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Fulvic acids are organic compounds widely distributed in soils, and the application of
fulvic acids is thought to increase crop yield and quality. However, the effects vary among
various sources and doses of fulvic acids and environmental and growth conditions
of crops. Here, we investigated the effects of bioresource-derived (corn straw) fulvic
acids on plant production and quality of tomato plants and soil chemical properties in
soil cultures while experiments on seed germination and hydroponics were conducted
to explore the underlying mechanism. Base dressing with 2.7 g kg−1 increased the
yield of tomato by 35.0% at most as increased fruit number. Fulvic acids increased the
concentrations of minerals, such as Ca, Fe, and Zn and the concentrations of citric,
malic, and some amino acids in berries of tomato but did not affect the concentrations
of soluble sugars and aromatic substances in tomato fruits. Similarly, fulvic acids at
80–160 mg L−1 increased germination rate, growth vigor, and radicle elongation of
tomato seeds while it increased plant biomass, concentrations of nutrients, and root
length of tomato plants in hydroponics to the greatest extent in general. The increases
in yield and quality can be attributed to the improvement in root growth and, thus,
increased nutrient uptake. In addition, the base application of fulvic acids improved soil
cation exchange capacity and soil organic matter to an extent. In conclusion, base
dressing and the addition into solution of fulvic acids at moderate doses facilitate root
growth and nutrient uptake and, thus, vegetable production and quality; therefore, fulvic
acids can be an effective component for designing new biofertilizers for sustainable
agricultural production.

Keywords: humic substances, nutritional quality, plant biomass, seed germination, soil organic matter

INTRODUCTION

Fulvic acids are one portion of soil humic substances based on the solubility in strong acid and
base solutions; the other two main portions are humic acids and humins (Hayes, 2006; Ahmad
et al., 2018). Fulvic acids consist of a group of soluble organic compounds widely distributed
in nature and are one of the critical components of soil organic substances (Piccolo, 2002;
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Qin et al., 2016; Shah et al., 2018). These organic compounds
contain many active functional groups, such as carbonyl,
carboxyl, hydroxyl, phenolic hydroxyl, and quinone, and these
are capable of chelating and exchanging anions or ions
(Calvo et al., 2014; de Melo et al., 2016; Zhang et al.,
2020). The mechanisms by which humic-like substances
improve plant growth can be attributed to the increased
ability of regulating membrane permeability and intracellular
signaling, thus increasing root growth (Blomster et al., 2011),
increasing concentrations of chlorophyll and photosynthetic
activity (Haghighi et al., 2012), and activating carbon and
nitrogen metabolism (Jannin et al., 2012). In addition, the
biochemical fulvic acids encompass amino acids, vitamins, trace
elements, and hormones, and all those compounds can stimulate
cell division, root growth, and nutrient uptake and improve the
antistress ability of plants and, thus, promote the growth and,
thus, yield of crops (De Pascale et al., 2018; Shah et al., 2018; Qin
and Leskovar, 2020). For example, fulvic acids are demonstrated
to relieve Pb toxicity to plants by reducing its uptake, thus
alleviating various morphological, physiological, and biochemical
functions of plants (Shahid et al., 2012).

In recent decades, numerous studies confirm the effectiveness
of fulvic acids in agriculture. Fulvic acids are demonstrated to
increase the yield and quality of cotton plants, soil fertility,
fertilizer-use efficiency, and net profit (Geng et al., 2020). The
application of fulvic acids alleviates the damage on wheat plants
under salinity stress by improving antioxidant-defense systems,
thus increasing growth and production (Elrys et al., 2020).
With respect to vegetable production, fulvic acids increase the
size and number of tomatoes while decreasing the incidence
of cracking and blossom-end rotting (Suh et al., 2014). As a
result of increased plant growth, fulvic acids are recommended
as an essential constituent to achieve the goal of high yield and
quality and sustainable agriculture in horticulture particularly
(Olk et al., 2018).

However, due to the complex composition of fulvic acids,
in-depth trials have not been not comprehensively investigated,
especially the effects of bioresource fulvic acids on the yield
and quality of vegetables and the underlying mechanisms.
Bioresource fulvic acids are renewable and recyclable, and thus,
the popular agricultural fulvic acids in recent decades are
considerable for sustainable agriculture (Quilty and Cattle, 2011;
Rose et al., 2014).

This study investigates the effects of straw-derived fulvic
acids on vegetable plants. We carried out soil experiments, seed
germination, and hydroponic cultures to explore the effects of
various doses and application patterns on the production, yield,
and quality of tomato plants and the underlying mechanisms
that potentially facilitate the design of new biofertilizers by
using fulvic acids.

MATERIALS AND METHODS

Bioresource-derived fulvic acids, abbreviated as Zhongliang or ZL
in the study, were produced by the national company COFCO
Nutrition and Health Research Institute, Beijing, China (Table 1).

ZL fulvic acids are derived from corn straw. The lignocellulosic
corn straws were pretreated by continuous steam explosion and
then hydrolyzed by a series of enzymes (cellulase, hemicellulase,
and β-glucosidase) to get a sugar solution. The sugar solution was
fermented by using a pentose/hexose co-fermentation strain (C5
strains, Green Tech America, United States) to get the mature
fermented mash. Then, the mash was rectified to obtain biofuel
ethanol from the top of the rectification tower while the residual
mash was obtained from the bottom of the rectification tower.
The residual mash was separated from the supernatant and
then evaporated, concentrated, and tube-bundle-dried to get the
final fulvic acids.

Experiment 1: Soil Culture of Tomato
Plants
Experiment 1 was a soil culture to explore the effects of fulvic
acids on the yield and quality of a fruit vegetable and soil fertility
(Supplementary Figure 1). A randomized complete block design
with 11 treatments consisted of various methods of fulvic acid
application, i.e., top dressing, foliar, and base dressing (Table 2).
Another commercial fulvic acid produced by QuanlinJiayou Co.,
Ltd. (Jiayou or JY) that was the most effective and popular
product in China was used to compare with our product and to
demonstrate the effectiveness of our Zhongling (ZL) fulvic acids.
Five replicates were set for each treatment.

The soil was collected from the top 0–20 cm in a high
tunnel vegetable farm managed for 18 years in Shanghai, China
(Table 3). In this area of the Yangtze River Delta, rice was

TABLE 1 | The chemical properties of fulvic acids of Zhongliang used in this study.

Items Value Items Value Items Value

Fulvic acids 69.5% Ca (g kg−1) 9.25 As (µg g−1) 2.36

pH 3.94 Mg (g kg−1) 5.22 Cd (µg g−1) 0.23

Water content 6.11% Fe (µg g−1) 1123 Cr (µg g−1) 18.9

Ach content 19.1% Mn (µg g−1) 135 Hg (µg g−1) 0

Total C 30.3% Cu (µg g−1) 2.54 Pb (µg g−1) 2.00

Total N 5.63% Zn (µg g−1) 52.3

Total P (P2O5) 0.26%

Total K (K2O) 3.09%

TABLE 2 | The treatments of soil culture for tomato growth (Experiment 1).

Fertilization Chemicals Rates Abbreviation

Control Water Local practice Control

Top dressing ZL fulvic 0.3 g kg−1 ZL Top

Foliar application acids 100 mg L−1 ZL Foliar

Top dressing + Foliar 0.3 g kg−1
+ 100 mg L−1 ZL T + F

Top dressing JY fulvic 0.3 g kg−1 JY Top

Foliar application acids 100 mg L−1 JY Foliar

Top dressing + Foliar 0.3 g kg−1
+ 100 mg L−1 JY T + F

Base dressing ZL fulvic 0.3 g kg−1 Base 0.3

Base dressing acids 0.9 g kg−1 Base 0.9

Base dressing 2.7 g kg−1 Base 2.7

Base dressing 8.1 g kg−1 Base 8.1
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TABLE 3 | The chemical properties of the experimental soil for Experiment 1.

pH EC(dS m−1) SOM% Available N(µg g−1) Available P(µg g−1) Available K(µg g−1) CEC(cmol kg−1)

7.5 0.47 1.9 342 169 303 19.4

produced for several hundred years before, and then the fields
were used for vegetable production in the recent two decades. The
base dressing followed the local practice, 5 kg mixed soils were
loaded into a pot, watered to 100% field capacity, and stabilized
for 1 week before being transplanted. The seeds of the tomato
cultivar Hezuo906 is an anti-mosaic-virus cultivar, which was
sterilized, germinated, and nurtured. Tomato seeds were soaked
in 0.5% NaClO solution for 20 min, then washed by deionized
water twice, and placed in Petri dishes to be germinated in a
dark incubation chamber (CWI800, Sheyan, Shanghai, China)
at 25◦C. The 3-day-germinated seeds were sown into a peat-
pearlite mixture (2:1, v/v) in a naturally lit greenhouse and
watered with a mixture of 1% urea and 1% potassium phosphate.
Twenty-day-old seedlings with four true leaves were transplanted
into pots. Soils in pots were watered to 80% field capacity
at a frequency of 1 or 2 days. Foliar spray and top dressing
were conducted every 10 days six times commencing from the
initial fruiting stage. The soils were covered by plastic films
when the foliar application was conducted to avoid fulvic acids
dropping into the soils. The temperature and light intensity were
recorded every 10 min by loggers L95-82 and L99-LX (Hangzhou
Loggertech Co., China), respectively. The entire growth period
was 126 days from August 31 to January 03 in the same naturally
lit greenhouse with an average temperature of 18.7◦C ± 3.6◦C,
a light intensity of 253 ± 212 µmol m−2 s−1, and daily light
integral of 12.6± 4.3 µmol m−2 day−1.

Experiment 2: Germination of Tomato
Seeds
Experiments 2 and 3 were conducted to explore the mechanisms
of fulvic acids increasing the production and quality of vegetables.
We conducted Experiment 2 to explore the stimulation of
fulvic acids on seed germination rate and radicle elongation
(Supplementary Figure 2). It was a randomized complete block
design with eight concentrations of fulvic acids in solution: 0,
10, 20, 40, 80, 160, 320, and 640 mg L−1 with three replicates
for each treatment. Two Chinese cultivars, i.e., Huangmenren
(Jinfa Seed Company, Cangzhou, China) and Zizhenzhu (Huashu
Seed Company, Qingxian, China) were used, and seeds were
sterilized and germinated as in Experiment 1. The temperature
and humidity in the incubation chamber were 28◦C and
70%, respectively. The seed germination experiment lasted for
7 days. The fulvic acid solution was supplied daily to avoid
water deficiency.

Experiment 3: Hydroponic Experiment
With Tomato Plants
We conducted a hydroponic experiment with tomato plants to
explore the effects of fulvic acids on root elongation and plant
production (Supplementary Figure 3). The experiment was a

randomized complete block design with eight concentrations
of fulvic acids and four replicates for each treatment. Eight
concentrations of fulvic acids in hydroponic nutrient solution
were 0, 10, 20, 40, 80, 160, 320, and 640 mg L−1.

Tomato seeds of cultivar cv. Zizhenzhu were sterilized,
germinated, and grown till transplanting as in Experiment
1. Seedlings with four true leaves in similar sizes were
selected and then transplanted into containers with 5 L 1/2
Hoagland nutrient solution, and the solutions were shifted
to a full-strength nutrient solution at the second week. The
macronutrients of Hoagland solution consisted of 4 mM
Ca(NO3)2·4H2O, 6 mM KNO3, 1 mM NH4H2PO4, and 2 mM
MgSO4·7 H2O, and the micronutrients were the universal
formula (mg L−1): 2.86, H3BO3; 13.9, FeSO4·7H2O; 1.81,
MnCl2·4H2O; 0.22, ZnSO4·7H2O; 0.08, CuSO4·5H2O; and
0.02, (NH4)6Mo7O4·4H2O. The nutrient solution’s pH was
maintained at about 6.5 by daily adjusting using 0.25 M H2SO4
or 0.5 M NaOH. All the plants were harvested after growth for
21 days from June 24 to July 15.

Sampling Methods
The tomato fruits were harvested twice a week once matured
and stored in a −20◦C fridge. All the fruits were cut finely
and homogenized thoroughly after final harvest, using a fruit
blender. The homogenates were centrifuged at 3,000 g for 10 min
and filtered by a syringe filter (0.45 µM) for biological analysis.
At the final harvest, the leaves, stems, and roots of tomatoes
were separated and collected. Separated tissues were cleaned
and green-killed, then dried at 65◦C to a constant weight to
record the dry mass. Fresh portions were stored in a −20◦C
fridge till analysis. After plant sampling, the soils in pots were
sieved at 1 mm after mixing and air-drying to determine soil
chemical properties.

Measurements of Seed Germination and
Radicle Length
We took daily photos of each Petri dish in Experiment 2
with a digital camera (5D Mark IV, Cannon, Germany). The
germination rates were achieved by counting the number of
germinated seeds in the photos. The radicle length of each seed
was measured by ImageJ (Version 1.51a, National Institute of
Health, United States). The germination rate and vigor index are
calculated using Equations (1) and (2), respectively.

Germination rate =
Number of germinated seeds
Total number of seeds sown

× 100%

(1)

Vigor index = (mean radicle length)×
∑ Gn

Dn
(2)
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where Gn is the number of germinated seeds at the nth day and
Dn is the number of the nth day.

Determinations of Root Morphology
The fresh roots in Experiment 3 were washed by deionized
water three times and scanned (V700, Epson, Japan) to obtain
root images. The images were then analyzed by WinRhizo Pro
(Version 2013, Regent, Canada) to determine root length and the
number of root tips.

Determinations of Soil Property
Soil organic matter (SOM) was determined by dichromate
titration. Soil pH was extracted by deionized water at a soil–
water ratio of 1:2.5 and determined by a pH meter. Soil
available N was determined by the alkali-hydrolyzed reduction
diffusing method using 1 M NaOH. Available P was extracted by
0.5 M NaHCO3 and determined by the molybdenum-antimony
anti-spectrophotometric method. Available K was extracted by
1 M CH3COONH4 and determined by ammonium acetate
extraction-flame photometry (Bao, 2000).

Determination of Tomato Quality
The total soluble solids in the juice of tomato fruits were
analyzed by a portable digital sugar meter (PAL-1, Atago, Japan).
The fruit juice was used for the determination of various
compounds. The concentrations of C and N in the ground
plant tissues were measured by a CNS analyzer (Vario MAX
CNS, Elementar, Germany). The concentrations of P, K, Ca,
Mg, S, Fe, Mn, Cu, and Zn were determined by an ICP-
OES (Optima 8000, PerkinElmer, Germany), using the HNO3-
H2O2-digested solutions or the fruit juice of the tomato. The
concentrations of heavy metals Cd, Cr, and Pb were measured
by an ICP-MS (X Series II, Thermo Fisher, United States). The
concentrations of metalloids As and Hg were measured by an
X-ray Fluorescence Spectrometer (Axios-Advanced, PANalytical,
Netherlands). The quantity and composition of metabolites in
tomato fruits were determined by LC-MS (Thermo Vanquish
UHPLC, Company Thermo Fisher, United States), coupled with
an Orbitrap Q Exactive series mass spectrometer (Orbitrap Q
Exactive, Company Thermo Fisher, United States). The fresh
tomato fruits (100 mg) were individually ground using a blender
and centrifuged and then the homogenate was passed through
a 0.45-µM membrane. The supernatant was injected onto an
Hyperil Gold column (100 mm × 2.1 mm, 1.9 µm), using a 16-
min linear gradient at a flow rate of 0.2 mL min−1 for analysis.
The Orbitrap Q Exactive series mass spectrometer was operated
in positive/negative polarity mode with spray voltage of 3.2 kV,
capillary temperature of 320◦C, sheath gas flow rate of 35 arb,
and aux gas flow rate of 10 arb.

Statistical Analysis
All the data were analyzed according to the experimental design,
using SPSS 22 software (SPSS Statistics 22.0, IBM, United States).
Pictures were drawn by Origin 2016 (Origin 2016, OriginLab,
United States) and ImageJ (ImageJ 1.8.0, National Institutes of
Health, United States). The means of these parameters were
compared using Duncan’s multiple range test at P < 0.05.

RESULTS

Effects of Fulvic Acids on Soil-Culture
Tomatoes
Moderate doses of fulvic acids applied by base and top dressing
improved the yield and nutrient quality of tomato fruits in
general. More specifically, base dressing of ZL fulvic acids of 2.7 g
kg−1 increased the yield and fruit number of tomatoes in soil
cultures by 35.0 and 44.4% greater than other doses (Figure 1).
The other commercial JY fulvic acids with top dressing increased
the total biomass of tomato plants by 22.4% (Table 4).

The base dressing of 0.9 and 2.7 g kg−1 tended to increase fold
changes of essential and non-essential amino acids (Figure 2).

FIGURE 1 | The effect of fulvic acids on total yield (A), fruit number (B), and
fruit size (C) of tomato plants cv. Hezuo906 grown in soil culture for 126 days
from transplanting at the final harvest. Data are means ± s.e (N = 5). The
same letters denote insignificant differences (P < 0.05) among treatments
according to Duncan’s new multiple range test (Experiment 1).
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TABLE 4 | The effect of fulvic acids on plant height, leaf number, and dry matter of
stem, leaf, and the entire plants of tomato plants cv. Hezuo906 grown in the soil
culture for 126 days from transplanting (Experiment 1).

Plant
height

(m)

Leaf
number

(No.
plant−1)

Root Stem Leaf Total Root/
shoot

(g plant−1)

Control 1.08 a 10.3 c 1.83 bc 20.5 ab 34.5 ab 56.8 ab 0.033 ab

ZL top 1.15 a 12.7 abc 1.85 bc 20.6 ab 30.5 ab 53.0 ab 0.036 ab

ZL foliar 1.15 a 11.3 bc 1.44 bc 15.5 b 26.6 b 43.5 b 0.034 ab

ZL T + F 1.17 a 15.7 a 1.72 bc 20.8 ab 34.6 ab 57.2 ab 0.033 ab

JY top 1.24 a 15.8 a 2.00 ab 26.6 a 40.9 a 69.5 a 0.031 b

JY foliar 1.16 a 15.8 a 1.33 c 18.3 ab 30.0 ab 49.7 b 0.028 b

JY T + F 1.11 a 13.7 abc 1.56 bc 18.2 ab 34.5 ab 54.2 ab 0.031 b

Base 0.3 1.28 a 12.0 abc 1.49 bc 19.8 ab 31.4 ab 52.7 ab 0.029 b

Base 0.9 1.09 a 13.0 abc 1.65 bc 18.7 ab 36.4 ab 56.7 ab 0.031 b

Base 2.7 1.09 a 12.8 abc 1.71 bc 19.4 ab 34.9 ab 56.0 ab 0.032 ab

Base 8.1 1.22 a 14.8 ab 2.38 a 19.9 ab 38.9 a 61.2 ab 0.041 a

Total biomass is the biomass of entire plants but without fruits. Root/shoot is the
ratio of root dry biomass to shoot dry biomass. Data are means (N = 5). The same
letters denote insignificant differences (P < 0.05) among treatments according to
Duncan’s new multiple range test.

Base dressing of 2.7 g kg−1 fulvic acids increased fold changes
of phenylalanine, valine, and methionine by 55, 56, and 61%,
respectively. Compared with the control, ZL fulvic acids by top
and foliar application increased the fold changes of linolenic and
linoleic acid by 209 and 275%, respectively. Fulvic acids increased
fold changes of citric and malic acid with the greatest increased
by 291 and 67% in JY top dressing treatment, 211 and 42% in
Base 2.7 (Figure 2). However, fulvic acids in all treatments did not
affect fold changes of soluble sugar (glucose, fructose, maltose,
and sucrose) and some aromatic substances (β-lonone, citral, and
eugenol) (Figure 2).

The base dressing of 2.7 g kg−1 also increased the
concentrations of mineral elements in tomato juice, especially
Mg by 55.9%, Ca by 31.4%, and Zn by 43.1% (Table 5).
The concentrations of Mg, S, Ca, and Fe increased in all
modes of application.

Fulvic acids by top and base dressing tended to decrease soil
pH and increase the soil CEC and SOM across all treatments
while foliar application did not affect these soil properties
(Table 6). More specifically, Base 2.7 treatment decreased soil pH
from 8.06 to 7.81 while it increased EC by 102.9%.

Effects of Fulvic Acids on Germination of
Tomato Seeds
The seed germination rates of both tomato cultivars increased
and then decreased when the concentration of fulvic acids
increased after 7 days (Figures 3A,B). Specifically, the most
effective seed germination rate was 12.9% greater than the
control when fulvic acids were at a concentration of 80 mg
L−1 on average. Fulvic acids of 80 mg L−1 also increased the
radicle length and vigor index by 32.2 and 49.7% compared
with the control, respectively (Figure 3). The promotion of seed
germination by fulvic acids on tomato seed cv. Huangmeiren was

greater than that of cv. Zizhenzhu. The average seed germination
rates of Huangmeiren and Zizhenzhu across the various
concentrations of fulvic acids were 62.6 and 89.9%, respectively.

Effects of Fulvic Acids on Hydroponic
Tomatoes
Similar to seed germination, the effects on total biomass, foliar
C/N ratio, and root growth of tomato plants in hydroponics
increased at first and then decreased when the fulvic acid
concentrations increased (Table 7 and Figure 4). Fulvic acids
increased the total biomass and foliar C/N ratio by 40.8 and 14.5%
at concentrations of 160 mg L−1, respectively, compared with
the control. Fulvic acids increased the root length and number
of lateral root tips of hydroponic tomato plants (Figure 4). The
optimal concentration of fulvic acids on root growth was 80 mg
L−1, which increased root length and root tips by 44.4 and
13.8% when compared with the control, respectively (Figure 4
and Supplementary Figure 4). Fulvic acids of 80 mg L−1 also
increased the concentrations of mineral elements in the leaf,
especially Fe, by 109% compared with the control (Table 7).

Another soil-culture experiment with pak choi was conducted
to expand the application of fulvic acids on leafy vegetables
with shallow roots using the soils in Experiment 1 and a series
of concentrations of fulvic acids the same as Experiments 2
and 3 (Supplementary Figure 5). The aboveground portions
of pak choi were harvested on the 21st and 30th day from
seeding, respectively. The yield and mineral concentrations in
the edible portion were measured (Supplementary Table 1 and
Supplementary Figure 6). The analysis of the cost and benefit of
fulvic acid application is calculated in Supplementary Table 2.
Results are shown in the Supplementary Material.

DISCUSSION

Humic substances are the end products of microbial
decomposition derived from plant residuals, which play
key roles in various soils and influence plant functions. Fulvic
acids are components of humic substances according to their
solubility and molecular weight. There are similarities between
humic substances and fulvic acids, but the effects on plants
depend on the source organic matter, the plant species, and the
growth medium (Calvo et al., 2014). Although the effects of
humic-like fertilizers differ, studies confirm their effectiveness
and economic value in agricultural production. However, it
lacks studies focusing on the effects of renewable sources of
fulvic acids on vegetable production and yield under various
growth mediums and the underlying mechanisms. Our study
investigates the effects of straw-derived fulvic acids on the
entire growth period of tomato from seed to fruit under either
hydroponic or soil culture and give certain explanations on how
fulvic acids work.

Fulvic Acids Increased the Yield and
Production of Vegetables
Fulvic acids at moderate concentrations and applications of base
and top dressing increased the production and yield of tomato
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FIGURE 2 | The effect of fulvic acids on the fold changes of quality-related can carbon containing substances in fruit juices of tomato plants grown in soil cultures
(Experiment 1).

TABLE 5 | The effect of fulvic acids on mineral concentration (µg g−1) in fruit juices of tomato plants cv. Hezuo906 grown in the soil culture for 126 days from
transplanting (Experiment 1).

K P Mg S Ca Fe Zn Mn Cu

Control 1755 bc 144.8 ab 38.3 c 37.6 a 11.8 bc 0.30 d 0.320 c 0.110 d 0.095 d

ZL top 2049 ab 152.4 ab 54.3 ab 45.9 a 13.3 bc 0.66 ab 0.480 ab 0.203 ab 0.143 abc

ZL foliar 1789 bc 135.8 ab 53.9 ab 43.7 a 15.0 abc 0.54 bcd 0.445 bc 0.175 bcd 0.136 abcd

ZL T + F 1520 c 98.4 b 63.4 a 44.7 a 16.0 abc 0.60 abc 0.540 ab 0.213 ab 0.129 cd

JY top 1889 bc 119.6 ab 54.0 ab 43.8 a 20.5 a 0.52 bcd 0.533 ab 0.178 bcd 0.123 cd

JY foliar 1597 c 104.7 b 47.7 bc 40.5 a 12.5 bc 0.44 cd 0.410 bc 0.147 cd 0.114 cd

JY T + F 2196 a 179.3 a 59.5 a 48.2 a 13.4 bc 0.67 ab 0.635 a 0.253 a 0.163 a

Base 0.3 1712 bc 117.9 ab 36.9 c 39.0 a 9.7 c 0.35 cd 0.350 c 0.128 d 0.098 d

Base 0.9 1899 bc 149.8 ab 46.8 bc 41.0 a 11.3 bc 0.40 cd 0.430 bc 0.138 d 0.125 cd

Base 2.7 2064 ab 136.0 ab 50.9 abc 40.5 a 15.5 abc 0.47 bcd 0.458 abc 0.152 cd 0.134 abc

Base 8.1 2251 a 165.7 ab 59.7 a 45.7 a 17.9 ab 0.80 a 0.623 a 0.197 abc 0.157 ab

Data are means (N = 5). The same letters denote insignificant differences (P < 0.05) among treatments according to Duncan’s new multiple range test.

plants in our study (Table 4, Figures 1, 4 and Supplementary
Figure 6). The yield increments of tomato and pak choi can
reach 35.0 and 54% (Figure 1 and Supplementary Figure 6)

while fulvic acids increased the total biomass of hydroponic
tomato plants by 40.8% at most (Figure 4C). The improved
yield could contribute to the farmer’s income to an extent
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TABLE 6 | The effect of fulvic acids on the properties of soils where tomato plants
cv. Hezuo906 were grown for 126 days from transplanting (Experiment 1).

pH EC
(dS

m−1)

SOM
(%)

Available
N

(µg g−1)

Available
P

(µg g−1)

Available
K

(µg g−1)

CEC
(cmol
kg−1)

Control 8.06 ab 0.34 cd 1.87 c 106 b 151 a 110 b 18.9 b

ZL top 7.81 de 0.52 bc 1.91 bc 114 b 152 a 108 b 19.2 ab

ZL foliar 8.14 a 0.30 d 1.88 c 110 b 154 a 112 b 19.2 ab

ZL T + F 7.90 cd 0.45 cd 1.90 bc 113 b 144 a 115 ab 19.4 ab

JY top 7.75 de 0.57 bc 1.93 bc 113 b 152 a 107 b 19.4 ab

JY foliar 8.02
abc

0.36 cd 1.88 c 108 b 154 a 103 b 19.1 ab

JY T + F 7.74 e 0.50
bcd

1.91 bc 111 b 144 a 116 ab 19.4 ab

Base 0.3 8.05
abc

0.35 cd 1.92 bc 110 b 149 a 102 b 19.3 ab

Base 0.9 8.00 bc 0.41 cd 1.94 bc 107 b 151 a 108 b 19.6 ab

Base 2.7 7.81 de 0.69 b 1.96 ab 116 b 148 a 105 b 19.5 ab

Base 8.1 7.46 f 1.68 a 2.01 a 161 a 144 a 136 a 19.8 a

Data are means (N = 5). The same letters denote insignificant differences (P < 0.05)
among treatments according to Duncan’s new multiple range test. EC, electrical
conductance; SOM, soil organic matter; CEC, cation exchange capacity.

(Supplementary Table 2). Similarly, humic-like substances were
reported to increase the production of various vegetable plants.
Atiyeh et al. (2002) report that humic substances extracted from
vermicompost of pig manures and food waste increased the
shoot and root dry masses of tomato seedlings with the optimal
concentration of the humic substance being 0.2–0.5 g kg−1.
Karakurt et al. (2009) treated 20 ml L−1 humic-like substances
with soil and increased the early and final yield of peppers by
38.3 and 11.8% compared with the control. The optimal doses in
Karakurt et al. (2009) were lower than our current study; however,
the fulvic acids in our study increased the plant yield to a greater
extent. Our study demonstrates that fulvic acids have little effect
on fruit size (Figure 1C), different from previous studies (Ferrara
and Brunetti, 2010; Naidu et al., 2013; Suh et al., 2014). These
differences in our study could be attributed to the variety of crops
and the methods of cultivation, and the extent of increments
and the specific performances also differed from the species of
the plants and the sources of the humic-like substances (Morard
et al., 2010). Haghighi et al. (2012) conclude that the mechanism
of the increase in yield was the stimulation on N metabolism
and photosynthesis activity, and Anjum et al. (2011) record that
the application of fulvic acids increased the net photosynthesis,
transpiration rate, and intercellular concentration of CO2—
effects that were related to plant growth promotion.

Fulvic Acids Increased the Quality of
Vegetables
In our study, fulvic acids increased the concentrations of minerals
and carbon-containing substances related to product quality
in the edible portion of vegetables (Table 7, Supplementary
Table 1, Figure 2, and Supplementary Figure 6). Several studies
confirm an improvement of vegetable quality by humic-like
substance application (Haghighi and Teixeira Da Silva, 2013).

Fulvic acids are demonstrated to improve the produce quality,
e.g., by inducing the accumulation of secondary metabolites,
vitamins, antioxidants, and minerals (Calvo et al., 2014; Gruda
et al., 2018), confirming our results.

More specifically, fulvic acids increase the concentrations
of minerals at moderate doses, especially Mg, Fe, and Zn
in either tomato or pak choi (Table 5 and Supplementary
Table 1). It is demonstrated that the application of humic acids
enhances the accumulation of minerals such as Ca, Fe, Mg,
and Zn in soil-cultured garlic (Denre et al., 2014). Similarly,
humic substances increased the concentrations of P and Fe in
grapes (Sánchez-Sánchez et al., 2006). With respect to carbon-
containing substances, base dressing of 2.7 g kg−1 fulvic acids
increased fold changes of phenylalanine, valine, and methionine,
which possibly improved the fragrance of tomato berries (Ou
et al., 2007), and the increased arginine contributed to an
improvement in the quality of fruit berries (Micallef and Shelp,
1989; Nasibi et al., 2011). Consistent with our study, humic
acids increased the concentrations of linolenic and linoleic acid
in rapeseed (Amiri et al., 2020), the titratable acids in citrus
(Hameed et al., 2018), and the amino acids in tomatoes (Yildirim,
2007). However, fulvic acids did not affect fold changes of soluble
sugar and some aromatic substances (Figure 2), similar to a
previous study (Canellas et al., 2013). That could be attributed
to the application of fulvic acids that decreased the activity of
enzymes involved in glucose metabolism (Canellas et al., 2015).
The metabolites alternatively could be used to increase the growth
of plants (Canellas et al., 2013), which confirms our results
of tomato production and yield (Table 4 and Figures 1, 2).
According to Trevisan et al. (2011), Jannin et al. (2012), and
Canellas et al. (2015), the effects of fulvic acids on nutrients
may be attributed to the regulation of enzymes and genes that
are involved in the primary metabolism, and thus affect the
transformation and accumulation of metabolic substances.

The increased quality indicators in tomato fruits by fulvic
acids indicates an improved fruit quality and, thus, human
nutrition in general. However, the quality of vegetables was not
always improved by fulvic acids, such as some reduced sugars in
tomato fruits (Figure 2) and mineral concentration in the edible
portion of pak choi (Supplementary Table 1), so one need to be
cautious when applying. These findings suggest that plant bio-
stimulants, i.e., fulvic acids, may be used to improve product
quality of vegetables in a sustainable way (Gruda et al., 2018).
This will be imperative in the near future due to projected climate
changes with high temperatures, water scarcity (Gruda et al.,
2019a,b), and high CO2 concentrations (Dong et al., 2018, 2020).

The Reasons for Increased Yield and
Quality
The increases in production and quality might be attributed
to the stimulants on plant growth, especially the promotion
of root growth and, thus, the uptake of minerals. In our
study, fulvic acids increased root growth of germinated seeds
(Figure 3) and increased the root length and number of
lateral root tips of hydroponic tomato plants (Figures 4A,B)
while the uptake of mineral nutrients and the plant biomass
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FIGURE 3 | The effect of fulvic acids on the germination rate, root length, and vigor index in of tomato seeds cv. Huangmeiren (A,C,E) and cv. Zizhenzhu (B,D,F)
germinated for 7 days. Data are means ± s.e (N = 3). The same letters denote insignificant differences (P < 0.05) among treatments according to Duncan’s new
multiple range test (Experiment 2).

increased (Table 7 and Figure 4). Fulvic acids are demonstrated
to increase the root length of wheat seeds (Qin et al., 2016)
and tomato plants (Dobbss et al., 2007, 2010) although humic
extracts from hydrochar and Amazonian Dark Earth increased
radicles and seminal lateral roots of maize seeds (Bento et al.,
2020). The effects on root growth could be attributed to the
hormone-like molecules and their auxin- and gibberellin-like
effects that can promote the elongation of root cells, coleoptiles,
and hypocotyls (Zhao and Zhong, 2013; Canellas et al., 2015),
confirming the characteristics of our microbially fermented fulvic

acids. According to Blomster et al. (2011), fulvic acids enhance
the activity of auxin signaling and the involved enzymes to
increase the growth of roots. However, the current study lacks
specific explanation; the roles and mechanisms by which humic
substances affect plant growth need further investigation.

The increased root growth was observed to increase the
nutrient uptake of vegetable plants. Fulvic acids increased the
concentrations of Ca, Fe, and Zn in leaves in hydroponic tomato
plants, especially Fe by 109% at most (Table 7). Similar to the
effects on Fe in our study, humic acid improved the utilization
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TABLE 7 | The effect of fulvic acids (FA) on nutrient concentration in leaves of
tomato plants cv. Zizhenzhu in hydroponics for 21 days from
transplanting (Experiment 3).

FA
(mg
L−1)

P K Ca Mg S Fe Mn Zn

(µg g−1)

0 45.5 a 339 a 143 a 33.8 a 56.2 abc 2.46 b 1.18 a 0.435 ab

10 41.8 a 287 ab 138 a 29.1 a 50.1 abc 1.51 b 0.83 a 0.411 ab

20 42.3 a 262 b 143 a 32.7 a 44.4 c 1.66 b 0.73 a 0.387 b

40 40.3 a 279 b 136 a 33.1 a 46.1 bc 1.48 b 0.88 a 0.447 ab

80 43.8 a 289 ab 151 a 32.3 a 49.7 abc 9.43 a 1.17 a 0.440 ab

160 41.3 a 287 ab 138 a 32.4 a 48.4 bc 1.85 b 1.09 a 0.561 a

320 43.7 a 296 ab 141 a 29.6 a 57.0 ab 2.69 b 1.10 a 0.499 ab

640 42.0 a 280 b 133 a 27.7 a 61.3 a 3.66 b 0.92 a 0.484 ab

Data are means (N = 4). The same letters denote insignificant differences (P < 0.05)
among treatments according to Duncan’s new multiple range test.

efficiency of Fe in both the whole plant and roots of tomato
seedlings in hydroponics by 46 and 161%, respectively (Adani
et al., 1998) while several studies report that fulvic acids can
promote the absorption of Fe (Pinton et al., 1997, 1999; Halim
et al., 2003; Cerozi, 2020). The effects on the concentrations of Fe
could be attributed to the regulation of gene expression, which is
related to reduction and transport of Fe, thus improving the iron
chelation and availability and, thus, the root uptake (Bocanegra
et al., 2006; Elena et al., 2009). In addition, similarly to natural
chelators, fulvic acids chelate Fe and other micronutrients and
move them through membranes, thus enhancing the mineral
accumulation in plants (Calvo et al., 2014).

According to Calvo et al. (2014), humic substances stimulate
the growth of root and chelate ions and, thus, increase plant
uptake of nutrients. Humic substances upregulate the activities
of genes and enzymes involved in the root-to-shoot translocation
of nutrients (Mora et al., 2010). Better root growth facilitates the
uptake of more nutrients due to the greater surface area. On the
other hand, the effect can be attributed to the acidity of fulvic
acids (Table 1), which decreases the pH of growth medium and,
thus, improves the bioavailability of nutrients (Muscolo et al.,
2007). Humic substances are reported to increase the root length
and diameter of tomato seedlings and the yield of greenhouse-
cultured tomato (Qin and Leskovar, 2020), and they also
conclude that the increments were attributed to improvement on
the structure of roots. The increase in nutrient uptake further
contributed to the promotion on biomass, thus increasing the
yield and quality. The C/N ratio of hydroponic plants shared
the similar trends with root growth (Figure 4), which indicated
the accumulation of carbohydrate contributing to plant yield and
similar to a previous study (Aminifard et al., 2012).

Fulvic Acids Increased the Germination
of Seeds
Similar to the root growth of plants, fulvic acids at moderate
concentrations increased the germination rate and vigor index
of tomato seeds (Figure 3). Several other studies confirm our
results that fulvic acids increase the germination of seeds.

FIGURE 4 | The effect of fulvic acids on root length (A), root tips (B), total
biomass (C), and ratio of carbon to nitrogen (D) in leaves of tomato plants cv.
Zizhenzhu grown in hydroponics for 21 days. Data are means ± s.e (N = 4).
The same letters denote insignificant differences (P < 0.05) among treatments
according to Duncan’s new multiple range test (Experiment 3).

Soluble humates extracted from vermicomposted cattle manure
in the soil substrate increased the germination rate of tomato
seeds by 31.6% (Olivares et al., 2015). Humic substances
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increased the germination rate and vigor index of cucumber
seeds (Ahmed and Awad, 2020). Compared with our study,
the humates in Olivares et al. (2015) increased the germination
rate of tomato seeds to a greater extent, which might be
attributed to their combined application of plant growth–
promoting bacterium. The promotion on seed germination
might be attributed to the auxin-like substances in humic
products that can increase the activity of amylase and promote
seed respiration (Zandonadi et al., 2007; Canellas et al., 2010;
Canellas and Olivares, 2014). The different performances of seed
germination between Huangmeiren and Zizhenzhu also indicate
that fulvic acids facilitate the germination of cultivar with greater
germination rates.

Fulvic Acids Affected the Chemical
Properties of Soil
Fulvic acids by top and base dressing tended to decrease soil pH
and increase the soil CEC and SOM across all treatments while
foliar application did not affect these soil properties (Table 6).
Base dressing of 8.1 g kg−1 decreased soil pH while increasing
soil EC, SOM, concentrations of available N, available K, and
CEC to the greatest extent. The decrease in soil pH by fulvic
acid application could be attributed to the acidity from fulvic
acids (Sharif et al., 2002; Tahir et al., 2011). According to Suntari
et al. (2015), fulvic acids increase soil fertility indicated by the
increased concentration of available N. However, fulvic acids
did not affect soil available P in our study, inconsistent with
other reports finding that humic substances could enhance this
parameter (Cimrin and Yilmaz, 2005; Jones et al., 2007). We
believe that the result of our study can be attributed to the high
level of P in the experimental soils (Table 2).

CONCLUSION

Our study demonstrates that the moderate application of
bioresource compounds, i.e., straw-extracted and microbially
fermented fulvic acids, enhanced seed germination, production
and yield of vegetables, and vegetable quality to an extent in both
hydroponics and soil cultures. The improvement in the growth
and quality of vegetables can be attributed to the promotion of
root elongation and, thus, increased nutrient uptake by more
likely the auxin-like substances. Also, fulvic acids can improve

soil fertility indicated by the increased SOM and soil CEC. Our
study confirms that optimal concentrations of fulvic acids were
2.7 g kg−1 as base dressing and 80–160 mg L−1 in solutions as
seed soaking, top dressing, and hydroponic application. Future
studies should aim to specify the effective components of fulvic
acids and to explore the underlying mechanisms of how fulvic
acids work from molecular perspectives.
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