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A major challenge in the analysis of plant breeding multi-environment datasets is the

provision of meaningful and concise information for variety selection in the presence of

variety by environment interaction (VEI). This is addressed in the current paper by fitting

a factor analytic linear mixed model (FALMM) then using the fundamental factor analytic

parameters to define groups of environments in the dataset within which there is minimal

crossover VEI, but between which there may be substantial crossover VEI. These groups

are consequently called interaction classes (iClasses). Given that the environments within

an iClass exhibit minimal crossover VEI, it is then valid to obtain predictions of overall

variety performance (across environments) for each iClass. These predictions can then

be used not only to select the best varieties within each iClass but also to match varieties

in terms of their patterns of VEI across iClasses. The latter is aided with the use of a new

graphical tool called an iClass Interaction Plot. The ideas are introduced in this paper

within the framework of FALMMs in which the genetic effects for different varieties are

assumed independent. The application to FALMMs which include information on genetic

relatedness is the subject of a subsequent paper.

Keywords: multi-environment trials, plant breeding, crop variety evaluation, linear mixed models, factor analytic

linear mixed models, variety by environment interaction

1. INTRODUCTION

Plant breeding multi-environment trials (METs) comprise series of variety trials conducted at a
range of geographic locations and typically across several years (synonymous with seasons). They
are an important component of identifying superior varieties as they allow an assessment of variety
by environment interaction (VEI), that is, the differential performance of varieties in response to a
change in environment. It is widely known that there are numerous advantages in analyzing MET
datasets using a linear mixed model (LMM) approach in which a factor analytic (FA) variance
structure is assumed for the variety effects in individual environments (see Smith et al., 2005,
2021; Gogel et al., 2018, for example). Key benefits are the ease with which incomplete data (not
all varieties grown in all environments) can be handled, the ability to appropriately account for
individual trial designs and the ability to include information on genetic relatedness, either through
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ancestral (pedigree) or genomic (marker) data. Furthermore, the
FA component of the model consistently provides a good fit to
the data and allows quantification and interpretation of VEI.
All of this is achieved using a one-stage approach in which a
single statistical analysis is conducted using the individual plot
data combined across environments. This can be contrasted with
two-stage approaches in which variety means from the separate
analysis of each environment (stage 1) are used as “data” in a
subsequent MET analysis (stage 2). There are inherent efficiency
losses with two-stage approaches, even when adequatemodels are
used in each stage (Gogel et al., 2018). Typically, further losses are
incurred because two-stage approaches often employ simplistic
models that rarely provide a good fit to the data. The clear benefits
of the one-stage factor analytic linear mixed model (FALMM)
approach has led to its use in the majority of Australian plant
breeding programs and in the Australian National Variety Trials
system (GRDC, 2021).

The fundamental information for variety selection from an
FALMM are the predictions of the variety effects for individual
environments (VE effects), where environments are defined to
be the combinations of the geographic locations and years of
the trials present in the dataset. For any given environment, the
variety predictions are an accurate reflection of how the varieties
performed in the environmental conditions that occurred at that
particular location and in that particular year. Although this
historical and specific perspective may be of interest, it is more
likely that breeders and growers are concerned more generally
with the performance of varieties across a range of environments
that may be encountered in the future and reflect the target
population of environments (see Cooper and Fox, 1996; Chenu
et al., 2011, and references there-in). What is required, therefore,
are meaningful summaries of the variety predictions across the
environments in the dataset.

Smith and Cullis (2018) focussed on this problem, noting
that the FALMM “out-performs others in terms of the model
fitting component of a MET analysis but it has failed to
deliver on the prediction component, in the sense of providing
concise information to aid with variety selection.” They made
a significant contribution toward the latter with their Factor
Analytic Selection Tools (FAST) which included measures of
variety performance and stability across all environments in the
dataset. These measures were derived using the fact that a factor
analytic model of order k (denoted FAk) for the VE effects,
has a similar appearance to a multiple regression of the VE
effects on k environment covariates (called loadings) and with
separate slopes (called scores) for individual varieties. Unlike a
multiple regression, however, both the covariates and the slopes
are unknown. In the FALMM, the loadings are specified as
variance parameters and the scores as random effects. Thus,
the analysis provides residual maximum likelihood (REML)
estimates of the loadings and empirical best linear unbiased
predictions (EBLUPs) of the scores. As a post-processing step, the
estimated loadings are rotated to a principal component solution,
that is, such that the first rotated estimated loading accounts for
the maximum amount of covariance in the VE effects, the second
accounts for the next greatest amount and is orthogonal to the
first, and so on (Smith et al., 2001; Smith and Cullis, 2018).

Given this framework, Smith and Cullis (2018) noted that
the (rotated) estimated loadings for the first factor are often
all positive in which case they represent a weighted average of
all environments. Higher order factors are typically “bipolar”
(Lawley and Maxwell, 1971), that is they have positive loadings
for some environments and negative loadings for the remainder,
so represent contrasts between environments. With this scenario,
the first factor reflects overall variety performance combined with
scale related (non-crossover) VEI and higher order factors reflect
crossover VEI. Smith and Cullis (2018) therefore defined the
overall performance (OP) for a variety using the EBLUP of the
first factor score. Variety stability was defined as a function of
the EBLUPs of the scores for all other (higher order) factors
and this quantified the amount of crossover VEI exhibited by
individual varieties.

The paradigm of the first factor representing a generalized
variety main effect (defined as OP) and higher order factors
representing crossover VEI is plausible and occurs often in
practice. However, it raises the standard problem that exists
in a factorial experiment, namely whether there is any sense
or validity in examining main effects in the presence of
interaction. The underlying statistical issues of marginality and
“uninteresting hypotheses” have been discussed at length in
Nelder (1977) and Nelder (1994). Venables (2000) points out
that “If there is an interaction between factors A and B, it is
difficult to see why the main effects for either factor can be of any
interest, since to know what the effect of changing an A-level on
the response will be depends on which B-level is in force.” Thus,
in the FALMM context, variety OP may not be the most useful
measure on which to base selection unless the first factor in an
FAk model not only contains all positive estimated loadings, but
also accounts for a large percentage of the total variance of the VE
effects. If this is not the case, then crossover VEI in the dataset is
non-ignorable and needs to be considered when making variety
selection decisions.

In this paper we address the issue of summarizing variety
performance in the presence of interaction by defining groups
of environments within which crossover VEI is minimal. This
is achieved using the fundamental parameters of the FA model
and the characteristic that a bipolar factor represents a contrast
between two sets of environments. Groups of environments
formed on the basis of the signs of their estimated loadings
in individual factors have the property that crossover VEI is
minimized between environments in the same group but may
be substantial between environments in different groups. The
groups will therefore be called “interaction classes” (iClasses). It
is then appropriate and meaningful to apply FAST separately to
each iClass to aid with variety selection decisions.

In order to clearly elucidate the concepts of iClasses, the
current paper will consider the simplest form of an FALMM in
which the VE effects are assumed to be independent between
varieties. Historically, this was the starting point for FALMMs
(see Smith et al., 2001) and the model was applied to plant
breeding MET datasets for all stages of selection and was also
used for crop variety evaluation datasets. More recently, however,
it has been shown there are substantial gains, particularly for
early stage selection, in using an FALMM in which information
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on genetic relatedness (either ancestral or genomic) is included
(Oakey et al., 2007; Beeck et al., 2010; Cullis et al., 2010; Smith
et al., 2021). In terms of the iClass approach, FALMMs of
this form have additional issues to consider and these will be
discussed in a subsequent paper.

The paper is arranged as follows. In section 2 a motivating
example comprising late stage wheat variety trials is described.
Section 3 outlines the FALMMused in this paper which involves a
modification to the variance assumptions previously used for the
variety scores. Section 4 commences with a re-cap of the factor
analytic selection tools proposed by Smith and Cullis (2018)
then outlines the new approach of iClasses. The methods are
applied to the motivating example in sections 5, 6 provides some
concluding remarks.

2. MOTIVATING EXAMPLE

The MET dataset considered in this paper was constructed
in order to demonstrate the iClass approach within the
framework of an FALMM in which the VE effects are assumed
independent between varieties. We stress that it is for illustrative
purposes only.

The dataset comprised late-stage variety trials conducted by an
Australian Grain Technologies (AGT) wheat breeding program
over the period 2014–2017. The trials corresponded to the final
two stages of testing in the program, namely stages 3 and 4
(S3 and S4) and were grown in Western Australia (WA), South
Australia (SA), Victoria (Vic) and New South Wales (NSW). The
aim of the analysis is to identify superior varieties amongst the 96
tested in S4 trials in 2017.

Across the full dataset there were 73 environments (trial
location by year combinations, seeTable 1) and 622 varieties. The
2017 data were balanced in the sense that all 96 varieties were
grown in all 18 environments. The connectivity between 2017
trials and the earlier years is shown in Table 2. Of the 96 varieties
tested in S4 in 2017, 27 were represented in all 4 years of this
dataset; 12 were in the 3 years 2015, 2016, and 2017; one was in
the 3 years 2014, 2015, and 2017; 26 were in the 2 years 2016 and
2017 and 30 appeared in 2017 alone.

In 2017, each environment involved a single (S4) field trial
whereas many of the environments in earlier years encompassed
multiple trials, called co-located trials (Smith et al., 2021).
These arose due to the conduct of both S3 and S4 trials at
an environment (see Table 1). In our context a field trial is a
physical block of plots onto which a valid experimental design
(with replication and randomization) is imposed. The full dataset
included 126 trials, each of which comprised a two-dimensional
arrangement of plots indexed by rows and columns. Trials had
either 12 or 24 columns and the number of rows ranged from 10
to 24 for trials with 12 columns and from 7 to 12 for trials with 24
columns. The number of varieties per trial ranged from 91 to 139
with a median of 110. In the majority of trials (103 of the 126),
varieties were tested with replication (typically with two or three
replicate plots). The remaining 23 trials used partially replicated
designs (Cullis et al., 2006) in which some varieties were tested
without replication (that is, a single plot for each) and others

were tested using two replicate plots. On average, 25% of varieties
within these trials had two replicate plots. Blocking was employed
in themajority of trials with either two or three blocks. The blocks
were aligned with columns or rows, or sometimes both columns
and rows (corresponding to blocking in two directions).

3. STATISTICAL METHODS

It is assumed that the MET dataset comprises p environments,
each of which may constitute a single trial or may encompass
multiple (co-located) trials. Let yj denote the nj−vector of data

for the jth environment, j = 1 . . . p. We then let y denote the
n−vector of data combined across all environments in the MET,
so write y = (y⊤1, y

⊤
2, . . . , y

⊤
p)

⊤. Note that n =
∑p

j=1 nj. The linear

mixed model for y can be written as

y = Xτ + Zgug + Zpup + e (1)

where τ is a vector of fixed effects with associated design
matrix X; ug is the vector of random genetic effects with
associated design matrix Zg ; up is a vector of random non-
genetic (or peripheral) effects with associated design matrix Zp

and e = (e⊤1, e
⊤
2, . . . , e

⊤
p)

⊤ is the combined vector of residuals
from all environments. The vector of fixed effects includes mean
parameters for individual environments. The vector of random
peripheral effects includes effects associated with the designs of
individual trials within environments. The variance matrix for
up is typically given by Gp = ⊕b

i=1σ
2
pi
Iqi where b is the number

of components in up and qi is the number of effects in (length
of) upi.

3.1. Variance Models for Genetic Effects
The random genetic effects comprise the variety effects nested
within environments, and will be referred to as the VE effects.
If we let m denote the total number of unique varieties across
all environments, then the vector ug has length mp. We assume
this is ordered as varieties within environments. In this paper,
the nature of the MET dataset is such that no information on
relationships between varieties is included in the analysis. This
is the subject of a subsequent paper. Thus, it is assumed that

var
(

ug
)

= Ge ⊗ Im (2)

whereGe is a p×p symmetric positive (semi)-definite matrix that
will be referred to as the between environment genetic variance
matrix. The matrix Im is anm×m identity matrix.

3.1.1. Factor Analytic Model for VE Effects
A factor analytic model of order k, denoted FAk, is assumed for
the VE effects and is written as

ug = (3 ⊗ Im) f + δ (3)

where 3 is the p × k matrix of environment loadings for
individual factors; f is the mk−vector of variety scores (ordered
as varieties within factors) and δ is themp−vector of VE lack of fit
effects. It is assumed that f and δ are independent and distributed
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TABLE 1 | Environment summary information: numbers of (co-located) trials,

plots, and varieties; mean yield (t/ha).

Environment Trials Plots Varieties Mean yield

14L01 3 624 320 3.58

14L03 2 384 236 3.24

14L04 3 624 320 3.27

14L05 2 408 191 1.52

14L06 3 576 320 1.73

14L07 3 576 320 2.38

14L08 2 408 191 1.41

14L09 3 576 320 2.19

14L10 2 408 191 1.07

14L12 3 576 320 3.15

14L13 2 504 236 2.67

14L14 2 384 236 3.46

14L15 3 576 320 1.69

14L16 2 384 236 1.86

14L17 3 624 320 4.14

14L18 2 408 191 1.59

14L19 2 384 236 2.84

14L20 2 504 236 2.42

14L21 2 504 236 5.61

14L23 2 504 236 5.05

15L01 2 468 214 3.07

15L02 2 372 214 1.51

15L03 2 372 214 4.33

15L04 2 468 214 2.89

15L05 1 228 114 3.38

15L06 2 372 214 2.55

15L07 2 372 214 1.95

15L08 1 228 114 3.43

15L10 1 228 114 3.66

15L11 2 372 214 4.46

15L12 2 372 214 3.06

15L13 2 468 214 1.84

15L14 2 372 214 4.23

15L17 2 468 214 3.50

15L18 1 228 114 1.45

15L19 2 372 214 2.83

15L20 2 468 214 1.64

15L21 2 468 214 4.14

15L22 2 468 214 3.82

15L23 2 468 214 3.46

16L01 2 528 216 2.05

16L02 2 456 216 4.72

16L03 2 456 216 6.42

16L04 2 528 216 4.40

16L05 1 288 112 3.73

16L08 1 288 112 3.82

16L10 1 288 112 2.03

16L11 1 288 112 2.50

16L14 1 288 112 6.16

(Continued)

TABLE 1 | Continued

Environment Trials Plots Varieties Mean yield

16L17 2 528 216 2.46

16L18 1 288 112 1.97

16L19 2 456 216 5.37

16L20 2 528 216 3.69

16L21 2 528 216 6.95

16L23 2 528 216 7.42

17L01 1 288 96 3.46

17L02 1 288 96 3.76

17L04 1 288 96 2.17

17L05 1 288 96 1.98

17L06 1 288 96 1.19

17L07 1 288 96 3.29

17L08 1 288 96 1.33

17L10 1 288 96 1.48

17L11 1 288 96 4.41

17L12 1 288 96 3.25

17L13 1 288 96 5.28

17L15 1 288 96 1.93

17L18 1 288 96 1.07

17L19 1 288 96 3.35

17L20 1 288 96 3.50

17L21 1 288 96 5.70

17L22 1 288 96 2.47

17L23 1 288 96 5.14

Environment name comprises the last two digits of the year of testing (2014–2017) and a

code for the trial location (L01 - L23).

TABLE 2 | Variety connectivity matrix across years: diagonal elements are

numbers of varieties grown in individual years; off-diagonal elements are numbers

in common between pairs of years.

2014 2015 2016 2017

2014 320 82 45 28

2015 82 214 76 40

2016 45 76 216 65

2017 28 40 65 96

as multivariate Gaussian with zero means and variance matrices
given by

var
(

f
)

= D⊗ Im and var (δ) = 9 ⊗ Im (4)

where D is a k × k symmetric positive (semi)-definite matrix
that will be referred to as the factor score variance matrix and
9 is a p× p diagonal matrix with elements referred to as specific
variances. These assumptions lead to a variancematrix for the VE
effects of the form

var
(

ug
)

=
(

3D3⊤ + 9
)

⊗ Im (5)

so that the between environment genetic variance matrix is given
by Ge = 3D3⊤ + 9 .
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It is important to note that constraints must be imposed on
3 and D to ensure a unique solution. This is required for both
estimation and interpretation but different constraints may be
chosen for each purpose. In terms of interpretation, Smith and
Cullis (2018) adopt the constraints that (a) the factor scores are
independent with unit variance so that D is an identity matrix
and (b) the loadings are such that 3⊤3 is a diagonal matrix with
elements written in decreasing order. Although the constraints in
(a) are commonly applied in the field of factor analysis, they lead
to atypical properties when the FA model is embedded within a
LMM. Typically, the random effects in a LMM have variances
on a scale given by the square of the units of the trait under
study. Their associated design matrices are free of this scale. The
constraints of unit variance for the factor scores leads to the
opposite scenario. Thus, to maintain consistency across all sets
of random effects in the FALMM, we use a variation in which
we assume that (a) the factor scores are independent so that D is
a diagonal (non-identity) matrix with elements dr (r = 1 . . . k)
and furthermore these are written in decreasing order and (b)
the loadings are such that 3⊤3 is an identity matrix (that is, the
columns of3 are orthonormal vectors). The constraints required
for estimation will be discussed in section 3.3.

It is instructive to write the FAk model for the VE effects in
expanded form. We therefore write 3 = [λ1, . . . ,λk] where λr

is the p−vector of environment loadings for factor r and write
f = (f⊤1, . . . , f

⊤

k)
⊤ where f r is the m−vector of variety scores for

factor r. The model in Equation (3) can then be written as

ug = (λ1 ⊗ Im) f 1 + (λ2 ⊗ Im) f 2 + . . .+ (λk ⊗ Im) f k + δ (6)

This has the appearance of a multiple regression with k terms in
which the independent variables are the environment loadings
(λr), and there are separate slopes for individual varieties which
are given by the variety scores (f r). The percentage of genetic
variance accounted for by the rth term (factor) is then given by

vr = 100× tr
(

var
(

(λr ⊗ Im) f r
))

/tr
(

var
(

ug
))

= 100× dr/tr (Ge)

and since the factor score variances, dr , are in decreasing order
then so too are the variances accounted for, that is v1 > v2 >

. . . > vk.
Following Smith and Cullis (2018) we define the common

VE (CVE) effects as β = (3 ⊗ Im) f so that ug = β + δ.
The descriptor stems from the fact that these VE effects can
be interpreted as fitted values in the FA model so represent
sources of genetic covariance that are “common” to multiple
(at least two) environments. In contrast, the lack of fit effects
δ represent variation that is specific to individual environments
so will hence-forth be called the specific VE (SVE) effects.
In terms of the dataset under study, the CVE effects reflect
repeatable sources of genetic variation where-as the genetic
variation associated with the SVE effects is non-repeatable.
As discussed in Smith and Cullis (2018), predictions of the
CVE effects can be obtained for the complete two-way (variety
by environment) table, irrespective of whether varieties were
grown in an environment. This implies that it is reasonable to

summarize CVE effects across any subset (or all) environments,
a property that will be exploited in section 4.2. In contrast, in the
absence of information on genetic relatedness, predictions of the
SVE effects will be zero in cases where varieties were not grown
in an environment. It is therefore not possible to summarize VE
effects (which are the sum of the CVE and SVE effects) across
environments without paying careful attention to the pattern of
“missingness” in the variety by environment table. The VE effects
may still be considered on an individual environment basis, but
as discussed in section 1, we view these purely as a reflection
of variety performance as it happened in the particular location
and year of the environment concerned. Finally we note that if
the percentage of variance accounted for by the FA model for an
individual environment is high, then the predicted VE and CVE
effects for the environment will be very similar (and equal in the
case of 100% variance accounted for).

3.2. Variance Models for Residuals
The variance matrix for the residuals is given by var (e) = R

and is assumed to be block diagonal, so that R = ⊕
p
i=1Rj where

Rj = var
(

ej
)

is the variance matrix for the residuals for the jth

environment. In the LMM of Smith et al. (2001), spatial models
are used for the residuals so that the matrices Rj correspond to
separable autoregressive processes (Cullis and Gleeson, 1991).
Note that terms that reflect the experimental designs are also
included in the model.

3.3. Model Fitting and Estimation
Every LMM in this paper was fitted using ASReml-R (Butler
et al., 2017). The FA variance models were fitted as in Smith and
Cullis (2018), that is, by splitting the VE effects into the CVE and
SVE effects, each with their own variance structure. Thus, the two
variance models were:

var (β) =
(

3D3⊤
)

⊗ Im

var (δ) = 9 ⊗ Im

Implementation of the constraints discussed in section 3.1.1
is difficult and ASReml-R (Butler et al., 2017) uses simpler
constraints, namely to set D = Ik and, for k > 1, to set all
the elements in the upper triangle of 3 to zero. We denote the
loading matrix with these constraints as 3∗ and the associated
vector of scores as f ∗. The original forms can be re-constructed
using a rotation based on the singular value decomposition of3∗,
namely

3∗ = UL1/2V⊤

whereU andV are p×k and k×k orthonormal matrices such that
the columns ofU are the eigenvectors of3∗3∗⊤ and the columns
of V are the eigenvectors of 3∗⊤3∗. The matrix L is a k × k
diagonalmatrix with elements given by the eigenvalues of3∗3∗⊤,
in decreasing order. We then form 3 as 3∗VL−1/2 (= U) and D

as L. Finally the variety scores f are formed as
(

L1/2V⊤ ⊗ Im
)

f ∗

so that var
(

f
)

= D⊗ Im as required.
If the variance parameters are known, the random effects

in the model may be predicted using best linear unbiased
predictions (BLUPs) and the fixed effects may be estimated using
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best linear unbiased estimates (BLUEs). These are all obtained
as solutions to the mixed model equations (MME) (Henderson,
1950). Of particular interest are the variety scores, f , the BLUPs
of which are given by

f̃ =
(

D3⊤ ⊗ Im
)

Zg
⊤Py (7)

where P = H−1 − H−1X
(

X⊤H−1X
)−

X⊤H−1 and H =

var
(

y
)

= ZgGgZg
⊤ + ZpGpZp

⊤ + R. The matrix
(

X⊤H−1X
)−

is any generalized inverse of
(

X⊤H−1X
)

. Note that the BLUPs of
f can also be expressed as

f̃ =
(

L1/2V⊤ ⊗ Im
)

f̃
∗

(8)

where f̃
∗
=

(

3∗⊤ ⊗ Im
)

Zg
⊤Py are the BLUPs of f ∗.

The variance parameters are unknown, however, and are
estimated using residual maximum likelihood (REML). These are
then substituted into the MME which leads to empirical best
linear unbiased estimates (EBLUEs) and empirical best linear
unbiased predictions (EBLUPs) of the fixed and random effects,
respectively. Note that if we denote the REML estimate of the

loadings matrix from ASReml-R (Butler et al., 2017) as 3̂
∗
,

we then use a singular value decomposition on this matrix

to form 3̂ and D̂. The EBLUPs of f ∗ are obtained directly
from ASReml-R (Butler et al., 2017) and the EBLUPs of f are
obtained using Equation (8) with L and V obtained from the

singular value decomposition of 3̂
∗
. In the remainder of this

paper BLUPs and EBLUPs will both be represented using the
“tilde” notation and the distinction will be made in words. The
code for fitting and summarizing the models is provided in the
Supplementary Material.

4. FACTOR ANALYTIC SELECTION TOOLS
(FAST)

4.1. FAST of Smith and Cullis (2018)
In the case where all (or nearly all) the estimated loadings for
the first factor are positive, Smith and Cullis (2018) defined the
overall performance (OP) for variety i as

OPi = λ̄1 f̃1i (9)

where λ̄1 is the mean of the estimated loadings for the first factor.
Smith and Cullis (2018) noted that OP could be viewed in terms
of the first latent regression plot (LR1) for a variety, namely a
scatter plot with the EBLUPs of the CVE effects as the y− axis
and the estimates of the first factor loadings as the x− axis. The
fitted regression line is also shown on this plot and has slope
given by the EBLUP of the first factor score and an intercept of
zero. OP is then the fitted value (point on the regression line)
corresponding to an x−value of λ̄1. We note that it is also the
mean of the fitted values for individual environments along this
regression line. Smith and Cullis (2018) also used the first latent
regression plot to define a measure of stability for each variety in
terms of the “residual” sums of squares about the regression line.

Thus, for variety i they defined stability as the root mean squared
deviation (RMSD) which is given by

RMSDi =

√

√

√

√

p
∑

j=1

(

β̃ij − λ̂1j f̃1i

)2
/p (10)

Note that with our new constraints, this could also be written as
√

∑k
r=2 f̃

2
ri/p.

4.2. Interaction Classes and Extensions of
FAST
As discussed in section 1, the use of OP (a generalized variety
main effect) in the presence of crossover VEI may be misleading.
We propose identification of groups of environments, called
interaction classes (iClasses), within which there is minimal
crossover VEI. By definition, crossover VEI as modeled by the
FALMM, is associated with bipolar factors. Hence a natural and
simple approach for minimizing crossover VEI across all factors
is to first map the estimated loadings for factor r (r = 1 . . . k) to
a categorical variable Sr which has only two possible values for
environment j (j = 1 . . . p):

Srj = sign(λ̂rj) =

{

“p” (positive) if λ̂rj > 0

“n” (negative) if λ̂rj < 0
(11)

iClasses are then formed from all possible combinations of the
values (“p” or “n”) of the categorical variables Sr . Using the
notation of Bailey (2008) this can be written as iClass= S1∧S2∧

. . . ∧ Sk. Thus in an FAk model there are potentially 2k iClasses
and these can be labeled with a k-character code which is a “paste”
of the possible values in Sr . For example, in an FA3 model there
is a maximum of 8 iClasses and we denote the set of labels by
� = (ppp, ppn, pnp, pnn, npp, npn, nnp, nnn). Note that not all
2k iClasses may be represented in the dataset.

In this way, every environment is classified into one iClass.
Within each iClass, the estimated loadings for any factor have
the same sign for all environments so that none of the factors
represent contrasts between environments. Thus, all factors,
rather than just the first, can be used to obtain a measure of OP.
This will be termed iClass overall performance (iClassOP). Given
the regression interpretation of the FA model, a natural measure
of iClassOP for each variety and iClass is the prediction at the
mean values of the factor loadings for those environments in the
iClass. Due to the manner in which the iClasses are formed, this
is equivalent to the mean of the CVE effects for the variety across
the environments in the iClass. We let λ̄rω denote the mean of
the loadings for factor r (r = 1 . . . k) across the environments in
iClass ω (ω ∈ �), that is

λ̄rω =
∑

j∈ω

λ̂rj/nω

where nω is the number of environments in iClass ω and the
sum is taken over those environments. We can then calculate the
iClassOP for variety i in iClass ω as
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TABLE 3 | Summary of non-genetic effects and spatial models for individual environments in the FALMM.

Row Column Spatial Number of

block block Row Column model environments

− X X X ar1 × ar1 14

− X − X ar1 × ar1 13

− − X X ar1 × ar1 8

X X X X ar1 x ar1 7

− X X − ar1 × ar1 5

− X X X id × ar1 5

− X X X ar1 × id 3

− − − X ar1 × ar1 2

X − − X ar1 × ar1 2

X X − X ar1 × ar1 2

− − X X id × ar1 2

X X X X id × ar1 2

− − X − ar1 × ar1 1

X X X − ar1 × ar1 1

X − X X ar1 × ar1 1

X X X X ar1 × id 1

− X X − id × ar1 1

− X − X id × ar1 1

− X − X id × id 1

− − X X id × id 1

Non-genetic effects included random effects for blocks in the row and/or column dimension (Row and Column Block, respectively) and random Row and/or Column effects. Spatial

models were all two-dimensional (column x row) with each dimension an autoregressive process of order one (ar1) or independence (id). Final column gives the number of environments

for the given combination of non-genetic effects and spatial model and is listed in order of frequency of occurrence.

OP:ωi =

k
∑

r=1

λ̄rω f̃ri (12)

=
∑

j∈ω

β̃ij/nω

In the same way that the LR1 plots provide a visual interpretation
of OP and RMSD for the complete set of environments, an
analogous set of plots can be drawn for individual iClasses. These
will be termed iClass first latent regression (iClassLR1) plots.
For a given variety, these show the EBLUPs of the CVE effects
plotted against the estimates of the first factor loadings for those
environments in the iClass. The fitted regression lines are also
shown on these plots and have slopes given by the EBLUP of
the first factor score and intercepts that depend on the predicted
values for the higher order factors. Specifically the intercepts are
the predictions at the mean of the loadings for factors 2 . . . k for

the iClass so are given by
∑k

r=2 λ̄rω f̃ri. The key visual features
of the full LR1 plots can be transferred to the iClassLR1 plots.
Thus, iClassOP for a variety is the point on the regression line in
the iClassLR1 plot that corresponds to the mean value of the first
factor loadings for that iClass. iClassRMSD can be calculated in
an obvious manner using the residual sums of squares about the
iClassLR1 regression line.

5. RESULTS

5.1. Non-genetic Effects and Spatial
Variation
Although the genetic (VE) effects are of prime interest, we first
consider other key components of the FALMM, namely the

peripheral (non-genetic) effects for individual environments and
the spatial models for the residuals for individual environments.
The non-genetic effects fitted in these data included random
effects for replicate blocks (as commensurate with the trial
designs) and random row and column effects reflecting
extraneous variation. In the case of environments with co-located
trials, these peripheral random effects were nested within trials
(so that random effects for trials within environments were also
included in the model). The residuals for an environment were
assumed to follow a two-dimensional (row by column) separable
process (Cullis and Gleeson, 1991) in which the component
correlation structures related either to an autoregressive process
of order one or independence. In the case of environments with
co-located trials, rows and columns were indexed within trials
so that the spatial models were applied at the trial level but the
parameters were constrained to be equal across the (co-located)
trials. This is a pragmatic alternative to fitting a single spatial
correlation structure that encompasses the entire environment
(Cullis, pers comm). A summary of the non-genetic effects and
spatial models fitted to the data is given in Table 3.

5.2. Genetic Effects
In terms of the VE effects, an FA4model was fitted and accounted
for a total of 74.2% of the VE variance with the individual factors
contributing 47.5, 16.1, 6.5, and 4.1% respectively. We comment
that, in practice, we may aim for a larger total percentage which
would require the fitting of higher order models. However, if
we consider individual environments, the median percentage
variance accounted for was 79.1% and only 6 environments had a
percentage variance accounted for of less than 65% (see Table 4).
Thus, the FA4 model has explained a high percentage of genetic
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TABLE 4 | Summary of environment information from FA4 model fitted to VE effects: rotated REML estimates of loadings for each factor and percentage variance

accounted for by all four factors.

Estimated loadings

Environment Factor 1 Factor 2 Factor 3 Factor 4 %vaf iClass

14L09 0.108 –0.008 –0.030 –0.014 75 pnnn

14L15 0.073 –0.013 –0.104 –0.022 73 pnnn

16L01 0.086 –0.059 –0.209 –0.174 70 pnnn

16L05 0.192 –0.223 –0.219 –0.248 85 pnnn

16L08 0.141 –0.102 –0.067 –0.008 82 pnnn

17L01 0.120 –0.040 –0.235 –0.109 90 pnnn

17L02 0.134 –0.046 –0.022 –0.012 72 pnnn

17L12 0.100 –0.046 –0.024 –0.064 95 pnnn

14L12 0.101 –0.014 –0.081 0.024 77 pnnp

15L08 0.087 –0.083 –0.129 0.120 70 pnnp

15L10 0.090 –0.210 –0.179 0.077 77 pnnp

16L03 0.111 –0.146 –0.031 0.291 71 pnnp

16L14 0.142 –0.057 –0.140 0.369 82 pnnp

16L21 0.157 –0.291 –0.062 0.133 70 pnnp

14L20 0.076 –0.019 0.153 –0.050 80 pnpn

15L02 0.054 –0.046 0.139 –0.001 83 pnpn

15L20 0.060 –0.061 0.095 –0.054 95 pnpn

16L02 0.206 –0.384 0.265 –0.255 86 pnpn

16L04 0.160 –0.219 0.022 –0.036 90 pnpn

16L10 0.066 –0.023 0.018 –0.060 74 pnpn

16L18 0.081 –0.009 0.112 –0.055 81 pnpn

17L20 0.121 –0.055 0.084 –0.173 78 pnpn

16L19 0.184 –0.099 0.061 0.059 65 pnpp

16L20 0.117 –0.144 0.097 0.001 79 pnpp

16L23 0.231 –0.234 0.186 0.277 62 pnpp

17L04 0.079 –0.005 0.137 0.001 85 pnpp

17L11 0.144 –0.113 0.141 0.181 77 pnpp

14L05 0.081 0.060 –0.082 -0.136 95 ppnn

14L07 0.143 0.149 -0.295 –0.074 90 ppnn

14L19 0.123 0.011 –0.108 –0.087 77 ppnn

15L06 0.077 0.011 –0.116 -0.082 52 ppnn

15L07 0.077 0.104 –0.031 –0.013 94 ppnn

15L11 0.121 0.107 –0.026 –0.107 31 ppnn

15L22 0.240 0.270 –0.095 –0.154 84 ppnn

16L11 0.183 0.026 –0.168 –0.034 29 ppnn

17L06 0.077 0.006 –0.120 –0.048 75 ppnn

17L07 0.182 0.030 –0.046 –0.134 68 ppnn

14L17 0.110 0.106 –0.041 0.128 75 ppnp

15L05 0.127 0.003 –0.153 0.051 74 ppnp

15L12 0.133 0.187 –0.079 0.022 78 ppnp

15L19 0.127 0.055 –0.169 0.035 92 ppnp

15L23 0.109 0.048 –0.072 0.001 85 ppnp

17L10 0.037 0.003 –0.131 0.000 98 ppnp

17L21 0.096 0.080 –0.101 0.175 69 ppnp

17L23 0.109 0.191 –0.067 0.213 97 ppnp

14L01 0.124 0.009 0.159 –0.000 80 pppn

14L03 0.090 0.028 0.087 –0.040 96 pppn

14L04 0.123 0.118 0.060 –0.046 84 pppn

(Continued)
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TABLE 4 | Continued

Estimated loadings

Environment Factor 1 Factor 2 Factor 3 Factor 4 %vaf iClass

14L06 0.052 0.019 0.035 –0.037 72 pppn

14L08 0.047 0.072 0.076 –0.121 73 pppn

14L10 0.056 0.057 0.002 –0.059 78 pppn

14L13 0.113 0.089 0.222 –0.151 88 pppn

14L14 0.111 0.018 0.140 –0.074 72 pppn

14L16 0.031 0.009 0.050 –0.002 33 pppn

14L18 0.053 0.000 0.050 –0.020 71 pppn

15L13 0.112 0.146 0.180 –0.100 74 pppn

16L17 0.085 0.043 0.128 –0.049 92 pppn

17L05 0.064 0.045 0.020 –0.013 80 pppn

17L15 0.074 0.036 0.016 –0.071 88 pppn

17L18 0.033 0.021 0.057 –0.044 91 pppn

17L19 0.101 0.066 0.077 –0.016 77 pppn

17L22 0.108 0.104 0.017 –0.147 78 pppn

14L21 0.134 0.236 0.148 0.091 84 pppp

14L23 0.171 0.146 0.116 0.085 84 pppp

15L01 0.119 0.094 0.042 0.007 85 pppp

15L03 0.076 0.157 0.079 0.100 72 pppp

15L04 0.097 0.117 0.122 0.077 86 pppp

15L14 0.076 0.120 0.033 0.254 79 pppp

15L17 0.088 0.076 0.001 0.034 80 pppp

15L18 0.045 0.009 0.067 0.053 69 pppp

15L21 0.094 0.170 0.120 0.021 63 pppp

17L08 0.034 0.038 0.021 0.017 81 pppp

17L13 0.185 0.025 0.029 0.158 88 pppp

Final column shows iClass membership. Environments have been ordered alphabetically within iClasses.

variance for themajority of environments. For this reason and for
ease of presentation we have used the FA4 model to demonstrate
the iClass methodology.

5.2.1. Environment Loadings and Formation of

iClasses
The (rotated) REML estimates of the loadings for individual
environments are presented in Table 4. First note that all of the
estimated loadings for the first factor are positive, indicating
that this factor represents a weighted average of environments.
The remaining factors are all bipolar so represent contrasts
between environments. For example, the second factor represents
contrasts between the first 27 listed environments in Table 4

and the remaining 46 environments. The signs of the individual
estimated loadings were used to create the categorical variables Sr
(r = 1 . . . 4) and thence iClasses were formed as S1∧ S2∧ S3∧ S4
as described in section 4.2. Only 8 of the possible 24 = 16 iClasses
were present in the data and these corresponded to � = (pnnn,
pnnp, pnpn, pnpp, ppnn, ppnp, pppn, pppp). The classification of
environments into iClasses is shown in Table 4. For clarity, this
table has been ordered on iClasses which highlights the groupings
of environments whose estimated loadings have the same sign

and thence the elimination of contrasts between environments
within the same iClass.

The success of the iClasses in terms of minimizing crossover
VEI can be assessed using the between environment genetic
variance matrix for the CVE effects, that is, 3D3⊤ = Ge − 9 .
Given that crossover VEI is synonymous with changes in variety
rankings between environments, it is beneficial to first convert
this to a correlation matrix. Figure 1 shows the full estimated
correlation matrix as a heatmap, with the environments ordered
according to iClasses. These estimated correlations have then
been summarized on an iClass basis (see Figure 2). Both figures
illustrate that there are strong correlations between all pairs of
environments within each iClass. The mean pairwise correlations
within iClasses range from 0.84 (iClass “pnnp”) up to 0.92 (iClass
“pppn”). Thus, there is very little crossover VEI within iClasses.
In terms of between iClass comparisons, there is substantial
crossover VEI for some pairs of iClasses, as evidenced by low
correlations. For example, the mean pairwise correlation between
environments in iClass “pppn” and those in “pnnp” is only 0.35.
Note that these iClasses differ in terms of every constituent
bipolar factor (that is, factors 2–4). In general, the crossover VEI
is least between those iClasses that differ only in the fourth factor
and greatest for those that differ in the second factor. This is
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FIGURE 1 | Estimated genetic correlations for CVE effects for all pairs of environments. Environments are ordered according to iClasses.

clearly seen in Figures 1, 2 since the iClasses are ordered such
that the fourth factor changes the fastest and the second factor
the slowest.

5.2.2. Variety Scores and Performance Within

iClasses
As discussed in section 3.1.1 the variety scores for a factor reflect
the responses of the varieties to the environmental covariate
implicit in the loadings for that factor. Varieties that have large
and opposite signs for the scores associated with bipolar factors
may exhibit substantial crossover VEI. It is therefore instructive
to consider the EBLUPs of the variety scores and plots of the form
given in Figure 3 are particularly helpful. This figure plots the
EBLUPs of the first factor scores against the second for the 96
varieties of interest. On these plots the distinction has been made
between check varieties (established commercial varieties) and
test varieties (AGT breeding lines). Note that seven of these test
lines have since been released commercially. Variety names have

been included on these plots for selected varieties of interest. The
new rotation in which the variance of the factor scores decreases
from the first to the last factor is apparent in Figure 3 with the
spread of the EBLUPs of first factor scores for these 96 varieties
being far greater than for the second factor. This is more clearly
seen in Figure 4which contains the full series of score plots for all
varieties in the dataset and in which all the axes have been drawn
with the same limits.

In terms of interpretation of Figure 3 we first note that all the
estimated loadings for the first factor were positive, so that the
y−axis is a scaled version of the OP measure of Smith and Cullis
(2018) as given in Equation (9). Thus, for themotivating example,
the EBLUPs of the first factor scores are synonymous with OP.
Of the named varieties in this dataset, BALLISTA, STING, and
SCEPTER have the largest EBLUPs of the first factor scores and
therefore the highest OP. Examination of the EBLUPs of the
second factor scores in Figure 3 reveals that many of the named
varieties with positive scores are early to mid maturing varieties,
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FIGURE 2 | Estimated genetic correlations for CVE effects for all pairs of environments summarized on an iClass basis. The value listed uppermost in each cell is the

mean of all pairwise estimated correlations between environments in the iClass; the values underneath are the minimum and maximum correlations between

environments in the iClass. The color scale corresponds to the mean values.

whereas those with negative scores are mid to late maturing
varieties. The second factor therefore incorporates a maturity
response but this does not provide a conclusive explanation.

Individual factors represent separate sources of VEI, and
although interpretation of these sources can be illuminating, it is
not essential for variety selection. A key point is that varieties with
near zero scores for all bipolar factors are stable varieties whose
relative yield performance will be similar across all environments
in the dataset. In contrast, varieties with large positive or negative
scores for some bipolar factors may exhibit large fluctuations
in their relative yield performance. The crucial information,
therefore, is the collective response of varieties to all factors
and this is captured in iClassOP. The iClassOP for all varieties
and each of the 8 iClasses was calculated using the regression
prediction approach as in Equation (12). The values at which the
predictions weremade, that is, themean of the estimated loadings
for each factor for the iClass concerned are given in Table 5. To
illustrate the existence of crossover VEI between iClasses, we have
plotted iClassOP for “pppp” against “pnnp” in Figure 5. This
pair of iClasses was chosen because the mean estimated genetic

correlation between environments in the two iClasses was only
0.36 (see Figure 2). Figure 5 reveals some large changes in variety
ranks between the two iClasses. For example, LRPBTROJAN is
the highest ranking variety for iClass “pnnp” but is only mid
ranking in “pppp”. The varieties STING and SCEPTER rank well
for iClass “pppp” but less well for “pnnp”. The variety BALLISTA
ranks near the top in both iClasses.

To obtain a more detailed picture of crossover VEI we
introduce a new graphical tool called an iClass Interaction Plot.
This plots the iClassOP values for a selected set of varieties,
with the points ordered on iClasses. Importantly this provides
a meaningful ordering based on crossover VEI. This is because
pairs of iClasses that differ only in the highest order factor
(so reflect the least amount of between iClass crossover VEI)
are located next to each other whereas pairs that differ in the
lowest order factor (so reflect the greatest amount of crossover
VEI) are located on opposite sides (left/right). Figures 6–8 are
iClass Interaction Plots for groups of varieties chosen specifically
as being of interest for grower comparisons. Note that these
plots have been enhanced with information on the number
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FIGURE 3 | EBLUPs of first and second factor scores for the 96 varieties of interest. Points and labels are colored orange (check varieties) or blue (test varieties).

Selected check varieties have been labeled as have four test varieties that have since been released commercially.

FIGURE 4 | EBLUPs of first factor scores plotted against second, third and fourth factor scores for all varieties. Points are colored orange (check varieties), blue (test

varieties of interest) or gray (remaining test varieties).

of environments in each iClass and also the mean of the
environment mean yields for the environments in each iClass.

Figure 6 contains the two new varieties BALLISTA and
STING, that were released as alternatives to the two market
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leading varieties, MACE and SCEPTER. In terms of the newer
varieties, Figure 6 shows that STING has an almost identical
pattern of VEI to SCEPTER, and very similar to MACE, but
with substantially improved yield performance. BALLISTA is
high yielding across most environments but has a different

TABLE 5 | Values of estimated loadings used in the predictions of OP for individual

iClasses (means of loadings for each factor across the environments in the iClass).

Number of

iClass Factor 1 Factor 2 Factor 3 Factor 4 environments

pnnn 0.119 –0.067 –0.114 –0.082 8

pnnp 0.115 –0.133 –0.104 0.169 6

pnpn 0.103 –0.102 0.111 –0.085 8

pnpp 0.151 –0.119 0.125 0.104 5

ppnn 0.130 0.077 –0.109 –0.087 10

ppnp 0.106 0.084 –0.102 0.078 8

pppn 0.081 0.052 0.081 –0.058 17

pppp 0.102 0.108 0.071 0.081 11

Final column shows the number of environments used to form the means.

pattern of VEI to the other three varieties, with a particular
advantage in iClasses with an “n” in the second factor. The
OP values based on Smith and Cullis (2018) are also shown
on this figure as the dotted horizontal lines. Importantly
this shows that the OP of the two new varieties is very
similar. However, the use of OP alone would miss the key
fact that these two varieties have a distinctly different pattern
of VEI.

Figure 7 allows comparison of three longer season varieties
including YITPI which is an older variety typically used
as a benchmark. The plot shows the clear advantage of
LRPBTROJAN and CATAPULT over YITPI. It also demonstrates
that LRPBTROJAN and CATAPULT have similar patterns of
VEI and that all varieties exhibit substantial VEI. The VEI for
LRPBTROJAN, and to a lesser extent, CATAPULT, is linked to
environment mean yield, with these varieties performing best in
the iClasses with high environment mean yields (iClasses “pnnp”
and “pnpp’).

Figure 8 shows four varieties that incorporate Clearfield R©

technology. This figure shows some large differences in both yield
performance and patterns of VEI, particularly for the comparison
of RAZORCLPLUS with the rest.

FIGURE 5 | iClassOP for iClasses “pppp” and “pnnp” for all varieties. Points are colored orange (check varieties), blue (test varieties of interest) or gray (remaining test

varieties). Selected check varieties have been labeled as have four test varieties that have since been released commercially.
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FIGURE 6 | iClass interaction plot for the four varieties BALLISTA, MACE, SCEPTER and STING. The points and solid lines that join them correspond to iClassOP and

the dotted horizontal lines correspond to the OP measure of Smith and Cullis (2018). The axis at the top shows the number of environments in each iClass and the

mean of the associated environment mean yields.

6. CONCLUDING REMARKS

In this paper we have addressed the key issue of variety selection
in the presence of VEI. This has been achieved within the
framework of a (single-stage) FALMM which is widely regarded
as the “gold standard” method of analysis for multi-environment
trial data. The approach involves the formation of groups of
environments, called iClasses, within which there is minimal
crossover VEI. It is then statistically and biologically valid
to identify the best varieties within each iClass. The idea of
forming groups of environments with minimal VEI is not new.
However, most previous attempts have been based on two-
stage approaches, the disadvantages of which were discussed
in section 1. Many methods are based on applying a singular
value decomposition (SVD), typically to a matrix indexed by
varieties and environments. This approach was first suggested
by Kempton (1984) and numerous variations have since been
proposed. Interpretation of VEI and groupings of environments
are often based on a biplot (Kempton, 1984) which is a graphical
display of the first two principal components from the SVD. We
note there are similarities between the SVD method and the FA
model (with the constraints described in section 3.1.1) in terms
of the decomposition into components/factors of decreasing
importance. A key difference with our approach is that this
is achieved by embedding the FA model within the one-stage
LMM. Additionally we use all factors to interpret VEI and form

iClasses, rather than just the first two. In our experience, it is
rare for the first two factors to account for a large percentage of
VE variance so that interpretations based solely on two factors
may be misleading. Finally, our method of forming groups does
not involve the application of generic clustering methods to
results extracted from the FALMM (such as the estimated genetic
correlation matrix). Instead, iClasses are formed on the basis
of the fundamental parameters of the FA model, namely the
environment loadings, so are a direct consequence of the model
used for analysis.

Comparisons of varieties within iClasses is achieved using an
extension of the FA selection tools of Smith and Cullis (2018). In
particular we have defined a measure of overall performance for
varieties across the environments in each iClass (iClassOP) rather
than the overall performance (OP) measure of Smith and Cullis
(2018) which is taken across all environments in the dataset.
We note also that the OP of Smith and Cullis (2018) requires
all (or most) of the estimated loadings for the first factor to be
positive whereas iClassOP has no such limitation. The existence
of a mixture of positive and negative estimated loadings in the
first factor merely creates additional iClasses.

The utility of the approach was clearly demonstrated in the
application to the motivating example in which some large and
important changes in the ranks of varieties between iClasses were
revealed. This crossover VEI would not have been identified
with the use of a single measure of overall performance,

Frontiers in Plant Science | www.frontiersin.org 14 September 2021 | Volume 12 | Article 737462

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Smith et al. Interaction Classes From FALMMs

FIGURE 7 | iClass interaction plot for the three varieties CATAPULT, LRPBTROJAN and YITPI. The points and solid lines that join them correspond to iClassOP and

the dotted horizontal lines correspond to the OP measure of Smith and Cullis (2018). The axis at the top shows the number of environments in each iClass and the

mean of the associated environment mean yields.

whether this be a simple average across environments or the
more sophisticated generalized main effect embodied in the OP
measure of Smith and Cullis (2018). The variety LRPBTROJAN
provided a classic case of how meaningless a main effect can
be in the presence of interaction. The iClass approach revealed
that the performance of this variety differed substantially between
environments. It was a top and near-top ranking variety in
two iClasses but a mid-ranking variety in others. Another
noteworthy, but more subtle example was the case of the
two new varieties BALLISTA and STING. At the time of the
commercial release of these varieties the iClass technology was
not available and it was clear that the varieties had high and
similar OP, suggesting that only one should be released. However,
anecdotal evidence led the breeding company to believe that these
varieties may have been differentially adapted to certain growing
environments so the potentially risky decision was made to
release both. Our analysis is in a sense a retrospective case study
since these two varieties appeared as test varieties in the dataset.
The iClass approach revealed that these two varieties were
indeed generally high yielding but that they exhibited different
patterns of VEI, thereby validating their joint release. Clearly
the availablility of this type of information for release decisions
would be invaluable as it aids in minimizing commercial risk. It
would also be extremely useful for growers since their focus is
typically the selection of new varieties that have improved yields
but exhibit similar patterns of VEI to the varieties with which they
are familiar.

To aid both breeders and growers with variety comparisons
we have introduced iClass Interaction Plots. These plots display
the iClassOP for individual iClasses for sets of varieties of
interest. The plots have a similar appearance to those introduced
in Smith et al. (2015) but the key difference is that the
iClass Interaction Plots not only capture the major sources of
crossover VEI in the data but also order this information in an
enlightening manner.

It has been argued there are deficiencies in the use of an
FALMM since it is only possible to obtain predictions of variety
performance for the environments present in the MET dataset.
What is required is knowledge of variety performance in the
target population of environments (TPE). Many authors have
therefore proposed the use of external environment variables
as a means to extrapolate from a MET to the TPE. However,
as Cooper and Fox (1996) comment, “there is generally limited
knowledge of (i) important environmental variables and (ii)
how these variables contribute to GxE interaction”. We believe
that the use of an FALMM followed by the application of the
iClass technology provides an alternative that helps bridge the
gap between variety predictions for the environments in the
MET and the TPE. This is because it enables identification
of repeatable sources of VEI, together with their frequency of
occurrence, within theMET. If the environments within theMET
are a representative sample of the TPE then the iClass approach
provides a platform for understanding and exploiting VEI in
the TPE.
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FIGURE 8 | iClass interaction plot for the four varieties CHIEFCLPLUS, ELMORECLPLUS, GRENADECLPLUS and RAZORCLPLUS. The points and solid lines that

join them correspond to iClassOP and the dotted horizontal lines correspond to the OP measure of Smith and Cullis (2018). The axis at the top shows the number of

environments in each iClass and the mean of the associated environment mean yields.

Finally we note that the MET dataset used in this paper
corresponded to late-stage trials from a wheat breeding program.
It is similar in structure to MET datasets from crop variety
evaluation programs, in the sense that these typically include
a wide range of environments so that crossover VEI may be
expected. Additionally the varieties under investigation are either
already commercially available or they are “elite” test lines.
Within this framework we have demonstrated the success of the
iClass approach in providing key information for commercial
decisions by breeding companies and for grower selection
decisions. The iClass approach will also be extremely beneficial
for MET datasets that include early-stage plant breeding trials
where the selection decisions relate to the promotion of lines for
further testing. The optimum analysis of such data requires the
use of information on genetic relatedness, either via ancestral or
genomic data. The application of iClasses within this paradigm is
the focus of a subsequent paper.
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