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Drought is a major abiotic stress that adversely affects the growth and productivity of

plants. Malondialdehyde (MDA), a substance produced by membrane lipids in response

to reactive oxygen species (ROS), can be used as a drought indicator to evaluate

the degree of plasma membrane damage and the ability of plants to drought stress

tolerance. Still measuring MDA is usually a labor- and time-consuming task. In this study,

near-infrared (NIR) spectroscopy combined with partial least squares (PLS) was used

to obtain rapid and high-throughput measurements of MDA, and the application of this

technique to plant drought stress experiments was also investigated. Two exotic conifer

tree species, namely, slash pine (Pinus elliottii) and loblolly pine (Pinus taeda), were used

as plant material exposed to drought stress; different types of spectral preprocessing

methods and important feature-selection algorithms were applied to the PLS model to

calibrate it and obtain the best MDA-predicting model. The results show that the best

PLS model is established via the combined treatment of detrended variable–significant

multivariate correlation algorithm (DET-sMC), where latent variables (LVs) were 6. This

model has a respectable predictive capability, with a correlation coefficient (R2) of 0.66,

a root mean square error (RMSE) of 2.28%, and a residual prediction deviation (RPD) of

1.51, and it was successfully implemented in drought stress experiments as a reliable

and non-destructive method to detect the MDA content in real time.

Keywords: model calibration, abiotic stress, NIR spectroscopy, non-destructive, pine tree

INTRODUCTION

Slash pine (Pinus elliottii) and loblolly pine (Pinus taeda) trees were introduced to China in the past
century, and due to their high-resin yield, fast growth, and suitably long humid, warm-temperate
climatic condition, they are mostly cultivated in the south of the country (Yi et al., 2000; Liu et al.,
2013; Lilian et al., 2021). In recent years, both slash and loblolly pine have attained key status
in terms of their ecological and economic benefits. The annual yield of resin in China is ca. 0.6
million tons, accounting for 50% of the global turpentine trade (Acosta et al., 2019;McConnell et al.,
2021; Yi et al., 2021). However, resin yield and wood quality are affected by biological and abiotic
stresses (Towler et al., 2015), and understanding the degree of important stress factors and taking
timely measures to effectively avoid their adverse effects on turpentine yield and wood properties
is imperative.

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.735275
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.735275&domain=pdf&date_stamp=2021-10-18
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:qifu.luan@caf.ac.cn
mailto:aj7105@gmail.com
https://doi.org/10.3389/fpls.2021.735275
https://www.frontiersin.org/articles/10.3389/fpls.2021.735275/full


Zhang et al. Malondialdehyde Prediction Under Drought Stress

Plants incur lipid peroxidation in response to oxidative stress
after encountering various forms of adversity or when they
undergo senescence, which leads to the destruction and protein
lysis of the cell membrane system, thereby impairing plant
photosynthesis and respiration, causing the death of plant cells in
severe cases (Janku et al., 2019). Malondialdehyde (MDA) is one
of the final products of polyunsaturated fatty acid peroxidation
in the cells; for this reason, it is a widely used and reliable
marker for determining the degree of injury to a stressed plant
(Morales and Munné-Bosch, 2019). The more the plant is
damaged, the higher its MDA content, as found in studies that
focused on plant responses to abiotic and biotic stresses (Alché,
2019). That is to say, plants will generate ROS under abiotic
or biotic stress conditions, thereby impairing the production of
biomolecules, such as lipids, proteins, and nucleic acids, which
increases the MDA content and the permeability of the plasma
membrane, leading to extravasation of the content of cells. It is
the mechanism by which drought resistance in plants is regulated
(Munnik et al., 2000; Kong et al., 2016). Therefore, the MDA
content could be used as a robust diagnostic indicator when
studying plant growth dynamics, such that predicting the MDA
content in plants could be used to know the stress conditions
of plants in real-time, enabling corresponding pre-emptive
measures against drought to be taken. Still, our understanding
of methods and results in membrane lipid peroxidation markers
remains limited by several shortcomings (Munnik et al., 2000).

The thiobarbituric acid (TBA) assay has been the most
common method used for determining MDA in plants.
This mainly relies on the chromogenic reaction of TBA
with MDA under acidic conditions to produce reddish-
brown 3,5,5-trimethyloxazole-2,4-ditone (C6H9NO3), whose
absorbance values at 532- and 600-nmwavelengths are compared
to calculate the MDA content (Janero, 1990; Hodges et al.,
1999). However, this method is susceptible to interference from
carbohydrates in plants, which affects the final measurement
results (Xu et al., 1993). Furthermore, traditional methods
devised to empirically determine these indicators are time-
consuming, laborious, and destructive. Hence, it is of great
significance to establish a rapid, effective, non-destructive, and
non-polluting way to determine MDA for drought resistance
of plants.

Near-infrared (NIR) spectroscopy is a highly flexible form
of analysis, whose applications began in the 1950s (Pasquini
and Celio, 2003; Mohamed et al., 2018; Chu et al., 2020).
Since then, through over half a century of development, it
has matured and is now widely employed in food, medicine,
petrochemical, and other research fields (Mohamed et al., 2018;
Guo et al., 2020). In recent years, NIR spectroscopy technology
has become increasingly and broadly used in forestry, for
example, to estimate photosynthetic characteristics (Dechant
et al., 2017), to predict leaf-level nitrogen content (Kokaly,
2001), to distinguish bamboo shoots of different qualities
(Tong et al., 2020), and to name a few applications. Partial
least squares (PLS) regression, a quick, efficient, and optimal
regression method based on covariance, is a widely used
chemometric method, one that combines the advantages of
multiple linear regression, canonical correlation analysis, and

principal component regression (Tenenhaus et al., 2005; Sarker
and Nichol, 2011). This approach has been applied to rapidly
predict leaf photosynthetic parameters (Meacham et al., 2019),
analyze the quantitative of forest biomass (Acquah et al., 2016),
among others. It is worth noting that substantial spectral data
will contain redundant and complicated information. Therefore,
to establish a moderately practical model, it is necessary to
preprocess the collected spectral data (Xu et al., 2008).

Preprocessing of NIR spectral data has become a crucial step
in chemometric modeling. The target of this preprocessing is
to remove physical phenomena, including a specific source of
noise and overlapping information, from the spectra so as to
improve the subsequent multivariate regression, classification
model, or exploratory analysis (Rinnan et al., 2009). Similarly,
variable selection is also a critical step in spectral analysis, which
can select the most relevant spectral band to improve the overall
performance of the model (Yu et al., 2020). Surprisingly, the
prediction ofMDA in P. elliottii and P. taeda under drought stress
has yet to be reported.

Therefore, this study aimed (1) to derive a technique to
reliably estimate and predict MDA of P. elliottii and P. taeda
under different drought stress conditions using NIR technology;
(2) to compare the performance of different preprocessing
methods and differing feature-variable selectionmethods; and (3)
to evaluate the response of leaf-level MDA in P. elliottii and P.
taeda under drought stress using the NIR-based technique.

MATERIALS AND METHODS

Site and Plants
The experimental site was a greenhouse at the Research Institute
of Subtropical Forestry, Chinese Academy of Forestry, located in
Hangzhou, Zhejiang Province, China (30◦3

′

N, 119◦57
′

E).
The experiment materials consisted of 1-year-old container

seedlings of slash pine and loblolly pine. Watering, fertilizing,
and other managements were all implemented according to
the growth requirements of both species. The drought stress
treatment began after 3 weeks of acclimatization of seedlings
to the greenhouse conditions. Two experiments were set up
for model calibration and drought stress investigation. In each
experiment, the watering regime was set during the seedling
tempering period as the normal watering amount (control
check), and this watering amount was then reduced into four
different drought stress conditions as follows: by 20% (treatment
1), 40% (treatment 2), 60% (treatment 3), and 80% (treatment
4). There are 15 biological replicates per species under each
treatment, and in total, 150 samples per experiment were used.

NIR Spectrum Measurements
Near-infrared spectral data were collected in August and
September 2020 using a field-based spectrometer (LF-2500,
Spectral evolution, USA). For each scan, the fresh needle samples
were arranged tightly to minimize other noise pollution, placed
on a background board, and scanned directly with a handheld
fiber optic contact probe; spectra were averaged after 20 scans
per sample, whose values ranged from 1,000 to 2,500 nm with a
6-nm resolution. (1) For the model calibration experiment, three
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samples per treatment were selected for NIR data collection and
MDA content measurement on days 0, 7, 14, 21, and 27 at 9:00–
10:00 a.m. (2) For the same drought stress experiment, all the 150
samples have only been taken NIR spectra on the same day when
the NIR data were taken in the model calibration experiment.

MDA Measurement of Conifers
A commercially available detection kit for MDA measurement
was used (Suzhou Keming Biotechnology Company). For
this, mixed fresh needles were weighed to ca. 0.1 g and
then ground into powder with a 1-ml extracting solution.
The extraction was centrifuged for 10min at 8,000 rcf
at 4◦C. Then, 0.2ml of the supernate was removed and
mixed with 0.6ml of TBA and moderately shaken. These
mixed liquids were placed in a 95◦C water bath for 30min
and then centrifuged for 10min at 10,000 rcf at 25◦C.
Each extraction was placed in a spectrophotometer, and its
recorded absorption at 532 and 600 nm wavelengths were
used to determine the MDA concentration of that sample
(Chen and Wang, 2012).

Preprocessing and Variable Selection of
NIR
To reduce bias from physical factors and irrelevant variables
on the establishment of a stable and reliable model (Liang
et al., 2020), six preprocessing methods, namely standard normal
variate (SNV), detrended variable (DET, p = 2), block scale
(BS), block normal (BN), block scale and standard normal
variate (BS-SNV), and detrended variable and standard normal
variate (DET-SNV), were combined with PLS (Wold et al., 2001).
Four variable selection methods were applied as follows: inverse
variable elimination (bve) (Eason, 1990), genetic algorithm
(ga) (Molajou et al., 2021), regularization elimination (rep)
(Mehmood et al., 2012; Molajou et al., 2021), and a significant
multivariate correlation (sMC) algorithm (Tran et al., 2014).
The calibration set (n = 80 samples) was used to develop
a calibrated model, and the separate validation set (n = 20
samples) was reserved to assess and evaluate the prediction
performance of the developedmodel. Three indicators of internal
cross-validation, namely, the correlation coefficient (R2), root
mean square error (RMSE), and residual prediction deviation
(RPD), were used to assess model robustness. For that, the
closer the R2 to 1 and the RMSE to 0 and higher values
for the RPD, the better the prediction ability of the model
is (Yan et al., 2000; Plans et al., 2012). Finally, the optimum
number of PLS components (latent variables (LVs)) were
selected.

Software Tools
All the data analyses were implemented using R software (v4.0.4).
The “pls” (Mevik and Wehrens, 2007) and “enpls” (Xiao et al.,
2019) packages of R were used for building the PLS model,
and the “prospectr” package (Stevens and Ramirez-Lopez, 2020)
was used for manipulation of the NIR spectral data, with the
“ggplot2” (Wickham, 2017) package for drawing the plots.

RESULTS

Model Performance
Six spectral preprocessing methods and four kinds of variable
selection were used for model calibration, whose results are
shown in Table 1. Compared with the model without data
processing, the accuracy of the model established was improved
when using the SNV, DET, DET-SNV, and BS-SNV spectral
preprocessing methods. For all models, the average R2 and
RMSE values of the calibration and validation sets were
0.64 (range: 0.63–0.65), 2.30% (range: 2.28–2.33%) and 0.61
(range: 0.61–0.62), 2.98% (range: 2.96–2.99%) respectively. In
addition, the average RPD was 1.31 (range: 1.04–1.51). Despite
the variable selection methods, the DET processing method
yielded the highest accuracy, with R2 and RMSE values for
the calibration set of 0.65 (range: 0.65–0.66) and 2.28% (range:
2.26%−2.28), respectively, and the values of RPDwas 1.40 (range:
1.35–1.51). Then, performance was ranked in the following
order: DET-SNV, BS-SNV, SNV, BS, and original spectrum
(OG) processing methods, followed by BN showing the worst
accuracy whose mean values for R2 and RMSE were 0.64
(range: 0.63–0.64), 2.32% (range: 2.31–2.33%), and 0.61 and
2.97% (range: 2.96–2.98%) for the calibration and validation
sets, respectively. Compared with the full spectrum PLS model,
the ga, rep, and sMC variable selection methods generated
similar results when applied to all preprocessing model types.
Among these, the sMC variable selection combined with the
DET preprocessing method produced the most accurate MDA
prediction model, having R2 and RMSE values for the calibration
set of 0.66 and 2.28%, respectively, and the RPD of DET-sMC
was 1.51.

Establishment of MDA Content Prediction
Model Based on PLS
The relationships between the MDA content predicted and
measured by the PLS model when using the DET-sMC spectra
and original full spectra are plotted in Figure 1. Although the
prediction accuracy of each model differed, their prediction error
was still low. The fitting model accuracy after spectral processing
is slightly better than that based on original full spectra with only
<10% of the full length of spectra. Figure 2 shows the residuals
of the best processing spectral model for the MDA content. The
latter tends to be underestimated when the measurement value is
small. As the MDA content value increases, the predicted MDA
value is more likely to be overpredicted. The residual values
of the MDA model are all between −5 and 5%. In contrast,
for the model established without any spectral preprocessing,
the residual values of the MDA model are all between −5
and 7.5%.

The important variable that was selected by using the sMC
variable selection method 100 times in the MDA model on DET-
sMC has exhibited in Figure 3. Evidently, as selected by 100
random models, the band selected by sMC is stable and robust,
featuring several relative spectral regions in the predictionmodel.
The variables at 1,000, 1,240, 1,430, 1,500, 2,130, and 2,450 nm
were thus critical for building the MDA prediction model.
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TABLE 1 | The calibration and validation results of PLS models for the prediction of MDA content in pine seedlings based on different spectral processing and variable

selection methods.

Calibration Validation RPD

R² RMSE R² RMSE

Pro-processing Variable selection Mean SD Mean SD Mean SD Mean SD

OG raw 0.64 0.04 2.31 0.12 0.61 0.00 2.97 0.00 1.30

ga_sel 0.64 0.04 2.31 0.12 0.61 0.01 2.96 0.03 1.26

rep_sel 0.64 0.04 2.31 0.12 0.61 0.00 2.97 0.00 1.33

bve_sel 0.63 0.06 2.33 0.17 0.61 0.01 2.98 0.03 1.05

sMC_sel 0.64 0.04 2.31 0.12 0.62 0.01 2.96 0.05 1.10

SNV raw 0.65 0.01 2.28 0.03 0.61 0.00 2.98 0.01 1.42

ga_sel 0.65 0.01 2.29 0.03 0.61 0.00 2.98 0.01 1.46

rep_sel 0.65 0.01 2.28 0.03 0.61 0.00 2.97 0.00 1.40

bve_sel 0.64 0.02 2.30 0.07 0.61 0.01 2.98 0.03 1.32

sMC_sel 0.65 0.00 2.28 0.01 0.61 0.00 2.98 0.01 1.44

BS raw 0.64 0.05 2.32 0.14 0.61 0.00 2.97 0.01 1.05

ga_sel 0.64 0.04 2.32 0.13 0.61 0.00 2.97 0.01 1.06

rep_sel 0.64 0.05 2.32 0.14 0.61 0.00 2.97 0.01 1.05

bve_sel 0.64 0.05 2.32 0.15 0.61 0.00 2.98 0.02 1.04

sMC_sel 0.64 0.02 2.30 0.07 0.61 0.01 2.96 0.03 1.50

BN raw 0.64 0.04 2.31 0.12 0.61 0.00 2.97 0.00 1.30

ga_sel 0.64 0.04 2.31 0.12 0.61 0.01 2.96 0.03 1.26

rep_sel 0.64 0.04 2.31 0.12 0.61 0.00 2.97 0.00 1.33

bve_sel 0.63 0.06 2.33 0.17 0.61 0.01 2.98 0.03 1.05

sMC_sel 0.64 0.04 2.31 0.12 0.62 0.01 2.96 0.05 1.10

DET raw 0.65 0.00 2.28 0.01 0.61 0.00 2.97 0.01 1.40

ga_sel 0.65 0.01 2.28 0.02 0.61 0.00 2.97 0.00 1.48

rep_sel 0.65 0.00 2.28 0.00 0.61 0.00 2.97 0.00 1.40

bve_sel 0.65 0.01 2.28 0.02 0.61 0.02 2.99 0.06 1.35

sMC_sel 0.66 0.00 2.28 0.00 0.61 0.00 2.97 0.00 1.51

BS_SNV raw 0.65 0.01 2.28 0.02 0.61 0.00 2.97 0.02 1.40

ga_sel 0.65 0.01 2.28 0.02 0.61 0.00 2.97 0.01 1.48

rep_sel 0.65 0.01 2.28 0.02 0.61 0.01 2.97 0.02 1.40

bve_sel 0.64 0.02 2.30 0.07 0.61 0.00 2.97 0.00 1.35

sMC_sel 0.65 0.01 2.28 0.02 0.61 0.01 2.97 0.02 1.41

DET_SNV raw 0.65 0.00 2.28 0.01 0.61 0.00 2.97 0.01 1.38

ga_sel 0.65 0.01 2.28 0.02 0.61 0.00 2.97 0.00 1.33

rep_sel 0.64 0.00 2.28 0.00 0.61 0.00 2.97 0.00 1.41

bve_sel 0.65 0.01 2.29 0.02 0.61 0.02 2.99 0.06 1.19

sMC_sel 0.65 0.00 2.29 0.00 0.61 0.00 2.97 0.00 1.43

PLS, partial least squares; MDA, malondialdehyde; R2, correlation coefficient; RMSE, root mean square error; RPD, residual prediction deviation; SNV, standard normal variate; BS, block

scale; BN, block normal; DET, detrended variable; BS-SNV, block scale and standard normal variate; DET-SNV, detrended variable and standard normal variate; ga, genetic algorithm;

rep, regularization elimination; bve, inverse variable elimination; sMC, significant multivariate correlation.

MDA Variation Under Drought Stress Using
the PLS Model
The DET-sMC model was used to predict the MDA content
of loblolly and slash pine seedlings under the same treatment.
With more days elapsed since the initiation of each treatment,
the MDA content of each treatment changed, by first increasing
and then decreasing. In the two pine species, one-way ANOVA
showed that on day 7 of drought exposure, the treatments
entailing a 60% and 80% reduction in watering volume differed
significantly from the other treatments (Figure 4). However, on

day 14, those treatments with a 20 and 40% reduction in watering
volume were significantly different from the other treatments.
At other time points, the differences among treatments were not
significant (Figure 4).

DISCUSSION

The purpose of this study was to reveal the applicability of
NIR for the detection of MDA in loblolly pine and slash
pine. The balance among production, elimination, and signal
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FIGURE 1 | Scatterplots of the malondialdehyde (MDA) in pine seedlings predicted by (A) the detrended variable–significant multivariate correlation algorithm

(DET-sMC) partial least squares (PLS) model and (B) the full-spectrum PLS model. The error bar of each symbol point represents the sample prediction error obtained

by 100 random calibration models. The regression line of the model appears in gray; the dotted black line denotes the equality of measured vs. predicted MDA values.

transduction of MDA is an important feature in redox biology
and may determine the survival of plants under stress; hence,
both enzymatic and non-enzymatic peroxidation processes can
foster the formation of MDA and other oxidative peroxidation
products in plants (Esterbauer et al., 1991; Morales and Munné-
Bosch, 2019). Consequently, a quick and non-destructive method
by which to monitor, in situ, the MDA content in plants under
drought stress is a logistical priority, because it can enable
timely and effective interventions by tree or crop managers
to restore normal physiological activity. In this study, the
relationship between MDA and NIR spectra was explored using
seven spectral preprocessing methods and five effective variable
selection algorithms. Comparing the results in Table 1, the DET
preprocessing method coupled with the sMC variable selection
method emerged as the optimal prediction model, with R2 and
RMSE of 0.66 and 2.28%, respectively. These values were lower
than those reported for predicting the MDA concentration (R2

= 0.996, RMSE = 2.117) in oilseed rape (Brassica napus) fresh
leaves (Kong et al., 2016). The reason for this disparity may be
leaf morphology. Oilseed rape plants have broad leaves, making
the collection of their spectral data easier than for needles of
slash or loblolly pine, whose single-leaf surface of a needle is
very small and could not always be accurately positioned. This
could have introduced relatively more irrelevant information in
the collected spectral data, which reduced the modeling accuracy
of the MDA content.

One advantage of using NIR spectroscopy is that it
can model properties robustly without depending on unique
chemical signals by applying statistical methods of chemometrics.
Nonetheless, while collecting the NIR spectroscopy data, often
high-frequency sounds, personnel operations, the external
environment, and irrelevant noises are liable to interfere with this

process, so it is vital to select effective spectral information (Guo
et al., 2020). Accordingly, implementing appropriate spectral
preprocessing and variable selection can improve the accuracy
of a fitted model (Zou et al., 2010; Gerretzen et al., 2016). For
example, the SNV-SVR model is based on SNV, which reduces
particle size noise effects by scaling each spectrum to have an SD
of 1.0 and by utilizing accurate prediction performance of both
catechins and caffeine as suggested by Wang et al. (Wang et al.,
2020); DET can reduce the curvature of each spectrum (Murphy
et al., 2021); and BS can balance the effect of the modeled
blocks, to avoid any block dominating the model (Mishra et al.,
2021). In this study, this exercise shows that the sMC algorithm
combined with PLS can efficiently identify the useful informative
wavelength to provide a promising and robust correction model
for the prediction of MDA. This finding is similar to another
study that applied the sMC algorithm to get a robust model
for predicting the chlorophyll content of Sassafras tzumu (Li
et al., 2019). Several important variables that are related to MDA
were selected similarly in each model, including those at regions
corresponding to 1,000, 1,240, 1,430, 1,500, 2,130, and 2,450 nm.
As reported by Kokaly et al., the regions around 1,500–1,600 nm
are mainly related to O–H stretching vibration of aldehyde and
phenolic compounds (Kokaly and Skidmore, 2015). Residual
values are uniformly distributed in the horizontal band, which
suggests that the selected model is more suitable, and coupled
with a narrower bandwidth, which indicates a better fitting
accuracy and implies greater accuracy of the fitted regression
equation (Couture et al., 2016). Therefore, in this study, after
DET-sMC processing of the spectral data, the range of residual
values is smaller, and the model is more accurate.

For a comparative study, we then performed additional
experiments for the inversion of the PLS model on the same
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FIGURE 2 | Residuals plotted against the measured MDA in pine seedlings based on (A) DET-sMC spectra and (B) full length of spectra. Error bars for predicted

values represent the SDs obtained from the 100 simulated models.

treated loblolly and slash pine seedlings. In the prediction model
results for this experiment, theMDA content increased at first but
then decreased, a pattern consistent with the findings reported
by Zhu (2014) and Wang et al. (2016), who, respectively, studied
the physiological effects of water stress on Pinus sylvestris and
Larix gmelinii.This shows that our optimal PLSmodel, which can
detect theMDA content faster than via laboratorymeasurements,
has a certain level of accuracy. However, the changes to the
MDA content under the low-stress condition (i.e., treatments 1
and 2) and the high-stress condition (i.e., treatments 3 and 4)
were not synchronous. The MDA content reached the maximum

on day 7 under high-stress treatments but later on day 14
under the low-stress treatments (Figure 4). Previous studies have
shown that the activity of lipoxygenase increase may lead to
the formation of MDA and other lipid peroxidation products
in plants, and that temperature is a critical factor influencing
enzyme activity. Furthermore, our experiment was carried out
in the hot summer, so that lipoxygenase activity was high,
which may have led to the high MDA content detected under
low drought stress. Therefore, membrane lipid peroxidation
peaked earlier under high drought stress condition than under
low stress condition, and seedlings were then adjusted to the

Frontiers in Plant Science | www.frontiersin.org 6 October 2021 | Volume 12 | Article 735275

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhang et al. Malondialdehyde Prediction Under Drought Stress

FIGURE 3 | Spectral influence in the MDA models that were randomly run 100 times.

FIGURE 4 | PLS model inversion of MDA composition in (A) loblolly pine and (B) slash pine.

drought environment. Similarly, with prolonged stress exposure,
the MDA content also increased under high temperature and
low-stress conditions.

CONCLUSION

Near-infrared spectroscopy combined with PLS modeling
provides a reliable and non-destructive way to predict the MDA

content of pine trees. Furthermore, the spectral preprocessing
methods and variable selection can successfully increase the
model prediction accuracy with less variables used. Most
importantly, we successfully applied this technology to predict
MDA under drought stress in a fast and non-destructive
way, thus demonstrating that the NIR-based technique harbors
promising prospects for use in future studies of plant stress,
especially for trees.
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