard et al. (2019) added
the Squeeze-Excitation module (Hu et al., 2018) to the Inverted
Residual structure to endow the ability of the model to focus
on key feature channels. The lightweight model structure was
designed to be flexible and efficient, which may greatly reduce
the calculation cost and easy to be applied on mobile terminals,
including smartphones, embedded devices, etc. With its own
advantages, the application of lightweight networks in the field
of crop disease identification has also made some progress. Chao
et al. (2020) combined DenseNet and Xception strategies and

proposed XDNet to identify five apple leaf diseases. The model
recognition effect was preferable, and the amount of parameters
was not high. Tang et al. (2020) introduced the SE module into
the ShuffleNet network and proposed a lightweight convolutional
neural network. The public data containing four types of grape
diseases were used to evaluate the network performance; the
accuracy of the training set can reach 99.14%. Bi et al. (2020)
used the MobileNet network to identify two different apple
diseases and compared with other models in terms of efficiency
and accuracy to verify the effectiveness of the network. The
above pieces of research have opened up a new way for the
promotion of low-cost models; however, there are still problems
that existing lightweight method cannot achieve pleasant and
stable performance on a fine-grained image recognition task.
Ramcharan et al. (2019) used a mobile device equipped with
a lightweight model to diagnose cassava diseases in the field
and found that the different angles, brightness, and changes in
different diseases will affect the accuracy of the model.

Different from general image recognition tasks, the key
information of the local area plays a decisive role in the
classification decision in fine-grained image recognition. So,
how to make full use of the effective information is the key to
improve the performance on fine-grained recognition. Under the
influence of many interference factors, the feature differences
among different subclasses of a specific category of images may
be small, or the feature differences among different objects in
the same subclass may be large, which increases the difficulty
of fine-grained image classification. Therefore, the fine-grained
disease image recognition under the complex background has
higher requirements for the comprehensive performance of the
model. The fine-grained disease image identification method
based on visual attention can effectively focus on the region of
interest and improve the recognition performance of the model.
In recent years, it has been widely used in image classification,
object detection, and other fields and has achieved excellent
results. Yang et al. (2020) proposed an attention mechanism that
effectively used the key information of images and established
the image classification model for 14 different crops based on
transfer learning. The model was trained and tested with the
PlantVillage public data set. The test results show that the F1-
score of the proposed model can reach 0.93. Mi et al. (2020)
introduced the attention mechanism into DenseNet to identify
six different grades of wheat stripe rust and found that the
performance of the model with attention mechanism can be
significantly improved.

Inspired by the above research, a new lightweight model for
fine-grained grape leaf disease recognition is proposed in this
paper. The main innovations and contributions are summarized
as below:

(1) A new grape leaf disease data set is established, and the fine-
grained grape leaf diseases image datasets (FGGLDIs, namely
FGDs) are generated via image enhancement techniques. The
image enhancement techniques are used to simulate grape
leaf disease images collected under complex environment
conditions, enhance the generalization performance of the
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model, avoid over-fitting problems in the training process, and
lay the foundation for the popularization of the model.

(2) In this paper, the cross-channel interaction strategy without
dimensionality reduction is introduced into the lightweight
network, and a new fine-grained recognition model of grape
disease images based on the attention mechanism is proposed.
First, deep separable convolution is used to reduce the overall
amount of parameters of the model. Second, the efficient
channel attention (ECA) is embedded into the ShuffleNet
infrastructure and implemented through one-dimensional
convolution. Finally, a method of adaptive selection of the
size of the one-dimensional convolution kernel is adopted
to determine the coverage of the cross-channel interaction.
The method proposed in this paper can effectively reduce
the complexity while maintaining the performance of the
model, realize the effective fusion of multichannel features,
and strengthen the ability of the model to learn important and
fine-grained information in the lesion area.

The remainder of the paper is organized as follows: In Materials
and Methods, the structure information of the data set is
introduced, and FGDs is generated by using data enhancement
techniques. The model structure and the test process mentioned
in this article are discussed in detail. Results and Discussion
presents the test method to evaluate the performance of the
model and analyzes the test results. The model attention and
fine-grained feature learning are also displayed through heat
maps and fine-grained featuremaps, respectively. TheConclusion
summarizes the work of this article.

MATERIALS AND METHODS

This section introduces the materials and methods used in
the study, including the collected grape leaf disease image
data, FGDs established through image enhancement techniques,
relevant lightweight network, and detailed structure of the
proposed model.

Data Acquisition
The original data set used in this study contains a total of
6,867 images of grape leaf disease from two parts. First, 3,388
images of powderymildew, downymildew, and healthy leaves are
collected in the field of the grape planting experimental station of
Northwest A&FUniversity, Shaanxi Province, China. In different
weather conditions and different time periods (sunny, cloudy,
morning, noon, and evening), the MI 9 smartphone is used to
shoot from different angles and directions. Then, a total of 3,479
black measles, black rot, and leaf blight are collected from the
public data set. Through the above work, an original data set of
common grape diseases is established.

Figure 1 shows a random sample of each category of the
data set. It can be seen from the examples that there are a
large amount of complex background (Figures 1C,D,F) and
pure-color background (Figures 1A,B,E) images in the data set,
which has high requirements for the comprehensive performance
of the model. In Figure 1, black measles (Figure 1A), black
rot (Figure 1B), and leaf blight spots (Figure 1E) have a high

degree of similarity. When the leaves are onset, brown spots are
produced, which gradually expand into nearly circular spots with
edges appearing dark brown. Downy mildew (Figure 1C) early
disease spots are dense white frost-like objects, and the shape of
the disease spots is usually irregular polygonal when restricted
by leaf veins. When the disease is severe in the later stage,
the leaves will fall off early. Powdery mildew (Figure 1F) leaves
are covered with off-white powder, similar to downy mildew
symptoms; both of which form clusters of lesions locally and are
not easily distinguishable by the naked eye. Therefore, the above
mentioned classification of different diseases can be expressed as
a problem of fine-grained image classification.

Image Dataset Augmentation
In the orchards, grape leaves grow in different positions with
different shapes, and there are interference factors such as
weather and shooting angles. So, the data set need to be
expanded to avoid over-fitting during the training process. Before
performing image data augmentation, 100 images were randomly
selected from each category in the original data set, a total of
600 images, and then, adding Gaussian noise, rotated left 90◦,
rotated right 90◦, vertically flipped, and weakened sharpness,
respectively, forming an enhanced robustness test data set (RTD),
containing 3,000 images. Gaussian blur, contrast enhancement
by 30% and decrease by 30%, and brightness enhancement by
30% and decrease by 30% are adopted to the remaining images
in the original data set to simulate weather interference. Then,
rotating the image by 90◦, 270◦, horizontal flip, and vertical
flip to simulate the disturbance of different shooting angles and
the FGDs is established. Table 1 shows the detailed structure
information of FGDs. After the model was trained, RTDwas used
to test the model to verify the effect of model training. The above
work provides a data basis for model training.

ECA-SNet Network
Relevant Lightweight Network
With the development of computer vision technology, there
is an increasing demand for running high-quality deep neural
networks on mobile devices. Limited by the level of computing
power, it is difficult for mobile devices to carry conventional
convolution neural networks (CNNs) to deal with complete
various tasks. In order to meet the requirements of applying
deep neural networks on embedded and mobile terminals and
maintaining superior performance, the MobileNet-v2 endows
the model with remarkable feature extraction capabilities by
stacking the Inverted Residual Block feature extraction structure.
The specific method is to increase the dimensionality of input
feature matrix through 1×1 convolution, and then use 3×3 deep
separable convolution for feature learning, reduce the amount
of model calculations, and, finally, decrease the dimensionality
through 1×1 convolution and output after linear activation
function. In order to give the model attention mechanism,
MobileNet-v3 uses the Squeeze-and-Excitation module on the
basis of MobileNet-v2 to optimize the feature learning ability
of deep separable convolution. By assigning different weights
to different channel features, the adaptability of the model
to complex backgrounds is enhanced. Zhang et al. (2018)
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FIGURE 1 | Examples of grape leaf images. (A) Black measles, (B) Black rot, (C) Downy mildew, (D) Healthy, (E) Leaf blight, and (F) Powdery mildew.

TABLE 1 | The structure of FGDs.

Categories Black measles Black rot Downy mildew Healthy Leaf blight Powdery mildew

Training set 8,664 8,640 8,080 8,112 8,128 8,512

Validation set 2,166 2,160 2,020 2,028 2,032 2,128

Total 10,830 10,800 10,100 10,140 10,160 10,640

Proportion 0.1728 0.1723 0.1612 0.1618 0.1621 0.1698

proposed ShuffleNet network to solve the problems of computing
resources wasting and information interaction choked between
group convolutions, and greatly reduce computational costs.
The model mainly includes point-wise group convolution and
channel shuffle operation, as is shown in Figure 2. Mobile
terminal devices emphasize real-time, so it is necessary to
speed up the inference process while maintaining the final
accuracy. Commonly used inference acceleration methods, such
as pruning existing models to reduce connection redundancy,
quantification, and factorization, to reduce computational
redundancy, and knowledge distillation of large models into
small models are all accelerating and transforming existing
models. ShuffleNet focuses on structural design to directly
improve performance, and the core structure is more efficient.

In ShuffleNet-v1, floating-point operations per second
(FLOPs) was used to measure the multiplication operation of
convolution, and the design of this structure aims at reducing
FLOPs. However, many factors that affect the model speed
also include indicators, such as the memory access cost (MAC)
and the level of parallelism. Other operations, such as data
reading and writing, channel shuffling, etc., also consume certain
time and affect the model inference speed. A large amount
of point-wise group convolutions was used in ShuffleNet-v1,
which increases MAC and reduces computational parallelism. In
addition, a high degree of model fragmentation will significantly
affect the speed of inference. The excessive use of element-wise
operations, such as activation function, tensor addition, and
offset addition, are not conducive to speed improvement.
Based on the above criteria, Ma N. et al. (2018) redesigned the
ShuffleNet Unit and proposed the idea of channel separation
to replace the group convolution. The input feature is equally
divided into two branches, and each branch maintains the
same identity after separation. The 1×1 convolution is used to,
instead, point-wise group convolution and maintained the same

FIGURE 2 | The structure of the ShuffleNet Unit.

channel depth in a single branch. The reasoning speed is further
improved by reducing element-wise operations, and channel
shuffling is used to realize information interaction. Furthermore,
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FIGURE 3 | The overall structure of ECA-SNet.

the network structure can be scaled by controlling the number of
convolution kernels, which could adjust the network width.

Structure of Proposed Model
In recent years, some progress has been made in the research
of crop disease recognition based on attention mechanism
(Karthik et al., 2020; Zeng and Li, 2020). The attention
mechanism assigns high-contribution information to the larger
weights while suppressing other irrelevant information through
weights distribution, which is an effective method for model
performance optimization. Different types of grape leaf diseases
have relatively small differences, and the distinguishable fine-
grained features are difficult to capture. Therefore, the effective
attention mechanism to the characteristics of fine-grained lesions
is the key to solving this problem.

Inspired by the above work, a fine-grained image recognition
network for grape leaf diseases with a lightweight attention
mechanism, namely ECA-SNet, is proposed in this paper. The
main structure of the model includes three stages and a total of 12
ECA-SNet Units as is shown in Figure 3. First, the conventional
convolution is implemented on the input image, and the Max
pooling operation is used to reduce the size of output feature
matrix to 1/4 of the input image, and then the characteristic

information is learned through 12 ECA-SNet Units. Finally,
the output features of the conventional convolutional layer
and the pooling layer are sent to the fully connected layer
for classification.

Wang et al. (2020) analyzed the conventional channel
attention mechanism and found that the dimensionality
reduction operation affects the performance of channel attention,

and proper cross-channel interaction can significantly reduce

the complexity of the model while maintaining efficient

performance. Therefore, this paper adopts the strategy without
dimensionality reduction in the design of basic structure of
ECA-SNet Unit, as shown in Figure 4. There are two types of
ECA-SNet Units. The module shown in Figure 4A (Unit 1) is
the first unit of each Stage. The input feature matrix passing

through two non-interacting branches and concatenating the two
output feature matrices to doubled their depth. The ECA strategy
is used in two branch structures, respectively. Figure 4B (Unit
2) module is the subsequent structure of each stage. First, the
input feature matrix is equally divided into two groups. The
main branch undergoes a series of operations and uses the ECA
strategy, another branch output directly without operation and
concatenating with the output of the main branch, and the depth
of the feature matrix remain unchanged.

The strategy without dimensionality reduction of
cross-channel interaction that increases the revenue of
the channel attention mechanism is shown in Figure 5.
By considering each channel and its n neighborhoods,
cross-channel interaction information is captured. The
size of the convolution kernel n represents the coverage
of cross-channel interaction, that is, the number of
neighborhoods that participate in the attention prediction
of a specific channel.

In order to avoid manual tuning, the method of adaptively
selecting the one-dimensional convolution kernel size is used
to determine the value of n. Conv1D is used to capture
the cross-channel interaction; the size of n determines the
coverage of the interaction. The number of n is related to
the channel dimension C, and, in the case of fixed number
group convolutions, the high-dimensional (low-dimensional)
channel is proportional to the long-distance (short-distance)
convolution. In the same way, the coverage of n of the cross-
channel information interaction is also proportional to the
channel dimension C, that is, the mapping relationship between
n and C is shown in Equation (1):

C=ϕ (n) (1)

Based on the above analysis, it can be seen that n and C are
in a non-linear proportion. As a kernel function, exponential
family functions are widely used to deal with unknown mapping
problems. So, the exponential function is used to approximate
the mapping φ as shown in Equation (2). In addition, since the
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FIGURE 4 | Detailed structure of the ECA-SNet Unit. (A) Unit 1. (B) Unit 2.

FIGURE 5 | Efficient channel attention module.
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TABLE 2 | Detailed structural information of ECA-SNet.

Layer Output size Kernel size Repeat Output channel

0.5× 1.0×

Input 224 × 224 – – 3 3

Conv 112 × 112 3 × 3 1 24 24

MaxPool 56 × 56 3 × 3 1

Stage1 28 × 28 – 3 48 116

Stage2 14 × 14 – 6 96 232

Stage3 7 × 7 – 3 192 464

Conv 7 × 7 1 × 1 1 1,024 1,024

avg pool 1 × 1 7 × 7 1 – –

FC – – 1 6 6

channel dimension is usually set to an integer power of 2, 2(γ
∗n−b)

is used instead of exp(γ
∗n−b), and the mapping relationship of

Equation (3) was obtained. In this paper, in order to reduce
the time and computational costs of the training process and
improve the friendliness of model training, the hyperparameters
γ and b were set to 2 and 1, respectively. It can be seen
that the function φ enables long-range interactions for large-
sized channels.

C=ϕ (n)≈ exp(γ ∗n−b) (2)

C=ϕ (n)=2(γ
∗n−b) (3)

Finally, given the channel dimension C, the size of
convolution kernel n can be determined according to
Equation (4), where |m|odd represents the odd number closest
tom.

n=9 (C)=

∣

∣

∣

∣

log2 (C)

γ
+
b

γ

∣

∣

∣

∣

odd

(4)

The detailed structure information of the model is shown
in Table 2. Two different versions of networks, 0.5×
and 1.0×, are designed according to the depth of the
output feature matrix. Repeat represents the number
of repetitions of a specific operation; multiple ECA-
SNet Units are repeated in Stage1–Stage3. It should be
noted that the first operation of each stage is Unit 1,
which doubled the feature dimension, and is only used
for the first layer in each stage, and Unit 2 is used for
subsequent operations.

EXPERIMENTAL RESULTS AND
DISCUSSION

Parameters Setting
In order to verify the performance of the ECA-SNet network,
the Python language is used to build a model based on the
Pytorch 1.7.1 deep learning framework, and the model is trained
and tested on a GPU-equipped server. The detailed equipment
configuration information of the test is shown in Table 3.

TABLE 3 | Hardware and software environment.

Configuration item Value

CPU Intel® Xeon(R) Gold 5217 CPU@3.00 GHz

GPU NVIDIA Tesla V100 (32GB)

Operating system Ubuntu 18.04.5 LTS 64

RAM 251.4GB

Hard disk 8TB

Model Training Process
The experiment process of fine-grained image recognition of
the grape disease is shown in Figure 6. First, images of grape
leaves are collected from orchards and public data set, and
disease categories are labeled based on expert experience and
then, standardized the annotated disease images and divided
the original image library into the training set, the validation
set, the test set, and different methods are used to enhance
the training set and the test set. Finally, the model is trained
with FGDs and tested with RTD to identify the type of
each disease.

Weights Information Iterate Process
In order to visualize the optimization process of the numerical
distribution of the convolutional layer, the histogram of weight
value distribution of part convolutional layers is drawn, which
is shown in Figure 7. Figure 7A shows the iterative process
of the weights information of the first convolutional layer
of the network. The abscissa is the numerical change of
the convolutional layer during the iteration process, and
the ordinate is the number of iterations. It can be seen
that the weights information with large contribution is
gradually highlighted, indicating that the model has been
continuously optimized during the training process. When
iterating to the 25th epoch, the weights value basically no
longer changes, indicating that the network training has
tended to be saturated. Figure 7B is the tiled form of
histogram of the last convolutional layer in the network.
The abscissa represents the numerical information of the
convolutional layer, and the ordinate represents the number
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FIGURE 6 | The overall flowchart of grape fine-grained disease image identification.

of times the corresponding numerical value appears. With
the training process proceeds, the data distribution tends to
be concentrated. In order to keep the training process stable
and convergent, the learning rate decays according to the
cosine curve.

Performance of Proposed Model
In order to evaluate the performance of the model, the proposed
model is tested with RTD, and the confusion matrix of the
0.5× version and 1.0× version of ECA-SNet is shown in
Figures 8A,B. Figures 8A,B show the classification performance
of ECA-SNet, and the accuracy reached 98.86 and 99.66%,
respectively. Among them, the main misclassification of 0.5×
version of the model is misidentification of the Black rot
as Black measles, and there is also a little misidentification
between Downy mildew, Powdery mildew, and Healthy leaves.
Compared with 0.5× version, ECA-SNet 1.0× has a higher
recognition performance, and the error is further reduced.
Accurate recognition of fine-grained images in a complex
background poses a great challenge, but the false recognition of
each category of the model in this paper is steadily maintained
at a low level. The test results show that ECA-SNet can
accurately perceive key areas and has strong robustness and
stability for fine-grained image recognition of grape diseases in
complex environments.

Comparison of Proposed Model With
Traditional Lightweight CNNs
In order to clarify the performance level of the model,
the comparative test is conducted with multiple lightweight
networks. Based on the confusion matrix, indicators, such as
accuracy, precision, recall, and F1-score, are used to measure
the comprehensive recognition performance of different grape
diseases in each network. Accuracy, precision, recall, and F1-
score are calculated from true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) results. The
calculation of these indicators is shown in Equations (5–8):

Accuracy=
TP+TN

TP+FP+TN+FN
(5)

Precision=
TP

TP+FP
(6)

Recall=
TP

TP+FN
(7)

F1− score=2×
Precision× Recall

Precision+Recall
(8)

The performance indicators of ECA-SNet and other commonly
used lightweight networks are compared, and the statistical
results are shown in Table 4. MobileNet-v2 adopts the inverted
residual structure, which effectively avoids the problem of
model degradation. Deep separable convolution, the core of
feature extraction, can greatly reduce the amount of parameters
and calculations while ensuring accuracy. The RTD accuracy
of MobileNet-v2 0.4× can reach 95.23%, which proves that
the bottleneck structure has a strong feature learning ability.
It is worth noting that, although both the 0.4× and 0.7×
versions of MobileNet-v2 can achieve acceptable recognition
accuracy, they need more calculations compared with other
lightweight networks, which has a certain impact on the running
speed of the model. By introducing the channel attention
mechanism and redesigning the time-consuming layer structure,
MobileNet-v3 greatly reduces the amount of calculations and
achieves an average F1-score slightly higher than MobileNet-v2.
However, due to the adoption of the channel attention strategy
that included the dimensionality reduction layer, it inevitably
leads to the increases of the parameters. The ShuffleNet-v2
network optimized the ShuffleNet structure based on criteria,
such as optimal MAC, reduced network fragmentation, and
reduced element-wise operations. Since the network failed to
pay attention on the fine-grained information of the key areas
of grape leaves when extracting features, the ShuffleNet-v2 test
results performed poorly. Additionally, it can be seen from
Table 4 that the higher complexity of the relevant network has
a certain improvement in the effect of disease identification. It is
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FIGURE 7 | Histogram of weights numerical distribution of the convolutional layer. (A) The numerical distribution iteration process of the first convolutional layer, (B)

The numerical distribution iteration process of the last convolutional layer.

FIGURE 8 | Confusion matrix of proposed ECA-SNet. (A) ECA-SNet_ 0.5 × (B) ECA-SNet_1.0 ×.

because the increase of feature extraction layer structure enables
the network to learn more relevant features, but this also leads to
a rapid increase of model volume.

ECA-SNet generates high-efficiency channel attention by

adaptively selecting the size of a one-dimensional convolution

kernel on the basis of ShuffleNet-v2 and avoiding dimensionality

reduction operations. The channel interaction strategy greatly

improved the performance of channel attention, making ECA-
SNet have the accurate recognition performance. The test

accuracy of ECA-SNet 0.5× and ECA-SNet 1.0× with the

RTD reaches 98.86 and 99.66%, respectively, which are higher
than other networks of the same magnitude and have the
least amount of parameters and computational costs. The test
results show that avoiding dimensionality reduction and proper
cross-channel interaction is very important for learning efficient
channel attention.

Network Attention and Fine-Grained
Visualization
The evaluation of model performance through common
indicators lacks intuitive display, and it is difficult to understand
which part of the input image the model relies on to make
decisions. In order to understand and analyze the network
structure and visually display the model decision-making basis,
the attention heat map visualization method is used to display
the attention area. Table 5 shows the attention heat map of
ECA-SNet and other commonly used lightweight models. Sample
images of healthy, downy mildew, black rot, powdery mildew,
and leaf blight are randomly selected for testing. The red mark
in the original image in Table 5 is the annotation information of
the diseased area on the grape leaves by the expert. According to
the visualization results, it can be seen that the location of the
key fine-grained features of grape disease images in a complex
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TABLE 4 | Performance comparison of the proposed ECA-SNet against the classical lightweight CNNs.

Model Accuracy/% Average Precision/% Average Recall/% Average F1-score FLOPs/M Params/M

MobileNet-v3 small_0.75× 94.76 95.28 94.76 0.950 40.7 0.89

ShuffleNet-v2_0.5× 92.46 92.81 92.46 0.926 41.5 0.35

MobileNet-v2_0.4× 95.23 92.25 95.23 0.937 81.5 0.39

ECA-SNet_0.5× 98.86 98.86 98.86 0.988 37.4 0.31

MobileNet-v3 large_0.75× 96.70 96.83 96.70 0.967 146.1 2.42

ShuffleNet-v2_1.0× 95.20 95.30 95.20 0.952 147.8 1.26

MobileNet-v2_0.7× 95.93 96.03 95.93 0.959 178.6 1.12

ECA-SNet_1.0× 99.66 99.66 99.66 0.996 125.6 1.08

Bold values indicate best results under each index.

TABLE 5 | Visualization of attention heat map of grape leaf diseases.

Class Original image ShuffleNet-v2 0.5× MobileNet-v2 small 0.4× MobileNet-v3 small 0.75× ECA-SNet 0.5×

Healthy

Downy mildew

Black rot

Powdery mildew

Leaf blight

background is difficult to determine, and neither ShuffleNet
nor MobileNet can accurately focus on the key feature regions.
The MobileNet-v2 network pays attention to much background
information, which leads to insufficient feature learning. On
account of MobileNet-v3 introduction of a channel attention
mechanism, it plays a certain role in the key area of feature
learning and reduces the attention of background information,
but the effect is still poor. The ECA-SNet proposed in this
paper can distinguish the foreground and the background and
accurately locate the key areas. The leaf diseased area is strongly
activated as the decision-making basis. In the recognition of
diseased leaves with a purity background, each network can focus
on the diseased area to varying degrees and has remarkable
recognition ability. Compared with other networks, ECA-SNet
can more comprehensively focus on lesion areas in different
locations and has more superior decision-making capability.

The diseased spots of grape leaves are usually scattered
randomly in different positions on the leaves; the shape, size,

and density of the diseased spots will affect Grad-CAM++

(Chattopadhyay et al., 2017). Therefore, in order to further
display the fine-grained information of the network focus
area, the guided back propagation and Grad-CAM++ were
dot multiplication to obtain visual feature maps. The feature
maps obtained above have both high resolution and category
separability. Some example image test results are shown in
Table 6. The red mark in the original image in Table 6 is
the annotation information of the region of interest (diseased
area) on the grape leaves by the expert. The feature maps of
ShuffleNet-v2 are sensitive to large areas of lesions and can
accurately locate the area of lesions. When the lesions become
smaller and their locations gradually disperse, the fine-grained
information extraction capability of themodel is greatly declined.
The fine-grained information extracted by MobileNet-v2 has
much redundancy, which affects the accurate judgment of the
model. MobileNet-v3 reduces redundancy, but the richness of
fine-grained information is also reduced and fails to accurately
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TABLE 6 | Fine-Grained feature visualization of grape leaf diseases.

Class Original image ShuffleNet-v2 0.5× MobileNet-v2 small 0.4× MobileNet-v3 small 0.75× ECA-SNet heatmap ECA-SNet 0.5×

Black measles

Black rot

Leaf blight

locate the key information for classification decisions. According
to Table 6, it can be found that ECA-SNet has excellent
adaptability to lesion features; the key fine-grained information
is comprehensive, and the information redundancy is low. The
model in this paper can accurately locate different lesion shapes,
positions, and densities and can make accurate classification
decisions accordingly. The above test results show that the model
in this paper fully considers the characteristics of disease spots
and model structure, and the performance of grape leaf disease
recognition is improved significantly.

CONCLUSION

A fine-grained image recognition model for grape diseases
with an improved lightweight channel attention mechanism is
proposed in this paper, which provides technical support for
dynamic and efficient management of orchard grape diseases.
Based on mobile devices, 3,388 images of grape leaf diseases
are collected in the field, and 3,479 images are obtained
from public data sets. By using image-enhancement techniques,
the FGDs containing 62,670 images are generated. First, on
the basis of ShuffleNet, a cross-channel interaction strategy
without dimensionality reduction is used to make the model
have efficient channel attention. Second, the layer structure
is reduced in different stages to build an efficient ECA-
SNet with a less parameter. Ultimately, the cross-channel
coverage is determined by adaptively selecting the one-
dimensional convolution kernel, which reduces the calculation
costs while maintaining efficient channel attention performance.
The proposed model is trained with FGDs and has been tested
with RTD. The comparative experiments, including various
performance evaluation indicators and process visualization, are
carried out.

Through the experimental results, it can be seen that the
model proposed in this paper achieves the best recognition

effect under the condition of extremely low calculation
and parameters, with an accuracy of 98.86% and the F1-
score of 0.988. Means, such as visualization, also show the
superior performance of the model and realize the efficient
performance of fine-grained disease images identification of
grape leaves. The above work laid the theoretical foundation
for the next development of automatic inspection equipment
for disease identification and real-time orchard grape disease
information acquisition.
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