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Salinity stress is a major environmental impediment affecting the growth and production
of crops. Finger millet is an important cereal grown in many arid and semi-arid areas
of the world characterized by erratic rainfall and scarcity of good-quality water. Finger
millet salinity stress is caused by the accumulation of soluble salts due to irrigation
without a proper drainage system, coupled with the underlying rocks having a high
salt content, which leads to the salinization of arable land. This problem is projected
to be exacerbated by climate change. The use of new and efficient strategies that
provide stable salinity tolerance across a wide range of environments can guarantee
sustainable production of finger millet in the future. In this review, we analyze the
strategies that have been used for salinity stress management in finger millet production
and discuss potential future directions toward the development of salt-tolerant finger
millet varieties. This review also describes how advanced biotechnological tools are
being used to develop salt-tolerant plants. The biotechnological techniques discussed in
this review are simple to implement, have design flexibility, low cost, and highly efficient.
This information provides insights into enhancing finger millet salinity tolerance and
improving production.
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INTRODUCTION

Finger millet [Eleusine coracana (L.) Gaertn.] is a valuable cereal crop that is a staple food crop by
a large segment of population living in marginal areas of sub-Saharan Africa and Asia (Chivenge
et al., 2015). Globally, in terms of cereal production in semi-arid regions, finger millet is ranked
third after sorghum and pearl millet (Thilakarathna and Raizada, 2015). Its grain is rich in
methionine, tryptophan, cysteine, tyrosine, calcium, phosphorous, and iron, making the crop an
excellent nutritional source compared to other major cereals (Gupta et al., 2017). Finger millet has
the potential to grow in marginal agroecological zones where other crops may not, and the grains
have a long shelf life (Onyango, 2016). These attributes make it a valuable food crop and genetic
resource that is critical for global food security. Its production is 4.5 million tons per annum with
2.0 million tons being produced in Africa (Sakamma et al., 2018). Given that new finger millet
products such as bakery products, snacks, pasta, and sweet products are becoming increasingly
popular, the demand for this crop is steadily increasing (Onyango, 2016). Furthermore, finger millet
is a raw material for ethanol production (Tekaligne et al., 2015). The increasing global demand
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necessitates the development of advanced improvement
techniques addressing complex attributes such as abiotic stresses
that constrain its production.

Among the abiotic stresses constraining finger millet
production is soil salinity, which is a devastating environmental
stress factor that has a substantial negative impact on crop
quality and production (Hema et al., 2014). In general, salinity
causes osmotic stress which leads to physiological changes
including membranes interruption, nutrient imbalance, damage
to the ability to detoxify reactive oxygen species (ROS), decrease
in photosynthetic activity, decrease in stomatal aperture, and
changes in the antioxidant enzymes (Rahnama et al., 2010;
Shahzad et al., 2021). The excess uptake and accumulation of
Na+ and Cl− ions into plant tissues result in severe ion imbalance
and functional disorders. Elevated concentration of Na+ ions in
the tissues impedes the uptake of elements essential for growth
and development, such as K+ ions, thereby leading to reduced
productivity and possible plant death (James et al., 2011; Shah
et al., 2021).

Seed germination and seedling establishment stages in finger
millet are highly affected by salinity stress (Hema et al., 2014).
Many reports have shown that salinity stress substantially
affects impacts seedling and root growth, levels of ion content
and relative water content, photosynthetic pigments, proline
content, levels of membrane peroxidation, and the amount of
reducing sugars and total proteins (Kumar and Khare, 2016;
Sarabi et al., 2017; Dugasa et al., 2020; Mukami et al., 2020).
Although there is limited information available on yield loss
of in large-scale producing areas, pot studies have reported
genotypic variability in the grain yield loss among different
multiple varieties (Krishnamurthy et al., 2014). The current
review outlines the recent advanced strategies used in finger
millet salinity stress management.

FINGER MILLET PHYSIOLOGICAL AND
BIOCHEMICAL RESPONSE TO SALINITY
STRESS

Plants respond to salinity stress by generating ROS via
the processes of photosynthesis, photorespiration, and
mitochondrial respiration (Sharma et al., 2013). ROS trigger
oxidative damage to numerous cell components including
membrane lipids, proteins, nucleic acids, and chlorophyll (Wang
et al., 2012). Plants defend themselves from oxidative damage
due to ROS through non-enzymatic and enzymatic defense
mechanisms. Some of ROS-scavenging enzymes in plants
include superoxide, ascorbate peroxidase, guaiacol peroxidase,
dismutase, catalase, and glutathione reductase. These enzymes
help in suppressing toxic ROS within cells (Misra and Gupta,
2005). Non-enzymatic defense mechanism includes osmotic
adjustment, ion-selective absorption, and compartmentalization.
Plants increase their osmotic potential by accumulating friendly
organic solutes such as organic acids, carbohydrates, and
quaternary ammonium compounds such as glycine betadine
and proline (Ashraf and Foolad, 2007). Carbohydrates act as
water replacement molecules (Crowe et al., 1987), minimize

ROS-associated molecular alterations (Berjak et al., 2007), and
ameliorate the concentration effects of salts and ions accumulated
in the vacuole (Munns, 2002).

Earlier studies on the finger millet salinity tolerance primarily
relied on the screening of salt-tolerant cultivars under saline
conditions (Krishnamurthy et al., 2014; Rahman et al., 2014;
Mukami et al., 2020). Various biochemical and physiological
studies have reported that salt-tolerant cultivars, when exposed
to saline conditions, are not adversely affected in terms of
germination, shoot length, root length, biomass, Na+ and K+
ratio, total soluble sugars, membrane stability, and chlorophyll
content (Rahman et al., 2014; Taïbi et al., 2016; Ishikawa and
Shabala, 2019; Mukami et al., 2020). In their study, Mukami et al.
(2020) reported a less lower reduction of germination rate in
salt-tolerant than in salt-sensitive cultivars. Salt-tolerant cultivars
also displayed a lower root/shoot growth retardation and had a
slightly higher growth, low Na+ to K+ ratio in leaves and shoots,
and higher amounts of total soluble sugars in leaves compared
to salt-sensitive plants (Rahman et al., 2014). Several studies
suggest that chlorophyll content is a biochemical marker of salt
tolerance in plants (Taïbi et al., 2016; Ishikawa and Shabala, 2019).
Salt-tolerant finger millet varieties have reported increased or
unchanged chlorophyll levels under salinity conditions, whereas
chlorophyll content decreased in salt-sensitive plants (Hema
et al., 2014; Mahadik and Kumudini, 2020; Mukami et al., 2020).
Plants use compatible solute accumulation to counter-attack the
adverse effects of ROS. Proline is among the compatible solutes
employed, and it acts as an osmoprotectant in plants under
salinity stress as it preserves the integrity of the membrane
and alleviates oxidative burst in plants (Rao et al., 2013; Rasool
et al., 2013). In their study, Mahadik and Kumudini (2020)
reported higher levels of proline accumulation in salt-tolerant
cultivars than in salt-sensitive plants. Although determining
the physiological and biochemical response of finger millet to
salinity stress is vital for breeding and selecting salinity tolerant
varieties, screening is time-consuming, and it is expensive for
breeders to produce new salinity-tolerant varieties, because the
biochemical and physiological traits obtained are highly variable
owing to genetic heterogeneity response to salinity. Furthermore,
the experiments are subject to environmental pressures and
vulnerable to human error, resulting in unclear findings. Current
research should strategically concentrate on new biotechnological
strategies such as the use of genetic engineering, altering gene
expression, and transcriptional control for the development of
salt-tolerant finger millet cultivars.

FINGER MILLET MOLECULAR
RESPONSE TO SALINITY STRESS

In order to survive salinity stress, at the molecular level,
plants activate a variety of genes and gene networks that
encode numerous proteins that help them adjust and adapt
to salinity stress. In one study, the salinity-sensitive leaf
transcriptomes of multiple finger millet genotypes were
sequenced. Salinity-sensitive genes were discovered after
mapping and annotation of finger millet transcripts against rice
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gene models (Rahman et al., 2014). These include genes encoding
the transporters, vacuolar ATP synthase, transcription factors,
cell signaling molecules, osmoprotectant, biosynthesis of solutes
that are compatible, and biosynthesis of phytohormones and
carbohydrates (Table 1). Among the important transporter genes
identified were the genes encoding ATP-binding transporters.
Although the role of ATP-binding cassette transporters in plant
salt tolerance is unknown, they have been confirmed to be
involved in Arabidopsis salinity stress tolerance (Kim et al.,
2010). In the presence of salt stress, ion homeostasis can be
maintained by these transporters (Jiang et al., 2010). Other
important findings of the study were the genes encoding the
aquaporin proteins. Several studies have shown that plants use
aquaporin proteins to help them cope with salt stress (Horie et al.,
2011; Sun et al., 2017; Yepes-Molina et al., 2020). These proteins
help preserve water balance under salinity stress by facilitating
the flow of water through cellular membranes (plasma and
vacuolar membranes). Signal amplification has a major impact
on a plant’s ability to thrive in abiotic stress situations (Deokar
and Tar’an, 2016). Genes encoding various signaling molecules
including gibberellin 20-oxidase 2, serine/threonine kinase,
calcium/calmodium-dependent protein kinase, receptor protein
kinase, and receptor-like serine/threonine protein kinase were
identified in the study (Table 1). The activation of these signaling
elements influences the phosphorylation and dephosphorylation
events controlling the stress signaling process, which could be
associated with the higher level of salinity tolerance demonstrated
by salt-tolerant finger millet genotypes. Stress-induced genes
are involved not only in the defense of cells from stress through
the development of essential metabolic proteins but also in
gene regulation, such as transcription factors (TFs), which
regulate the expression of multiple downstream target genes.
Phytohormones play a vital role in curbing stress responses and
adaptation, either by reducing or by mitigating the negative
effects of salinity stress. Two important genes (Table 1) encoding
brassinosteroid were identified in the study. Brassinosteroids are
a class of phytohormones that promote growth in plants (Bishop,
2003) and are therefore implicated in plant responses against
abiotic stresses.

Plants also tend to overpower antagonistic salinity-induced
dehydration by accumulating metabolites or compatible solutes.
Genes encoding compatible solutes, including dehydrins, glycine
betaine, and proline were reported in the study. These metabolites
play a role in osmo-protection. Several studies have reported
that the accumulation of glycine betaine and proline (amino
acid) plays an adaptive role in protecting sub-cellular structures
and mediating osmotic adjustment during salt stress conditions
(Ahmad et al., 2013; Kibria et al., 2017). Plants accumulate soluble
carbohydrates such as sucrose as a response to salinity (Gupta
and Huang, 2014). Among the various genes identified were
genes encoding glycosyl transferases. This enzyme is active in
the raffinose biosynthetic pathway and acts as an osmoprotectant
and anti-oxidant, shielding the plant from oxidative stress
(Nishizawa-Yokoi et al., 2008). While previous research has
provided valuable morphological, biochemical, and molecular
insights into the response of finger millet to salinity stress, the
recent technological advancement of single-cell transcriptional

analysis through high-throughput sequencing has the capacity
to provide exciting new knowledge that would be difficult or
impossible to obtain via traditional means.

Owing to its adaptation to a semi-arid tropical environment,
finger millet has been classified as a salinity-tolerant crop.
Attempts have been made to characterize the primary genes
involved in salinity tolerance and to use them in future
applications. Jayaprakash et al. (1998) looked at the stress-
sensitive genes expressed in finger millet under salinity stress.
They discovered that finger millet subjected to various osmotic
stress treatments had higher levels of LEA2 and LEA3 (late
embryogenesis abundant proteins) as well as better recovery
development. Increased levels of LEA2 and LEA3 genes were
discovered during the study of stress-sensitive genes. In another
study, Rahman et al. (2016) found that overexpression of the
EcNAC67 transcription factor increased rice salinity tolerance.
Recently, a novel finger millet endoplasmic reticulum-specific
bZIP TF gene (EcbZIP17) was isolated and overexpressed in
tobacco (Ramakrishna et al., 2018). In comparison to wild-
type plants, tobacco plants overexpressing EcbZIP17 showed
resistance to saline stresses.

The inadequacy of mapped genes related to salinity tolerance
in finger millet has substantially hindered studies of salinity
tolerance genetics in finger millet as compared to other
major cereals. Finger millet salinity tolerance remains poorly
understood owing to this drawback. There exist only a
few preliminary reports on the detection and validation of
salt-tolerant candidate genes in finger millet. While several
salt-tolerant genes have been singled out in finger millet
(Rahman et al., 2014), they have yet to be validated in other
plants, including model plants such as Arabidopsis thaliana.
Overexpression of such genes in other plants will aid in
understanding their role in salt stress responses and may be used
to develop improved finger millet cultivars through breeding.

FINGER MILLET IMPROVEMENT FOR
SALINITY TOLERANCE

Owing to the detrimental effects of salinity stress finger millet
production, effective salinity management actions are required to
guarantee global food security especially in sub-Saharan Africa
and Asia where this crop is predominantly cultivated (Chivenge
et al., 2015). Several attempts have previously been made to grow
high-yielding finger millet cultivars using various conventional
methods including hybridization (Bisht and Mukai, 2001) and
mutation breeding (Ambavane et al., 2015). These traditional
methods have been reported to be unsuccessful in the production
of salinity-tolerant finger millet cultivars. This is due to the
difficulty and complicated nature of these methods, and the
fact that salinity tolerance is a complex phenomenon involving
various cellular pathways, genetic controls, and responses to
environmental fluctuations (Manavalan et al., 2009).

Thus, approaches such as genomics, transcriptomics,
proteomics, and metabolomics are required to understand
salinity tolerance. Omics studies have been used to understand
salinity tolerance in a variety of plants: soybeans (Liu et al., 2016;
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TABLE 1 | Salinity response genes identified in finger millet (Rahman et al., 2014).

Transporters

LOC_ Os11g39020 LOC_Os02g32690 LOC_Os01g24010 ATP-binding cassette (ABC) transporters

ATP synthase

LOC_ Os03g14690 LOC_Os10g10500 LOC_Os04g55040 Vacuolar ATP synthase

Proteins

LOC_Os02g57720 LOC_Os03g05290 LOC_Os07g26630 LOC_Os07g26690) Aquaporin proteins

Signaling molecules

LOC_Os03g42130 LOC_Os06g04880 LOC_Os02g41580 LOC_Os03g46770
LOC_Os03g62180 LOC_Os07g0381 LOC_Os03g56270 LOC_Os07g35140
LOC_Os02g09740 LOC_Os01g26390

Gibberellin 20 oxidase 2 Serine threonine kinase Calcium/calmodulin dependent
protein kinases RNA recognition Table motif containing protein Lectin protein
kinase family protein Lectin-like receptor kinase 7 Receptor protein kinase
Receptor-like serine-threonine protein kinase STRUBBELIGRECEPTOR FAMILY
7 precursor TKL_IRAK_DUF26-lh.1—DUF26 kinases

Transcription factors (TFs)

LOC_Os03g60080 LOC_ Os08g36790 LOC_Os07g02060 NAC domain bZIP WRKY29

Phytohormones

LOC_Os03g16980 LOC_Os07g47700 Brassinosteroid biosynthesis

Osmoprotectants

LOC_Os11g26790 LOC_Os08g32870 LOC_Os01g62900 Dehydrins Betaine aldehyde dehydrogenase 11-pyrroline-5-carboxylate
synthetase. Proline biosynthesis

LOC_Os03g20120, LOC_Os01g07530, LOC_Os07g10840, and LOC_Os03g59430
LOC_ Os06g46340 LOC_Os08g20660

Glycosyl transferases biosynthesis of raffinose Glycosyl hydrolase family 31.
Hydrolysis of melibiose into galactose and glucose Sucrose phosphate
synthase 1. Photosynthetic sucrose synthesis

Kim et al., 2017; Wang Y. et al., 2018), rice (Das et al., 2015),
chickenpea (Vadez et al., 2012), cowpea (Chankaew et al.,
2014), and pea (Leonforte et al., 2013). Transgenic approaches
have facilitated the development of salt-tolerant plants with
higher yield and productivity. These approaches involve the
identification and expression of candidate genes conferring
salt tolerance. Several studies have reported various potential
genes conferring salinity tolerance in plants: UGT76E12 (Chen
et al., 2019), PtDRS1 (Mohammadi et al., 2018), MdY3IP1 (Yu
et al., 2018), cysteine protease (Zheng et al., 2018), AtHDG11
(Banavath et al., 2018), codA (Baloda et al., 2017), NHX1 and
bar (Kumar et al., 2017), rstB (Zhang and Wang, 2015), and
GsZFP1 (Tang et al., 2013). Exogenous genes that are expressed
to generate salt-tolerant finger millet have been identified in a
few studies so far. Mahalakshmi et al. (2006) isolated a cDNA
clone encoding a serine-rich protein from a cDNA library of
salt-stressed Porteresia coarctata roots, dubbed P. coarctata
serine-rich-protein (PcSrp) encoding gene. PcSrp expression
was discovered in the salt-stressed roots and rhizome of
P. coarctata. To determine its function, the PcSrp gene was
cloned downstream of the rice actin-1 promoter and introduced
into finger millet using the particle-inflow-gun method. Under
250-mM NaCl stress, transgenic plants expressing PcSrp were
able to mature and set seed. The untransformed control plants,
contrast, did not withstand similar salt stress. Transgenic plants’
stressed roots invariably accumulated higher Na+ and K+ ion
contents than untransformed plants “roots, while transgenic
plants” shoots accumulated lower amounts of both ions.
Hema et al. (2014) expressed the mtlD (mannitol-1-phosphate
dehydrogenase) gene in finger millet in another study. Salinity
tolerance testing revealed that transgenic plants expressing the
mtlD gene grew faster than wild-type plants under salinity stress.

Similarly, Anjaneyulu et al. (2014) genetically engineered finger
millet plants with the SbVPPase gene isolated from Sorghum
bicolor and studied the biochemical and physiological parameters
of control and transgenic plants. In control plants, the relative
water content, plant height, leaf expansion, plant length, width,
and grain weight were all severely reduced, and flowering was
delayed by 20%. By contrast, transgenic plants had higher proline,
chlorophyll content, enzyme activity, and lower malondialdehyde
levels (MDA). These three examples demonstrate how genetic
engineering can substantially aid salinity stress management in
finger millet. As effective regeneration protocols in finger millet
have been developed (Mukami et al., 2018; Ngetich et al., 2018)
and a wide range of salinity-tolerance genes have been reported
(Rahman et al., 2014; Mohammadi et al., 2018; Yu et al., 2018;
Zheng et al., 2018; Chen et al., 2019), more research should be
undertaken to exploit the available genes for improving this crop
against salinity stress.

SALINITY MANAGEMENT USING
SECONDARY METABOLITES AND
MICROORGANISMS IN FINGER MILLET

Cellular water homeostasis and ionic balance are essential
for the optimal functioning of physiological, biochemical, and
molecular processes in plants. Soil salination disrupts water
uptake, triggering plant cell ionic imbalances (accumulation of
Na+ and Cl−), osmotic stress, and oxidative damage, which in
turn impedes the growth and development of the plants (Hossain
and Dietz, 2016). To acclimatize and adapt to the saline stress
conditions, plants respond with complex and elaborate strategies
to address ion homeostasis, osmolyte biosynthesis, toxic ions
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compartmentation, and ROS-scavenging systems, which results
in accumulation or decline of specific secondary metabolites.
Exposure of different rice genotypes to different severity of salt
stress proportionately increased the terpene emissions in a time-
dependent manner. The salt-sensitive genotype emitted higher
volumes of terpenes than the tolerant genotype (Chatterjee et al.,
2018). Similarly, phenolic compounds are reported to increase
in response to salt stress in Thymus vulgaris L. and Thymus
daenensis Celak (Bistgani et al., 2019). Anthocyanins, which
act as modulators of excitation pressure, have been shown to
be key regulators of salt-stressed plant species such as wheat
(Mbarki et al., 2018) and Brassica napus (Kim et al., 2017).
In contrast, salt-sensitive species, such as tomato, demonstrate
decreased anthocyanin levels (Daneshmand et al., 2010). Proline
accumulation in plants is related to water deficit and salinity
stress, where it acts as an osmolyte for osmotic adjustment,
stabilizes membranes and proteins, scavenges free radicals, and
buffers cellular redox potential under stress conditions (Boscaiu
Neagu et al., 2012). An increased level of endogenous proline
accumulation in plants is correlated with enhanced salt tolerance
(Sripinyowanich et al., 2013), and has been reported in a number
of plant species such as Pisum sativum (Ozturk et al., 2012),
Glycine max (Weisany et al., 2012), Cucumis melo (Sarabi et al.,
2017), Oryza sativa (Kibria et al., 2017), and Eleusine coracana
(Mahadik and Kumudini, 2020; Mukami et al., 2020).

Glycine betaine, which is widely distributed in
microorganisms, higher plants, and animals, is one of the
most common betaines found in plants and is involved in
osmotic adjustment (Al Hassan et al., 2016). Glycine betaine
has been reported to act as an osmoprotectant by reducing ROS
and hence stabilizing cellular macromolecules under adverse
conditions (Ahmad et al., 2013). Many studies have revealed that
salt-tolerant genotypes/species usually accumulate more glycine
betaine than sensitive ones when subjected to salt stress. Such
increased accumulation of glycine betaine has been reported to
correlate with salt tolerance in many plants such as barley (Chen
et al., 2007) and rice (Cha-um et al., 2007). When the SoBADH
gene from Spinacia oleracea was transferred into the sweet
potato cultivar, the transgenic lines exhibited improved tolerance
to salt stress (Fan et al., 2012). Under normal and stressful
conditions, the chloroplastic BADH activity and glycine betaine
accumulation were elevated, resulting in the maintenance of cell
membrane integrity as well as increased photosynthetic activity
and antioxidant enzyme activities. Similarly, transgenic tobacco
plants expressing the OsBADH1 gene accumulated glycine
betaine, resulting in normal seed germination and morphology,
as well as normal transgenic line growth rates under salt stress
(Hasthanasombut et al., 2010). Based on these findings, it is
obvious that increasing glycine betaine production is a viable and
effective way to improve salt stress tolerance. Other than amino
acids, salt-stressed plants have been reported to accumulate
carbohydrates such as sugar and starch. When rice seedlings
were exposed to NaCl, the sugar content of the shoots increased
considerably, whereas the starch content of the root seedlings
decreased. In roots, the total, reducing, and non-reducing
sugar content increased (Amirjani, 2011). In a recent study, the
impact of salinity treatment triggered substantial elevation in

reducing sugar amounts in stressed finger millet plants when
compared to the control experiments (Mukami et al., 2020).
The accumulated carbohydrates perform key functions in stress
mitigation, including osmoprotection, carbon storage, and ROS
scavenging (Gupta and Huang, 2014).

For decades, soil microorganisms have been used in crop
production (Hayat et al., 2010). They are primarily involved in
the supply of nutrients to crops, the stimulation of plant growth
through the processing of plant hormones, the regulation or
inhibition of plant pathogen activities, the improvement of soil
structures, and inorganic bioaccumulation or microbial leaching
(Ramadoss et al., 2013). Plant growth-promoting rhizobacteria
have been used in the cultivation of a number of plant species
to improve crop quality by reducing the negative effects of
salt stress on plant growth. In general, bacterial inoculation
increases root and shoot length, biomass, and biochemical levels
of chlorophyll, carotenoids, and protein (Tiwari et al., 2011).
Several studies have demonstrated that applying plant growth
rhizobacteria (PGPR) to plants improves their salt tolerance
(Casanovas et al., 2002; Mayak et al., 2004; Barassi et al., 2006;
Yao et al., 2010; Egamberdieva, 2012; Nia et al., 2012; Upadhyay
et al., 2012; Ahmed et al., 2013; Ramadoss et al., 2013; Wang
W. et al., 2018; Rafiq et al., 2020). To date, only one report is
available on the use of PGPR in enhancing salinity tolerance
in finger millet. Mahadik and Kumudini (2020) investigated
the effects of fluorescent Pseudomonas strains (SPF-5, SPF-33,
and SPF-37) isolated from saline regions on salinity sensitive
finger millet seeds. In their study, finger millet seeds were
treated with isolates and exposed to various concentrations (0–
350 mM NaCl) of salt stress. Isolates were screened for growth-
promoting characteristic qualities and growth parameters under
greenhouse conditions. Under increased salt conditions, strain
SPF-33 showed increased enzymatic antioxidant activity and
increased proline content, lower lipid peroxidation and hydrogen
peroxide, and increased plant height and spikelet number. Under
350-mM NaCl, treatment with SPF-37 increased germination,
vigor index, plant height and the number of spikelets, total
chlorophyll, phenolics, flavonoids, proteins, and relative water
content of the leaf, considerably more than the control. These
results demonstrated that fluorescent Pseudomonas strains SPF-
33 and SPF-37 are potential PGPR for improving finger millet
salinity tolerance. Currently, there is limited information on an
array of rhizobacteria that can be used to mitigate salinity stress in
finger millet as well as information on complex plant–microbial
interactions in various agro-ecosystems. This knowledge is
needed in order to implement this management strategy in
finger millet. More work needs to be done to verify the current
outcomes of PGPR usage and to improve our knowledge and
understanding about the value of microbial agents. Furthermore,
PGPR should be used in conjunction with other techniques to
protect finger millet from salinity stress over time.

These examples clearly affirm the importance of plant
secondary metabolites and microorganisms in mitigating salt
stress in plants. Traditionally, managing salinity stress in
agriculture has heavily relied on development of salt-tolerant
crop varieties, a time-consuming, expensive, and difficult process
for many crops. Bioeffectors (biostimulants), compounds of
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biological origin that are applied to embellish nutrient uptake,
stimulate growth and enhance stress tolerance or quality traits of
crops (Van Oosten et al., 2017), through stimulation of the plant’s
metabolic and defense mechanisms. Exogenous application of
several bioeffectors such as copper chlorophyllin (Cu-chl), a
semi-synthetic water-soluble chlorophyll derivative (Islam et al.,
2021), Moringa oleifera leaf extract (Desoky et al., 2018), and
Ascophyllum nodosum extracts (Dell’Aversana et al., 2021) have
been shown to enhance salinity stress tolerance in A. thaliana,
sorghum, and tomato, respectively. Plant-based bioeffectors
therefore form part of the sustainable approach to enhance
salt stress tolerance in crops and could potentially address
breeding handicaps, as they are versatile and are easy to apply
in the field. In order to take full advantage of bioeffectors
in compacting salinity stress, finger millet specificities and
application techniques should be identified for optimum
impact on stress protection. Equally, comprehensive and deeper
knowledge of the functional mechanism of bioeffectors is
important for their application in omics, system biology, and
synthetic biology.

GENE PYRAMIDING AND MULTIPLE
CHARACTER BREEDING TO ENHANCE
SALT STRESS TOLERANCE

The advancement of plant genomics has played a key role
in the release of vital genomic data for trait improvement
in crops. Using a genomics approach, various genes that are
involved in salinity stress have been identified and characterized
in plant systems. For example, Chakraborty et al. (2012) studied
differential gene expression in Brassica spp. and discovered a
more efficient salt overly sensitive pathway made up of SOS1,
SOS2, SOS3, and the vacuolar Na+/H+ antiporter. The conserved
structure of these genes, as well as their intra and intergenic
relatedness, was revealed by sequence analyses of partial cDNAs.
Based on their findings, they concluded that the existence of
an efficient SOS pathway, which results in a higher K/Na ratio,
could be a major factor, among others, in deciding the salinity
stress tolerance of Brassica juncea genotypes CS 52 and CS 54
as compared to Varuna and T 9. In another study, Zou et al.
(2012) used transgenic rice plants overexpressing OsHsp17.0 and
OsHsp23.7 to test stress tolerance. When exposed to mannitol
and NaCl, both OsHsp17.0-OE and OsHsp23.7-OE transgenic
lines showed higher germination potential than wild-type plants.
Transgenic rice lines showed higher resistance to drought and
salt stress than wild-type plants, according to a phenotypic
study. Furthermore, under drought and salt stress conditions,
transgenic rice plants had lower MDA and higher free-proline
levels than wild-type rice lines. These findings showed that
OsHsp17.0 and OsHsp23.7 are important in rice salt adaptation
to salinity and dehydration stresses, and that they can be used to
engineer rice that is drought and salt-tolerant.

It is now widely known that many plant traits are
superintended by multigenes, especially pathways that
result in biosynthesis of metabolites due to the intricate
metabolic pathways involved in their biosynthesis, accumulation,

metabolism, and catabolism (Ashraf et al., 2018). While single-
gene transgenic technology has been widely used to improve
plant salt tolerance, engineering using a single gene is often
inadequate to trigger threshold expression of the metabolic
products required. Given the complexity of some biosynthetic
pathways and multiple traits involved in salinity stress, the
efficacy of salt-tolerant genes can be improved by combining
their presence in the same plant during crop improvement
(Biradar et al., 2018). To achieve this goal, several multigene
pyramiding approaches such as co-transformation of multiple
genes and transgenic pyramiding by conventional hybridization
have been developed to introduce multiple genes or complex
metabolic pathways into plants. Although the use of conventional
approaches such as sexual crossing is simple, it is labor-intensive
and time−consuming and the method is unsuitable for sexually
incompatible plants. A novel strategy known as speed breeding
(discussed below) has been developed to accelerate the plant
breeding period. Although delivery of multiple genes via
Agrobacterium-mediated transformation has been achieved, it
becomes a challenge with an increase in the number of transgenes
and the size of the transfer-DNA (T-DNA), and has the potential
of gene silencing if the same promoter is repetitively used.
A biolistic transformation system can simultaneously introduce
many transgenes encoding for multiple strains. However,
this system comes with the limitations of a complex genome
integration of transgenes and an unstable linkage inheritance
between transgenic generations (Chen et al., 1998; Liu et al.,
2018).

Several examples have demonstrated that co-expression of
genes in the same plant can improve salt tolerance in plants: rice
(Gupta et al., 2018), Spartina alterniflora (Biradar et al., 2018),
potato (Shafi et al., 2017), Arabidopsis (Pehlivan et al., 2016),
sweet potato (Yan et al., 2016), Festuca arundinacea (Ma et al.,
2014), tomato (Viveros et al., 2013), and tobacco (Singla-Pareek
et al., 2003). Only one study has reported that the co-expression
of genes increases salinity tolerance in finger millet. Using
Agrobacterium-mediated transformation, Jayasudha et al. (2014)
co-expressed PgNHX1 from Pennisetum glaucum and AVP1 from
A. thaliana. Compared to wild-type plants, dual-transgenic plants
displayed higher salt tolerance to salt stress. Although this is
a single study, and in cognizance of previous reports, their
findings affirm that gene stacking is the most effective technique
for providing plants with long-term salt-stress tolerance. In
the literature, most plant-breeding approaches for abiotic stress
resistance are hinged on single gene introgression into a recipient
genome whose developed defense starts to decline after a short
period of time owing to complex interactive effects brought about
by the changing climate. As salinity stress is a polygenic trait, the
stability of salinity tolerant cultivars can be lost when tolerance is
based on one major gene. Based on this observation, pyramiding
multiple genes which confers resistance against several stresses
into a single plant should now be accentuated. A transgenic
strategy for developing finger millet with sustainable and stable
tolerance should involve the screening of several potential
salinity-tolerance genes and the pyramiding of the desirable ones.
The use of genetic engineering techniques to combine multiple
genes into a single finger millet cultivar is a promising approach
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for developing tenacious and superior tolerance, particularly
when candidate genes come from diverse gene clusters and
should be emphasized. Although gene pyramiding appears to
be a promising technique for alleviating salt stress in plants,
potential challenges include reduced effectiveness of stacking
genes, individual gene mutations, gene silencing, genotype–
environmental interactions, a combination of various sources of
genetic material with non-redundant mode of action, and the
lengthy time taken to produce a successful variety, especially by
seed companies. New methods, such as genome editing, have
helped to overcome these obstacles.

CRISPR/CAS GENOME EDITING AND
PRECISION BREEDING FOR SALINITY
STRESS TOLERANCE IN FINGER MILLET

The novel clustered regularly interspaced short palindromic
repeats (CRISPR)-CRISPR-associated protein (Cas) system has
emerged as an effective robust tool for site-specific genome
editing and precise induction of mutagenesis in many organisms
including plants. Given its precision, efficiency, simplicity,
and high cost-effectiveness, the CRISPR/Cas system has been
extensively applied to the edit genomes of several crops including
those closely related to finger millet such as foxtail millet (Cheng
et al., 2021; Zhang et al., 2021), sorghum (Liu et al., 2019;
Char et al., 2020), rice (Tang et al., 2017; Wang L. et al., 2017;
Wang M. et al., 2017; Dong et al., 2020), and wheat (Liang et al.,
2017; Sánchez-León et al., 2018), to develop crop varieties with
enhanced resistance to biotic and abiotic stresses as well as other
traits. On specific application of CRISPR/Cas technology toward
development of crops with enhanced tolerance to salinity stress,
Zhang et al. (2019) reported improvement of the rice salinity
tolerance by engineering a Cas9-OsRR22-gRNA expressing
vector, targeting the OsRR22 gene in rice. In their results,
homozygous mutant lines displayed substantially higher salinity
tolerance than wild-type plants. More recently, Bouzroud et al.
(2020) focused on the involvement of SlARF4 gene in tomato
salinity tolerance and osmotic stress. A CRISPR/Cas9-induced
SlARF4 mutant showed similar growth and stomatal responses to
ARF4-as plant lines previously generated and well-characterized
by Sagar et al. (2013). These examples demonstrate the potential
applicability of CRISPR/Cas technology in finger millet. To the
best of our knowledge, no literature exists on the application of
CRISPR/Cas technology to finger millet. Since the first report
on its application in plants in 2013 (Feng et al., 2013; Li et al.,
2013; Nekrasov et al., 2013; Shan et al., 2013), his technology has
revolutionized crop breeding, enabling plant breeders to precisely
control the specific introduction of targeted mutagenesis.

The fundamental principle of CRISPR/Cas and other genome
editing tools, such as meganucleases (Puchta et al., 1993), zinc-
finger nucleases (Wright et al., 2005), and transcription activator-
like effector nucleases (Christian et al., 2010), is to employ a
sequence-specific nuclease protein to induce a DNA double-
strand break (DSB) at a target-specific locus of the genome.
After cleavage, either the error-free homologous directed repair
(HDR) pathway or the non-homologous end joining (NHEJ)

mechanism (which is error-prone) repairs the DSB, introducing
genetic mutations. NHEJ repair predominantly occurs during the
G1 phase although the mechanism is also postulated to occur
throughout the cell cycle. The HDR process is most dominant
during S and G2 phases of cell division. Repair of DSB in somatic
plant cells favors NHEJ more than the HDR (Schmidt et al., 2019).
All the aforementioned genome editing platforms have shown
an impressive capacity for plant genome editing. However, with
the exception of the CRISPR/Cas system, all the aforementioned
tool platforms require complex protein engineering, which is
costly, time-consuming, and of doubtful precision, limiting
their applicability. The principal CRISPR/Cas system, which
is adopted from a bacterial immune system response against
invading viruses, consists of CRISPR repeat-spacers and Cas
proteins, which is an RNA-mediated adaptive immune system
against viruses and other invasive non-host genetic elements by
cleaving the invader’s foreign nucleic acid material. Currently,
CRISPR/Cas systems are divided into two major classes, which
have been further classified into six subdivisions as per the
properties of their respective Cas genes (Chen et al., 2019).
Editing of organisms’ genomes by the CRISPR system was
therefore formulated based on DNA interference by guided RNA
(gRNA). Given its ability to induce precise nucleotide mutations,
and its global acceptance by plant biotechnologies, CRISPR/Cas
technology has the potential to have a substantial positive impact
on agriculture including development of crop cultivars resistant
to salinity stress.

Theoretically, the CRISPR/Cas system can be used to
manipulate all genomes with high accuracy. However, the gRNA
can find complementary positions within the genome and cause
off-targets, although they are rare in plants (Peterson et al.,
2016). To avoid unexpected mutations, care should be taken
when choosing the Cas protein and the design of the gRNA.
The designing of gRNA requires a reference genome of the
crop of interest. Unfortunately, a complete assembled genome
of finger millet has not yet been released. This has considerably
hampered the application of the CRISPR/Cas genome editing
tool in finger millet. Although whole-genome draft sequencing
and assembly of finger millet was released several years ago
(Hittalmani et al., 2017; Hatakeyama et al., 2018), validation of
sequence reads data and annotation of key genes is yet to be
concluded, leaving only raw reads in the database. Furthermore,
the genome has not been uploaded in major gRNA designing
tools and therefore the designing of gRNAs is limited. More
work is therefore urgently needed to invigorate the use of
the crop’s genomics applications. Other impediments in the
application of the CRISPR/Cas system in finger millet are a lack of
efficient in vitro regeneration and transformation protocols that
are cultivar-independent. Although attempts have been made
for tissue culture regeneration and transformation of finger
millet using different explants and different delivery methods,
their efficiency is cultivar-dependent with low regeneration and
transformation efficiency (Kothari et al., 2004; Ignacimuthu
and Ceasar, 2012; Satish et al., 2017; Ngetich et al., 2018).
Currently, there is no report available for in vitro regeneration
through another culture, protoplast culture, and protoplast
fusion in finger millet.
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POTENTIAL IMPROVEMENT OF FINGER
MILLET SALT STRESS RESISTANCE
USING SYNTHETIC BIOLOGY

Agriculture and applications of bioengineering techniques must
be used to help feed the burgeoning global population in a
sustainable manner under climate change perturbations (Wurtzel
et al., 2019). The most recent technique is synthetic biology,
which, if well adopted like the CRIPSR/Cas genome editing
system, can play a crucial role in mitigating complex abiotic
challenges in crop cultivation, including crop salinity stress.
Although synthetic biology can be classified as an offshoot of
genetic engineering, it completely differs from the “cutting-and-
pasting” of genetic material from one organism into another.
It involves designing a complete organism from scratch using
computational and mathematical modeling and quantitative
functional characterization for useful purposes (Preston, 2013;
Wurtzel et al., 2019; Roell and Zurbriggen, 2020).

Over the years, plants have evolved elaborate and complex
mechanisms for avoiding or tolerating the effects of salinity
stress. Avoidance mechanisms prevent exposure and include
the capability to reduce sodium ions accumulation in the cell
through water-loss minimization and optimization of water
uptake. Salinity tolerance allows plants to endure elevated cellular
sodium ion concentrations by preserving cell turgor and raising
protoplasmic resistance (Soliman et al., 2018). With an increasing
number of genomics resources available for various plant lineages
displaying different approaches and variation in salinity-stress
avoidance or tolerance (Bhardwaj et al., 2014; Razali et al., 2018;
Chanwala et al., 2020; Noori et al., 2021), systems biology, a
technique that utilizes genome-scale analyses of molecules and
their interplay (Shah et al., 2017), is emerging as an attractive
approach to connect genes to salinity-stress avoidance or salinity-
tolerance traits. Therefore, the utilization of synthetic biology
technologies in developing finger millet plant lines impervious
to salinity stress represents not only the accumulative insertions
of transgenes but also the directed construction of entirely
new metabolic pathways and networks, physiological traits, and
growth and developmental control strategies. At present, the
application of synthetic biology approaches in plants has not
grown in tandem with bacterial and mammalian systems, where
these tools are already redesigning fundamental research in
many aspects (Roell and Zurbriggen, 2020). Despite its high
potential, most current developments have not been translated to
“outside-the-lab bench” application spaces, which are completely
diverse and variable compared to the controlled laboratory
settings. Another challenge in the application of synthetic biology
tools in agriculture is the time and cost involved in in vitro
propagation, genetic manipulation, and screening of crops.
While there has been a boost to plant biotechnology following
the development of novel and revolutionary techniques such
as CRISPR/Cas-mediated genome editing and speed breeding,
the whole sequencing and annotation of orphaned crops like
finger millet and the application and growth of synthetic
biology as a field remain a challenge. Nevertheless, the adoption
of synthetic biology tools will be vital in remodeling future

progress in agricultural biotechnology especially when dealing
with multigenic stresses such as salinity.

SPEED BREEDING TECHNIQUE AND
POTENTIAL USE FOR SALINITY
MANAGEMENT IN FINGER MILLET

The technology advancement in the last three decades has
exposed contemporary plant breeders to a plethora of innovative
tools, such as genomic selection (Werner et al., 2020), high-
throughput phenotyping (Hu et al., 2020), genome editing
(Miladinovic et al., 2021), enviromics (Resende et al., 2021),
and speed breeding (Watson et al., 2018), for application and
integration into crop improvement pipelines in the face of the
adverse environmental conditions caused by climate change and
the consequently increased occurrence of biotic and abiotic
stresses. Speed breeding methods that shorten plant generation
times have been regarded as a powerful and revolutionary tool
for accelerating crop research and breeding. The principle of
speed breeding is the use of optimum temperature, light intensity,
and photoperiod to hasten growth and development (Ghosh
et al., 2018; Watson et al., 2018). Combining a large number
of polygenic traits using conventional breeding methods is a
considerable challenge (Breseghello and Coelho, 2013). From this
perspective, speed breeding provides a precise breeding tool for
improving specific traits in plants during the breeding cycle.
Since their unveiling, species-specific speed-breeding protocols
have been used to achieve up to six generation cycles in a
year for spring wheat, durum wheat, barley, chickpea, and
pea, as well as four generations for canola, as opposed two
to three under glasshouse conditions (Watson et al., 2018),
demonstrating an effective tool for reducing breeding time.
However, a speed-breeding protocol for finger millet has yet
to be developed. Delivering speed breeding in finger millet
requires optimization in a simplified and affordable manner.
Attributes like salinity tolerance in crops could be enhanced
by selecting the outstanding hybrid progeny harboring desired
traits through back-crossing (Dolferus et al., 2011). To curtail
undesirable phenotype combinations, the desired trait can also
be introduced into a recipient plant line by backcrossing selected
progeny with recipient lines for several generations (Caligari
and Forster, 2015). Rana et al. (2019) developed a new rice
cultivar that is highly tolerant to salt stress, YNU31-2-4, through
efficient marker-assisted selection coupled with speed breeding.
Results from their study demonstrate that breeding system in
combination with other breeding techniques can be utilized as
an effective and rapid way to mitigate salinity stress in crops
including finger millet, which can potentially boost global food
production to meet the growing population’s food security needs.

AGRONOMIC MANAGEMENT OF
SALINITY STRESS

Agronomic methods to reduce salinity stress during cultivation
can be directed on either soil or crops. The simplest approach to
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lower soil sanity is to increase the soil water content, which can
be achieved through frequent irrigation especially the modern
irrigation systems with high efficiency. Increasing of the soil
water content reduces the salt concentration to level which
crops can withstand. However, this approach is not feasible
for smallholder finger millet farmers. Further, finger millet is
grown in arid and semi-arid regions of the world. Dry periods
of finger millet cultivation are the most critical period for salinity
stress. Survival of crops during such periods can be increased by
the application of calcium nitrate or chloride because Cl− ions
move the Na+ ions from soil colloids which leached by rains or
irrigation (Mariani and Ferrante, 2017). Similar effects are also
reached by application magnesium. Therefore, the application of
fertilizers containing high calcium and magnesium saline soils
improves the soil structure and provides a suitable environment
for roots and plant growth. At the crop physiology level, cellular
Cl+ ions inhibit the membranes’ sodium channel and decrease
cytosolic salt accumulation rate, thereby allaying plant salinity
stress. Moreover, if the calcium used is in the form of nitrates, the
Cl− ions compete with Na+ ions for accumulation in the cytosol
vacuoles. The application of nitrates to sodic soils may reduce salt
uptake, although this aspect requires validation.

CONCLUSION AND FUTURE
PERSPECTIVES

Many studies have emphasized the necessity for crop production
to double by 2050 to meet the anticipated demands of a
burgeoning global population. At present, soil salinity is the
most serious threats among abiotic stresses caused by climate
change and agronomic practices that impede crop production.
Although meaningful gains have been made in breeding salt-
tolerant crops, more work is needed. Salinity tolerance is a
polygenic trait, and this is further complicated in several types of
abiotic stress, such as drought, high temperatures, and nutrient
deficiencies and toxicities, that may simultaneously impact the
crop, making breeding for salt-tolerant cultivars a challenge.
From this review, it can be summarized that finger millet

production is adversely affected by salt stress, which alters
its physiological, biochemical, and molecular mechanisms. The
genes, metabolites, and pathways responsible for the diverse
mechanisms of salinity tolerance in finger millet must be profiled,
taking advantage of the discovery of the whole genome sequence
of finger millet. Based on the advancement of biotechnological
tools at present, multidisciplinary approaches are encouraged for
the development of salt-tolerant finger millet cultivars. Several
new techniques such as genomic selection, high-throughput
phenotyping, genome editing using the CRISPR/Cas, speed
breeding, and synthetic biology have recently attracted attention
among scientists and plant breeders globally. All these strategies
promise to revolutionize comprehensive trait prediction and
integration of various salinity management options, including
agronomic approaches, conventional breeding, and modern
biotechnological advances, for the sustainable improvement of
finger millet yield and nutritional quality under salt stress.
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