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Chickpea is a highly nutritious pulse crop with low digestible carbohydrates (40–60%), 
protein (15–22%), essential fats (4–8%), and a range of minerals and vitamins. The fatty 
acid composition of the seed adds value because fats govern the texture, shelf-life, flavor, 
aroma, and nutritional composition of chickpea-based food products. Therefore, the 
biofortification of essential fatty acids has become a nutritional breeding target for chickpea 
crop improvement programs worldwide. This paper examines global chickpea production, 
focusing on plant lipids, their functions, and their benefits to human health. In addition, 
this paper also reviews the chemical analysis of essential fatty acids and possible breeding 
targets to enrich essential fatty acids in chickpea (Cicer arietinum) biofortification. 
Biofortification of chickpea for essential fatty acids within safe levels will improve human 
health and support food processing to retain the quality and flavor of chickpea-based 
food products. Essential fatty acid biofortification is possible by phenotyping diverse 
chickpea germplasm over suitable locations and years and identifying the candidate genes 
responsible for quantitative trait loci mapping using genome-wide association mapping.

Keywords: chickpea (Cicer arietinum L.), essential fatty acids, biofortification, nutritional breeding, fourier 
transform infrared spectroscopy

INTRODUCTION

Chickpea (Cicer arietinum) is a self-pollinating diploid (2n = 2x = 16) pulse crop with a 738 Mbp 
genome (Varshney et  al., 2013). Chickpea primarily extended from Cicer reticulatum Ladizinsky 
approximately 11,000 years ago (Zohari and Hopf, 2000; Kerem et  al., 2007), a variable wild 
species that originated in several regions of southeastern Turkey (37.3–39.3°N, 38.2–43.6°E; 
Kerem et  al., 2007). Chickpea presently has 44 species, of which 35 are perennial, and nine 
are annual. Chickpea has two market classes—kabuli and desi—based on seed morphology 
(Knights and Hobson, 2016). Kabuli has become popular in Western markets as hummus and 
canned and raw seeds for salads and soups, whereas desi seeds are split and consumed in 
Southeast Asia as “channa dal.”

Chickpea consumption is popular in many regions around the globe, mainly due to its 
high nutritional quality. The chickpea seed matrix is comprised of carbohydrates (50–58%), 
protein (15–22%), moisture (7–8%), fat (3.8–10.20%), and micronutrients (<1%; Jukanti et  al., 
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2012; USDA, 2021). Chickpea carbohydrates include a range 
of prebiotic carbohydrates, including sugar alcohols, 
fructooligosaccharides, raffinose family oligosaccharides, inulin, 
and resistant starch (Peterbauer and Richter, 2001; Johnson 
et al., 2020), which modulate the gut microbiome and improve 
human gut health (Roberfroid et  al., 2009). The mean protein 
content in chickpea is nearly 18% [(kabuli: 18.4% (16.2–22.4%); 
desi: 18.2% (15.6–21.4%)], which is higher than lentil and 
field pea (Upadhyaya et  al., 2016). Chickpea is rich in lysine 
and arginine and low in sulfur (S)-containing amino acids 
such as cysteine and methionine (Jukanti et al., 2012). Moreover, 
chickpea is a rich source of minerals, including iron (Fe), zinc 
(Zn), and selenium (Se).

The United Nations established Sustainable Development 
Goals to end global hunger and malnutrition by 2030 (United 
Nations, 2021a,b). Biofortification or conventional breeding 
with modern biotechnology to enhanced micronutrient 
concentrations in staple food crops has been vital to combat 
global hunger and malnutrition. To date, many staple food 
crops have been biofortified with micronutrients, and cultivars 
were released to these vulnerable populations globally (Harvest 
Plus, 2021). Chickpea is a target candidate pulse crop for 
mineral and vitamin biofortification (Thavarajah and Thavarajah, 
2012; Vandemark et al., 2018, 2020; Kumar and Pandey, 2020). 
During the last decade, several global research foundations 
have attempted to develop Fe-, Zn-, and Se-enriched chickpea 
cultivars to combat micronutrient malnutrition or “hidden 
hunger” (Thavarajah and Thavarajah, 2012; Vandemark et  al., 
2018). Biofortified chickpea provides 5.2–6.0 mg of Fe, 2.5–5.3 mg 
of Zn, and 15.3–56.3 mg of Se in a 100-g serving, representing 
a significant portion of the recommended daily allowance 
(RDA) of these essential elements (Thavarajah and Thavarajah, 
2012; Ray et al., 2014; Vandemark et al., 2018). A 100-g serving 
also provides 125–159 mg of magnesium (Mg), 93–197 mg of 
calcium (Ca), 0.7–1.1 mg of copper (Cu), 732–1,126 mg of 
potassium (K), and 263–370 mg of phosphorus (P; Thavarajah 
and Thavarajah, 2012). Chickpea is also a significant source 
of carotenoids; beta-carotenoid is the most abundant, followed 
by canthaxanthin and xanthophyll (Thavarajah and Thavarajah, 
2012). Vitamins such as folic acid, tocopherols, and vitamin 
B complex (B2, B5, and B6) are also found in chickpea (Jukanti 
et  al., 2012). Overall, chickpea is a rich source of prebiotic 
carbohydrates, protein, and several micronutrients, and these 
components have already been incorporated into global chickpea 
biofortification programs (Thavarajah and Thavarajah, 2012; 
Vandemark et al., 2020). However, fat composition is the least-
studied nutritional trait of chickpea, and genetic advancement 
studies are required to advance fatty acid biofortification.

Fats, which provide the storage energy required for seed 
germination (Nelson and Cox, 2008), occupy a minor proportion 
of the chickpea seed matrix compared to other nutrients. 
Chickpea is not an oilseed crop but has a higher fat content 
than other pulse crops (Jukanti et al., 2012). Sterols, tocopherols 
(phytosterols), and lipids are components of fat found in 
chickpea (Jukanti et  al., 2012). The fatty acids in chickpeas—
polyunsaturated fatty acids (PUFAs), monounsaturated fatty 
acids (MUFAs), and saturated fatty acids (SFAs)—mainly originate 

from the lipids. These are essential fatty acids (EFAs; ω-6 and 
ω-3 PUFAs), vital for humans in the biosynthesis of hormones 
and maintaining cellular integrity (Di Pasquale, 2009). 
Consequently, chickpea consumption can benefit human health 
by providing important fatty acids. This review focuses on 
global chickpea production, biofortification, the function of 
fats and benefits to human health, chemical analysis of EFAs, 
and possible breeding targets to optimize ω-6 and ω-3 fatty 
acids chickpea.

CHICKPEA PRODUCTION

Chickpea ranks third in the global production of pulses at 
~11.6 million tons per annum, 80% of which is desi and the 
remaining 20% is kabuli (Merga and Haji, 2019). Chickpea is 
grown in nearly 57 countries worldwide in varying climatic 
and growing conditions (Merga and Haji, 2019). India was 
the leading global chickpea producer in 2019, followed by 
Turkey, Russia, Myanmar, Pakistan, and Ethiopia (FAOSTAT, 
2020; Table 1). In great part due to India’s large-scale production, 
Asia dominated global chickpea production in 2019 compared 
to the Americas (83.4 vs. 6.1%, respectively; FAOSTAT, 2020). 
In the last two decades, the harvested area has correlated with 
chickpea production, and both generally show an increase over 
time (except for lower production in 2015 and 2019; FAOSTAT, 
2020). Notably, India has lower yields than smaller producers 
such as Ethiopia and Mexico (FAOSTAT, 2020), resulting in 
its position as the world’s largest chickpea importer despite 
its large-scale production (Merga and Haji, 2019). During the 
last 2 years, India’s imports increased from 0.19 MT in 2018 
to 0.37 MT in 2019, possibly due to the lower yields in 2019 
(9.93 MT) than in 2018 (11.3 MT).

BIOFORTIFICATION

Malnutrition is a persisting global calamity that is prevalent 
mainly in Africa and South Asia. It exists in three aspects: 
undernutrition (stunting, wasting, and underweight), obesity, 
and malnutrition associated with micronutrient deficiency 
(hidden hunger). The World Health Organization (WHO) 

TABLE 1 | Global chickpea production and mean grain yields in 2019 (FAOSTAT, 
2020).

Country Production (MT) Yield (kg/ha)

India 9.93 1,041
Turkey 0.63 1,217
Russia 0.51 918
Myanmar 0.49 1,316
Pakistan 0.45 474
Ethiopia 0.45 2084
United States of America 0.28 1730
Australia 0.28 1,069
Canada 0.25 1,614
Mexico 0.20 2,117
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estimates over 2 billion people suffer from hidden hunger 
(Ritchie and Roser, 2017). At the same time, 150.8 million, 
50.5 million, and 38.3 million children aged below 5 years 
are stunted, wasted, and overweight, respectively (Ritchie and 
Roser, 2017; Global Nutrition Report, 2018). South Asian 
women and school children are highly vulnerable to 
malnutrition. One-third of women of reproductive age are 
anemic and show higher susceptibility to obesity than men 
(Global Nutrition Report, 2018). Plant breeding and agronomical 
practices introduced in the 1960s during the green revolution 
primarily combatted global hunger, especially through large-
scale cereal production, providing the necessary calories or 
proteins to these vulnerable populations (Thavarajah et  al., 
2014; Roorkiwal et  al., 2021). However, the consumption of 
cereals contributed to hidden hunger or micronutrient 
malnutrition in most developing nations (Roorkiwal et  al., 
2021). Micronutrients mediate human physical and mental 
development and further serve as cofactors of enzymes that 
catalyze biochemical reactions in the body, modulating human 
physiology and growth (White and Broadley, 2005; Malik 
and Maqbool, 2020).

Several global approaches have been implemented to 
increase the bioavailability of nutrients in staple food crops 
(Welch and Graham, 2004; White and Broadley, 2005; 
Thavarajah and Thavarajah, 2012). However, technological, 
socio-economical, financial, and demographical constraints 
are challenges with nutrient fortification programs. 
Biofortification is breeding crops to optimize micronutrient 
concentration and bioavailability, enriching their nutritional 
value to combat hidden hunger (Garcia-Casal et  al., 2017; 
Roorkiwal et  al., 2021). Biofortification has three strategies: 
agronomic (fertilizing the soil or foliar application), 
conventional breeding approaches, and molecular technologies 
(Garcia-Casal et  al., 2017). Biofortification is a convenient 
approach to combat ‘hidden hunger,’ primarily due to low 
financial investment, tendency to penetrate demographic 
barriers benefitting rural populations, and provision of 
germplasm to farmers at zero marginal expenditure during 
early investment (Bouis and Saltzman, 2017). In 2015, crops 
were biofortified for vitamin A (fleshy-orange sweet potato, 
cassava, and orange corn), Fe (beans and millet), and Zn 
(rice and wheat) by officially releasing the germplasm of 
biofortified varieties in 30 countries, further expanding trials 
and official breeding in more than 50 countries (Birol et  al., 
2015). However, biofortification attempts have been less 
frequent in pulses than in cereals (rice, wheat, and corn) 
during the present decade (Kumar and Pandey, 2020).

Current biofortification efforts in chickpea are focused on 
enriching micronutrients and reducing antinutrient factors 
(Sreeramaiah et  al., 2007; Jukanti et  al., 2012; Thavarajah 
and Thavarajah, 2012; Vandemark et  al., 2020). Agronomic 
approaches such as fertilizer application (including foliar 
spraying) and genetic engineering (GE) have been attempted 
on chickpea to enrich minerals, such as Fe, Zn, and Se 
(Table  2, Poblaciones et  al., 2014; Khalid et  al., 2015; Pal 
et  al., 2019, 2021). Soil and foliar application of Zn and urea 
can increase chickpea’s Zn and Fe content (Pal et  al., 2019). 

A combined application of Fe, Zn, and urea (in a tank mix) 
can increase Fe and Zn concentrations in chickpea seeds 
and positively influence grain yields and protein levels (Pal 
et  al., 2021). Two separate studies indicate inoculating 
Zn-solubilizing bacteria (B. altitudinis) and rhizobacteria at 
chickpea planting increase seed Zn and Fe concentration in 
low Zn soils (Khalid et  al., 2015; Kushwaha et  al., 2021). 
Transgenic approaches have also been used for Fe biofortification 
in chickpea. For example, overexpression of the nicotamine 
synthase 2 (CaNAS2) and ferritin (GmFER) genes in chickpea 
increased seed Fe concentration (Tan et  al., 2018). However, 
the above transgenic approach has not demonstrated any 
significant outcome for conventional chickpea breeding 
programs. Although biofortification significantly focuses on 
micronutrients, the techniques followed can be  applied to 
other macro nutritional traits (Garcia-Casal et  al., 2017; 
Roorkiwal et  al., 2021). Linoleic acid (LA; ω-6) is the most 
abundant (essential) fatty acid in chickpea, while α-linolenic 
acid (ALA; ω-3), the other essential fatty acid, is far less 
available in the seed (Jukanti et  al., 2012). ALA is known 
for its human health benefits (Simopoulos, 2002, 2006, 2016). 
Thus, breeding chickpea to enrich the seed in ALA is important; 
however, the quantitative nature of these genetic traits makes 
chickpea breeding much complicated than for traits controlled 
by a single gene.

CHICKPEA LIPIDS

In chickpea, lipids persist as storage and membrane molecules. 
Storage lipids are triacylglycerols (TAGs), which are suspended 
as oil droplets (oily phase) on the cell cytosol serve as primary 
sinks of fatty acids (including EFAs; Nelson and Cox, 2008; 
Cagliari et  al., 2011). TAGs are the most abundant neutral 
lipid in desi-type chickpea and typically serve as biosynthetic 
precursors and energy supplements during seed germination 
(Zia-Ul-Haq et  al., 2007; Jukanti et  al., 2012; Weselake et  al., 
2021). The general structure of TAGs includes a glycerol group 
esterified with three fatty acids, either similar or different 
(Figure  1A). Chickpea also has phospholipids 

TABLE 2 | Biofortification methods for chickpea.

Nutrient Approach Positive 
response

References

Selenium (Se) Foliar application Seed Se Poblaciones et al., 
2014

Iron (Fe) Soil application of 
Plant growth-
promoting 
rhizobacteria

Soil and seed Fe Khalid et al., 2015

Zinc (Zn) Foliar application 
with Zn fertilizer

Seed Zn Shivay et al., 2015; 
Pal et al., 2019

Boron (B) Seed coating Nodulation, yield Hussain et al., 
2020

Fe and Zn Conventional 
breeding/selection/
backcrosses

Seed Fe and Zn Singh et al., 2021
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(glycerophospholipids; Figure  1B), sphingolipids (Figure  1C), 
glycolipids (galactolipids and sulpholipids; Figure  2), and 
phytosterols as membrane lipids (Clemente et  al., 1998; 
Zia-Ul-Haq et  al., 2007; Michaelson et  al., 2016). Both storage 
and membrane lipids contribute to the total chickpea fat 
composition. The majority of the fatty acids in chickpea are 
originated from the storage lipids (TAGs), which are the most 
abundant neutral lipids in seeds (Jukanti et al., 2012). Chickpea 
has a general fat content of 3.8–10.2%, which is higher than 
other pulse crops (e.g., lentils, red kidney beans, etc.; Jukanti 
et  al., 2012); the fat content also varies with market class, 
with ranges from 3.4–8.8% and 2.9–7.4% for kabuli and desi, 
respectively (Yadav, 2007).

FATTY ACIDS AND EFAS

Typically, fatty acids are long-chain hydrocarbon molecules with 
an attached carboxylic acid group. In chickpea, fatty acids mainly 
originate from TAGs (Zia-Ul-Haq et al., 2007; Jukanti et al., 2012) 
as previously indicated and are classified as saturated (with double 
bonds) or unsaturated (no double bonds) based on the bonding 
nature (Fahy et  al., 2005; Rustan, 2005; Figure  3). Unsaturated 
fatty acids are divided into PUFAs and MUFAs. LA (ω-6) and 
ALA (ω-3) are PUFAs (Innis, 1991), while oleic acid (OA; ω-9) 
is a MUFA. LA and ALA are EFAs because they are not synthesized 
in humans (animals) and must be  supplemented from the diet, 
while OA is not (because animals produce it; Warude et  al., 
2006) but serves as a precursor for LA. The enzymes to convert 
OA to LA and then LA to ALA (12-desaturase and 15-desaturase, 
respectively) exist in plants (Warude et  al., 2006; Lee et  al., 2016, 
i.e., chickpea). Within total chickpea fats, 66% are PUFAs, 19% 
are MUFAs, and 15% are SFAs. Both market classes have considerable 
amounts of LA (kabuli: ~51.2%, desi: ~61.62%) and OA (kabuli: 
~32.6%, desi: ~ 22.31%), which are generally higher than for 
other edible pulses such as lentils (LA: ~44.4%, OA: ~20.9%), 
beans (LA: ~46.7%, OA: ~28.1%), and peas (LA: ~45.6%, OA: 
~23.2%; Wang and Daun, 2004). Chickpea also contains palmitic 
acid (kabuli: ~9.41%, desi: ~9.41%) and ALA (kabuli: ~2.69%, 
desi: ~3.15%; Wang and Daun, 2004; Jukanti et  al., 2012).

A

B

C

FIGURE 1 | (A) A triacylglycerol (TAG) (B) a phospholipid, and (C) a 
sphingolipid. R, R1, and R2 are alkyl or alkenyl groups attached to ester 
carbonyls. X1: H, ethanolamine, choline, serine, glycerol, or 
phosphatidylcholine functional groups. X2: H, phosphocholine, glucose, or 
oligosaccharide functional groups.

FIGURE 2 | Some typical structures of galactolipids.
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FATTY ACIDS AND HUMAN HEALTH 
BENEFITS

A chickpea-based diet provides significant EFAs; the consumption 
of unsaturated vs. saturated fats can help maintain healthy 
cholesterol levels and reduce obesity and diabetic conditions 
(Kaur and Prasad, 2021). Furthermore, the presence of ALA 
in a chickpea-based diet reduces angiotensin-converting enzyme 

inhibition, which contributes to antihypertensive effects (Ogawa 
et  al., 2009; Kaur and Prasad, 2021). Once EFAs are ingested, 
LA is metabolized to arachidonic acid (AA, an ω-6 EFA). In 
contrast, ALA is metabolized into eicosapentaenoic acid (EPA, 
an ω-3 EFA) and docosahexadecaenoic acid (DHA, an ω-3 
EFA). AA and EPA undergo further biosynthesis to prostanoids 
and leukotrienes (de Caterina et al., 2007). These metabolites have  
several beneficial physiological effects on humans (Singh, 2005). 

A

B

C

D

FIGURE 3 | (A) A saturated fatty acid (stearic acid) (B) a monounsaturated fatty acid (MUFA; oleic acid) (C) a polyunsaturated fatty acid (PUFA; trans linoleic acid), 
and (D) nomenclature system of a PUFA (cis linoleic acid).
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Metabolites with an ω-6 origin enhance platelet aggregation, 
while those of ω-3 origin are anti-inflammatory (Singh, 2005). 
The ω-6/ω-3 fatty acid ratio is an important indicator of the 
impact of EFAs on human health (Simopoulos, 2002). This 
ratio is a disease-controlling parameter, where the optimum 
range is 1–4:1 or 1–5:1 (Simopoulos, 2002, 2006; Singh, 2005). 
This value ranges from 1–2:1 for optimum health benefits for 
combating obesity (Simopoulos, 2016). However, in Western 
countries, this value ranges from 15–16.7:1 due to the low 
levels of ω-3 fatty acids in diets and comparatively high 
proportions of LA consumption (Simopoulos, 2002). Yet, no 
studies regarding the true impact of chickpea on this disease 
controlling parameter (ω-6/ω-3 ratio) and human metabolism 
have been published.

Chickpea based diet has a positive effect on diabetes and 
obesity. Adiponectin is a hormone that prevents type two 
diabetes and atherosclerosis (Achari and Jain, 2017). A 
randomized cross-over clinical trial with diabetic patients (n = 32) 
served with a chickpea diet (substituting two servings of red 
meat) increased levels of adiponectin in all patients (Mirmiran 
et  al., 2019; Acevedo Martinez et  al., 2021). Additionally, a 
study with diabetic rats has demonstrated reduced blood glucose 
and triglyceride levels upon feeding 400 mg/kg of aqueous and 
methanol-based doses of chickpea diets (Yagi and Yagi, 2018). 
Another clinical study (n = 30; men =17 and women = 13) 
reported that body weights, systolic blood pressure, low-density 
lipoprotein (LDL), high-density lipoprotein (HDL), and total 
cholesterol reduced with a diet rich in chickpea and other 
legumes (Gupta et al., 2017). The above changes were significantly 
comparative to a diet restricted with legumes (Gupta et  al., 
2017). The effects of chickpea on obesity have been further 
studied using rats for 8 months. Their study has included a 
fatty diet as control and control with 10% (w/w) chickpea. 
The results indicated a 35% increment in HDL whereas a 23% 
decrement in LDL with an overall 30% reduction in LDL/
HDL ratio (Gupta et  al., 2017). The efficacy of a chickpea-
based diet on diabetes and obesity needs further investigation 
with extensive clinical studies for the long term. Few studies 
indicated that nutritional responses in pulses may have been 
due to its high levels of low digestible carbohydrates, proteins, 
micronutrients, and low in anti-nutrients such as phytic acid, 
amylase inhibitors and lectins (Thavarajah and Thavarajah, 
2012; Gupta et  al., 2017).

THE IMPACT OF FOOD PROCESSING 
ON FATTY ACIDS

The fatty acid composition of chickpeas is sensitive to food 
processing. Cooking can increase the fat content in both kabuli 
and desi varieties (Wang et  al., 2010), but pressure cooking 
can reduce the levels of the four main fatty acids in chickpea 
flour (Rajni et al., 2012; Table 3). Furthermore, food processing 
affects the quality and quantity of chickpea EFAs, as unsaturated 
fatty acids are directly exposed to oxygen and other reactants 
leading to auto-oxidation (Damodaran and Parkin, 2017). In 
particular, PUFAs are highly susceptible to auto-oxidation 

because they have more double bonds, any one of which could 
react with oxygen radicals (Damodaran and Parkin, 2017). 
Alkyl radicals with a PUFA origin are the major reactants 
that initiate PUFA depletion. High-temperature conditions in 
food processing could further increase these food quality-
degrading reactions. Heat can significantly decompose the 
radicals formed (hydroperoxyl radicals) and multiply PUFA 
depletion (Damodaran and Parkin, 2017). The alterations depicted 
in Table  3 result from such chemical changes while cooking 
(Rajni et al., 2012; Damodaran and Parkin, 2017). The presence 
of certain minerals (especially Fe) and isoenzymes such as 
lipoxygenase in raw chickpea (Halliwell and Gutteridge, 1990; 
Sanz et  al., 1992; Girotti, 1998; Damodaran and Parkin, 2017) 
may catalyze EFA depletion during storage. Lipoxygenase mainly 
contributes to depleting ALA and LA, initiating hydroperoxide 
formation (Damodaran and Parkin, 2017). As a result, storage 
conditions must inhibit lipoxygenase in the chickpea to preserve 
the food quality and enhance the shelf life. Another impact 
of auto-oxidation is forming volatile aldehydes and unsaturated 
by-products with rearranged double bonds (trans fats; Damodaran 
and Parkin, 2017). Trans fat formation from PUFAs could 
occur due to unsaturated double bond cleavage and rearranging 
during higher temperature food processing. Volatile compounds 
(aldehydes) formed due to storage and food processing deplete 
the quality and aroma, leading to rancidity (Damodaran and 
Parkin, 2017), while trans fats are detrimental to human health. 
However, no studies related to rancidity and trans fats originating 
from chickpea foods are available in the literature. Future 
studies are required to understand these fatty acid concentrations 
after processing, cooking, and storage.

FATTY ACID ANALYSIS

Fatty acid extraction procedures and analytical instrumentation 
are essential for the accurate quantification of EFAs. Fatty acid 
profiles are measured using gas chromatography (GC) paired 
with a flame ionization detector (FID) or a mass spectrometer 
(MS; Laakso and Hiltunen, 2009; Chiu and Kuo, 2020). The 
FID is a universal detector, which creates signals for organic 
molecules (due to C-H bond cleavage), but fails in molecular 
identification (qualitative analysis; Skoog et  al., 2018). 
Accordingly, MS is the most superior detection method for 
qualitative and quantitative analysis of fatty acids by GC. The 

TABLE 3 | Fatty acid composition of raw and processed chickpea (Rajni et al., 
2012).

Treatment Fatty acid (%)

Palmitic acid Oleic acid Linoleic acid Linolenic 
acid

Raw seed 9.7 27.9 57.3 1.6
Boiling 10.8 33.4 51.3 trace
Pressure 
cooking

9.6 27.7 56.3 1.6

Roasting 10.1 28.2 50.1 1.2
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advantage of a mass-based detector is the ability to run a 
selective ion monitoring (SIM) analysis for all analytes (Sleeman 
and Carter, 1997). The SIM mode enables quantification 
irrespective of two analytes having close retention times. FID 
detection requires tedious efforts in terms of temperature 
programming to obtain entirely resolved chromatograms with 
minimal errors. Therefore, MS with SIM is the most appropriate 
and convenient method for fatty acid quantification and 
identification (Sleeman and Carter, 1997; Dodds et  al., 2005). 
However, a major drawback of GC–MS techniques is the analysis 
time, cost, and labor. A short analysis time with high throughput 
is ideal for collecting data to screen fatty acids in breeding 
populations before advancing to varietal development stages.

Fourier-transform infrared (FTIR) spectroscopy measures 
the infrared spectrum of absorption or emission of a solid, 
liquid, or gas (Sindhu et  al., 2015) and is a suitable technique 
to reduce the analytical time, cost, and labor but preserve 
high throughput. FTIR data models validated with GC–MS 
methods are robust tools to quantify fatty acids for high-
throughput plant breeding research (Gómez-Caravaca et  al., 
2013). Non-destructive sample preparation and the application 
of hand-held FTIR devices in the field will enhance future 
chickpea breeding to select for fatty acid-rich accessions without 
the need for an analytical laboratory.

The electromagnetic spectrum’s IR region is less energetic 
compared to the ultraviolet (UV)-visible region. Consequently, 
IR energy induces molecular vibrations rather than electronic 
excitations. The midsection of the IR (mid-IR, MIR) region 
has the most fundamental resonant frequencies that cause 
distinct molecular vibrations (Skoog et al., 2018). Consequently, 
FTIR utilizes MIR energy to generate signals based on molecular 
vibrations for qualitative and quantitative analysis. The working 
window of FTIR is 500–4,000 cm−1, wherein signals due to 
functional group vibrations occur mainly between 1,500 and 
4,000 cm−1 (functional group region; Lohumi et  al., 2015). For 
fatty acids (Figure  3), the C=O (carbonyl), C=C (unsaturated 
double bonds), and C-H bonds undergo distinct oscillations 
in the functional group region. Therefore, based on the signal 
intensities (C=C and C-H signal ratios), fatty acids can 
be  characterized by the degree of saturation and chain length, 
followed by quantification (Meiklejohn et  al., 1957; Rabelo 
et  al., 2015). Carbonyl stretching (~1742–1750 cm−1) is one of 
the most distinct signals and is strongly applicable to fatty 
acid quantification (Yang et  al., 2005; Rabelo et  al., 2015). 
FTIR is a powerful tool for fatty acid analysis. NIR (near-IR 
spectroscopy) is another common tool in plant breeding programs 
used in parallel with FTIR technology (Downey, 1999). NIR 
technology is also available with added Fourier-transformation 
technology (i.e., FTNIR; Skoog et  al., 2018). The primary 
difference between FTNIR and FTIR techniques is the working 
window. The FTNIR range (4000–12,820 cm−1) is beyond the 
MIR range employed in FTIR, and the molecular vibrations 
occur as overtones and combined bands in the NIR range 
(Yang et  al., 2005; Lohumi et  al., 2015; Rabelo et  al., 2015). 
FTIR and FTNIR have both been used for total fat analysis 
in food and seed composition analysis, and each method has 
advantages and disadvantages. Generally, calibration models 

for total fat based on FTNIR are better than those based on 
FTIR (Yang et  al., 2005; Oliveira et  al., 2006); however, FTIR 
is more informative than FTNIR due to its well-resolved spectral 
signals and because it provides better qualitative insight (Lohumi 
et  al., 2015). In addition to fat analysis, NIR spectroscopy has 
been used in routine seed composition analysis for moisture, 
protein, starch, kernel hardness, color, and seed viability (William 
and Norris, 2001; Kusumaningrum et  al., 2018; Skoog et  al., 
2018). FTNIR spectroscopy fits well with quantitative 
measurements of compounds with functional groups containing 
C-H, N-H, and O-H bonds based on NIR vibrational overtones 
(Skoog et  al., 2018). Furthermore, the qualitative identification 
of functional groups using NIR is not optimal due to low 
resolution (William and Norris, 2001). Overall, the FTIR 
technique is unique and accurate with good resolution as a 
high-throughput tool to measure individual nutritional trails 
with low concentrations.

BREEDING APPROACHES

Current chickpea breeding is mainly focused on grain yield, 
disease resistance, and nutritional quality traits, including protein, 
minerals, prebiotic carbohydrates, and environmental stresses 
(Wang et  al., 2017; Vandemark et  al., 2018, 2020). Seed yield 
can be positively or negatively correlated with chickpea agronomic 
traits. For example, Toker (2009) shows chickpea seed yield 
is positively correlated with biomass (r = 0.975), harvest index 
(r = 0.935), plant height (r = 0.853), number of branches (r = 0.797), 
and pods per plant (r = 0.675) but negatively correlated with 
seed weight (r = −0.660) and ascochyta blight infection 
(r = −0.872). Wang et  al. (2017) show positive correlations 
between seed protein concentration, plant height, and days of 
maturity and negative correlations between seed protein 
concentration, grain yield, and seed size. The concentrations 
of minerals, including K, P, and Zn, in chickpea seeds are 
influenced by genotype, location, and genotype×location 
interaction (Vandemark et  al., 2018). Chickpea prebiotic 
carbohydrate concentrations vary across location, year, and 
genotype (Vandemark et  al., 2020). Chickpea grain yield is 
negatively correlated with several prebiotic carbohydrates, 
including verbose (r = −0.80), stachyose (r = −0.77), sorbitol 
(r = −0.66), and mannitol (r = −0.65; G. Vandemark et al., 2020). 
Overall, grain yield is negatively correlated with most nutritional 
traits, including protein content, certain prebiotic carbohydrates, 
and minerals (Vandemark et  al., 2018, 2020).

Heat, drought, and cold stresses are the common abiotic 
stresses affecting chickpea production worldwide (Jha et  al., 
2014). Plant lipids are linked to increased cold and heat tolerance 
in food crops. Fats alleviate environmental stresses by changing 
their PUFA composition in chloroplast lipids (Nelson and Cox, 
2008). Drought stress generally increases LA and decreases 
ALA concentrations in response to desaturase enzymes (Yordanov 
et  al., 2000). Lipids, including phospholipids and glycolipids, 
help chickpea plants withstand cold stress during the winter 
(Vigh et  al., 1998). Desaturation of fatty acids is positively 
correlated with preventing cell lysis at colder temperatures 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Madurapperumage et al. Chickpea and Fatty Acids

Frontiers in Plant Science | www.frontiersin.org 8 October 2021 | Volume 12 | Article 734980

FIGURE 5 | Genetic biofortification of EFA in chickpea.

(Bakht et  al., 2006; Shah et  al., 2013). The increase in double 
bonds in PUFA chains contributes to plant cell membrane 
fluidity, increasing cold tolerance due to freezing point depression 
(Vigh et  al., 1998). Increased ALA and reduced LA levels in 
chickpea leaves during cold stress indicate fatty acid desaturation 
at low temperatures (Bakht et  al., 2006). Higher double bond 
indices (DBI) in extracted leaf fats at negative LT50 (lethal 
temperatures) values indicate higher levels of unsaturated fats 

at lower temperatures (a significant negative correlation, r < 0; 
Bakht et  al., 2006; Figure  4). Genomic and gene-editing 
technology may enhance PUFA desaturation and accelerate 
breeding efforts to develop chickpea cultivars resistant to cold 
stress (Jaglo-Ottosen et  al., 1998; Gilmour et  al., 2000; Bakht 
et al., 2006). PUFA-induced mutations in chickpea have revealed 
higher PUFA (LA) content leads to improved cold stress 
tolerance (Shah et  al., 2013). Mutant desi genotypes (CM72/02 

FIGURE 4 | Drought and cold stresses impact enzymatic activity and EFA composition in plants. LA; linoleic acid. ALA; alpha-linolenic acid.
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and CM137-01) and mutant genotypes of desi×kabuli 
introgression can also tolerate sustained cold stress (Shah 
et  al., 2013).

Integrating traditional breeding and biotechnology 
approaches would benefit the development of chickpea cultivars 
resilient to climate change. Planting time and growing conditions 
also affect fatty acid composition in chickpea seeds, with OA 
and LA concentrations higher in chickpea planted in the fall 
than in the spring (Gül et  al., 2008). Interactions between 
genotype and planting date can significantly affect the 
concentration of α and β tocopherols and palmitic acid, OA, 
and LA concentrations; ALA concentration is positively 
correlated with LA concentration and negatively correlated 
with OA and tocopherol concentrations (Gül et  al., 2008). 
Nine candidate genes related to fats have been identified in 
soybean using quantitative trait loci (QTL) mapping (Nian 
and Cheng, 2020). A single gene associated with a lipid 
synthesizing and storage enzyme named diacylglycerol 
O-acyltransferase has also been identified in chickpea (Verma 
et  al., 2015). Detailed QTL mapping studies on candidate 
genes associated with essential fatty acids in chickpea have 
not been reported.

CONCLUSION AND FUTURE 
PROSPECTS

Chickpea is a highly nutritious pulse crop rich in protein, 
prebiotic carbohydrates, fat, and a range of micronutrients. 
Chickpea is a rich source of EFAs, phytosterols, TAGs, and 
phospholipids. TAGs are the most dominant neutral lipid in 
chickpea. PUFAs, MUFAs, and SFAs are esterified within the 
lipids and bind to TAG’s glycerol end or a phospholipid. The 
most dominant PUFA in chickpea is LA, followed by OA 
(MUFA) and ALA. LA is an ω-6 EFA, whereas ALA is an 
ω-3 EFA. The consumption of diets with an ω-6/ω-3 ratio of 
4 to 5 is recommended for better human health. The ratio of 
EFAs from a chickpea diet and related human health benefits 
have yet to be  studied using large clinical trials. EFA traits 
have not been extensively studied in chickpea breeding. 
Optimizing EFA levels in chickpea should be feasible by applying 
the genetic and transgenic approaches followed in chickpea 
biofortification for micronutrients. FTIR and FTNIR techniques 

should be  incorporated into breeding programs to screen 
breeding populations; FTIR within the functional group region 
will assist qualitative and quantitative fatty acid analysis. Future 
genome-wide association studies are needed to develop marker-
assisted breeding approaches for improving chickpea nutritional 
traits. Genome mapping studies could support the identification 
of corresponding QTLs and candidate genes associated with 
fatty acid biosynthesis (Figure 5). In general, chickpea produces 
LA (2.87 g/100 g) and ALA (0.112 g/100 g), but the cultivar 
information is not available (USDA, 2021). So far, human 
clinical studies have been published to confirm the impact of 
the prevailing chickpea EFA composition on human health. 
Percent recommended daily allowance (%RDA) for LA (ω-6 
fatty acid) is not published; however, the %RDA of ALA (ω-3 
fatty acid) for adult men and women is 1.6 and 1.1 g, respectively 
(Hjalmarsdottir, 2019). Future chickpea breeding strategies 
should address the safe, adequate increase of these essential 
fatty acids for human health. Future genomics and plant breeding 
advancements will also enhance chickpea’s EFA concentrations 
and other nutritional traits and improve human health.
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