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The ubiquitin/26S proteasome pathway is a critical protein-degradation pathway in
plant growth and development as well as in nearly all biological and abiotic stress
processes. Although as a member of the ubiquitin/26S proteasome pathway, the E3
ubiquitin ligase family has been shown to be essential for the selective degradation of
downstream target proteins, it has been rarely reported in tea plants (Camellia sinensis).
In this study, through database searches and extensive manual deduplication, 335
RING finger family proteins were selected from the Tea Plant Information Archive. These
proteins were divided into six categories by the difference of RING finger domain: RING-
H2, RING-HCa, RING-HCb, RING-C2, RING-v, and RING-G. Stress-induced differential
gene expression analysis showed that 53 proteins in RING finger family can respond
to selected exogenous stress. In vitro ubiquitination assays indicated that TEA031033,
which was named CsMIEL1, exhibited the activity of E3 ubiquitin ligases. CsMIEL1-
overexpressing transgenic Arabidopsis thaliana seedlings were resistant to some
exogenous abiotic stresses, such as salt and drought stress but sensitive to exogenous
methyl jasmonate treatment. Furthermore, CsMIEL1 reduced the accumulation of
anthocyanin in transgenic plants in response to low temperature treatment. The results
of this article provide basic date for studying the role of ubiquitin/26S proteasome
pathway in tea plants response to stresses.

Keywords: Camellia sinensis, RING-containing proteins, E3 ubiquitin ligase, MIEL1, biological and abiotic stress

INTRODUCTION

Tea plant [Camellia sinensis (L.) O. Kuntze], a perennial evergreen woody plant, encounters various
abiotic (drought, heat, cold, and salt) and biological stresses (pests, viruses, and herbivore foraging).
Under these stresses, plants undergo various degrees of damage. For example, under high salt
stress, an imbalance of Na+/K+ inside and outside the cell restricts plant growth and accumulates
excessive reactive oxygen species, which causes osmotic and even oxidative stresses (Munns and
Tester, 2008). Through long-term natural selection, plants have evolved various physiological and
biochemical defense mechanisms to deal with stresses (Hou et al., 2009), such as antioxidant defense
mechanisms (Dai and Mumper, 2010), apoptosis (Jones, 2001), and autophagy (Avin-Wittenberg,
2019). Plants can tolerate a harsh environment and maintain normal growth, in recent years, more
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and more researches have begun to pay attention to how the
ubiquitination process of plants works under various stresses.

The 26s-proteasome-mediated ubiquitination degradation
pathway (ubiquitin/26s proteasome) is central to apoptosis
(Kurepa et al., 2012). The ubiquitination of substrate proteins
requires the participation of E1-ubiquitin-activating, E2-
ubiquitin-conjugating enzymes, and E3-ubiquitin ligases. First,
the cysteine residue (Cys) on the active site of E1 is covalently
bound to the terminal glycine of the ubiquitin molecule through
a high-energy thioester bond, and Adenosine 5′-triphosphate
(ATP) is consumed to activate the ubiquitin (Stone, 2014).
Second, the ubiquitin is transferred to the Cys residue of E2
to form an E2-Ub thioester complex. Finally, E3 transfers the
ubiquitin from E2 to the substrate protein (Downes et al., 2003).
After that, the 26S proteasome degrades the ubiquitinated-
modified substrate protein, and the deubiquitinating enzyme
hydrolyzes and releases the ubiquitin, which triggers the
ubiquitination modification process.

As a key of the ubiquitin-proteasome pathway, E3 ligases
are critical in the recognition of target substrates. Because of
the importance of E3 ligase, the genes encoding E3 are the
most numerous in the same plant genome. For example, in the
Arabidopsis thaliana genome, approximately 6% of the genes
are related to the ubiquitin/26s proteasome pathway (Fu et al.,
1999; Yan et al., 2000; Bachmair et al., 2001; Gagne et al., 2002;
Kosarev et al., 2002). Two genes encode E1 and are the least
numerous. At least 37 genes encode E2 and E2-like proteins, but
more than 1,400 genes encode E3 (Smalle and Vierstra, 2004;
Mazzucotelli et al., 2006; Vierstra, 2009). E3 ubiquitin ligases
can be divided into HECT, Ubox, and RING types, but RING-
type ligases can be additionally divided into complex and simple
types (Vierstra, 2003). The Cys-rich RING protein was originally
named the “Really Interesting New Gene” based on its unique
domain (Freemont, 1993), the structure of the RING finger
domain that binds a pair of zinc atoms is conserved (Yang et al.,
2019), and eight conserved docking sites in the domain exist for
binding the ubiquitin-E2 intermediate during ubiquitin transfer
(Barlow et al., 1994; Borden et al., 1995; Zheng et al., 2000). The
RING finger domain is similar to the well-known Zinc-finger
domain in structure; however, the Zinc-finger domain functions
in the form of DNA-protein binding, whereas the RING-finger
domain functions in the form of a protein–protein interaction
(Nardelli et al., 1991).

In previous studies, it has been shown that more than 70% of
RING-containing proteins in Arabidopsis thaliana act as an E3
ubiquitin ligase (Stone et al., 2005). For example, AtATL78 is a
RING-type E3 ubiquitin ligase located in the plasma membrane,
which promotes ABA-dependent plant stomata closure, and also
can participate in cold and drought stress responses. In a study
of cold stress response, it was found that compared with the
wild-type plants, the transcription levels of cold-stress-induced
genes RD29A, RD29B, RD20, and P5CS1 were significantly
upregulated in atl78 mutants, and lower H2O2 accumulation was
detected, which indicated that AtATL78 was a negative factor
in cold stress regulation (Suh et al., 2016). Research has also
investigated the RING-H2 type protein MYB30-INTERACTING
E3 LIGASE 1 (MIEL1). In Arabidopsis, MIEL1 mediates the

degradation of the transcription factor MYB30, which acts as
a positive regulator of the hypersensitive cell death program
in plants, and it can interact with AtMIEL1 (Marino et al.,
2019), the interaction between MIEL1 and MYB30 affected
the formation of the plant’s waxy layer, weakens the plant’s
defense ability (Lee et al., 2017), and MIEL1 also negatively
regulates ABA signaling by promoting MYB96 turnover (Lee
and Seo, 2016). In apples, MdMYB308L is a known target gene
identified to interact with MIEL1, it positively regulates cold
tolerance and anthocyanin accumulation by interacting with
MdbHLH33 and enhancing its binding to MdCBF2 and MdDFR
promoters. When MIEL1 interacts with MYB308L, MdMIEL1
directly degrades MdMYB308L through the 26S-proteasome-
mediated ubiquitination degradation pathway, thereby reducing
the cold tolerance and anthocyanin accumulation promoted by
MdMYB308L (An et al., 2017).

Although numerous studies have concluded that RING
domain–containing proteins have multiple regulatory roles in
plant growth and development, few studies have investigated the
function of RING finger family proteins in tea plants. In this
study, RING-containing proteins in tea plants were selected from
the Tea Plant Information Archive (TPIA), and the predicted
responses of RING domain proteins to abiotic and biotic stresses
were explored. One of them was proven to have a ubiquitination
function and likely contributing to the resistance of A. thaliana
to abiotic stress.

MATERIALS AND METHODS

Identification of RING
Domain-Containing Proteins in the Tea
Plant
We downloaded the sequence of 477 RING-containing proteins
that have been reported to be present in Arabidopsis (Stone et al.,
2005) from The Arabidopsis Information Resource (TAIR)1 and
constructed their domains in Pfam2. Six different Hidden Markov
model (HMM) motifs were collected. HMM-Blast was applied to
the protein sequences in the database downloaded from TPIA3

with HMMer4 (Mistry et al., 2013). For the prediction and
analysis of the domains of these proteins, we used InterPro5 for
the initial appraisal. Pfam (see text footnote 2) and SMART6 for a
secondary verification and determination of redundant domains.

Expression Analysis of RING Finger
Family Genes in the Tea Plant
We downloaded the expression levels of these RING family genes
under different stresses from TPIA (Supplementary Table 1).
The gradient of cold treatment was CA1-6h (10◦C for 6 h),
CA1-7d (4–10◦C for 7 days), CA2-7d (0–4◦C for 7 days), and

1https://www.arabidopsis.org
2http://pfam.xfam.org
3http://tpia.teaplant.org/
4http://www.hmmer.org/
5http://www.ebi.ac.uk/interpro/
6http://smart.embl.de/
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DA-7d [recovery afterward at room temperature (20–25◦C) for
7 days] (Wang et al., 2013). Salt and drought treatments were
conducted for 24, 48, and 72 h (Zhang et al., 2017). MeJA
treatment was applied in gradients of 12, 24, and 48 h (Shi et al.,
2015). We calculated the relative ratio of these expression levels
to the control, which was normalized by log2 (Supplementary
Figure 1). When the expression of H2-type genes under stress at
any time is upregulated or down-regulated twice as much as the
control (Supplementary Figure 2), we selected and collected it
for Venn diagram analysis (Figure 2).

Four Exogenous Hormone Treatments on
Branches of the Tea Plant
Tea plants (Camellia sinensis var. Sinensis cv. Shuchazao) were
collected from the Tea Plant Cultivar and Germplasm Resource
Garden in Guohe Town, Anhui Agricultural University. Tea
branches having the same growth conditions and divided into
four groups, after which they were placed in erlenmeyer flasks
containing the same amount of water. After 24 h of adaptation,
the water was replaced with 200 mM NaCl solution for Group 1
and with 25% PEG4000 solution for Group 2. Group 3 was treated
by smearing 0.25% MeJA on each leaf. Group 4 was treated at
10◦C, respectively. The 2nd leaves tissues were collected at seven
time points: 0, 6, 12, 24, 36, 42, and 60 h for Group 1; 0, 4, 8,
16, 24, and 36 h for Group 2; at 0, 6, 12, 24, and 36 h for Group
3; 0, 6, 12, 24, 36, 72, and 96 h for Group 4. At each time point,
three repeats were performed. Samples were immediately frozen
in liquid nitrogen and kept at−80◦C for RNA extraction.

Quantitative Real-Time RT-PCR Analysis
Total RNA was extracted using the FastPure Plant Total
RNA Isolation Kit (polysaccharides and polyphenolics-Rich)
(Vazyme Cat. RC401-01) according to the manufacturer
recommendations. The cDNA were synthesized using
PrimeScript RT Reagent Kit Perfect Real Time (TaKaRa,
Dalian, China; Code: DRR037A) and stored at −20◦C for
later use. Verifying PCR product-amplification specificity was
determined using the fusion curve (55–95◦C). The housekeeping
gene was glyceraldehyde-3-phosphate dehydrogenase. The
RT-qPCR mixture consisted of 10 µL of CHAMQ SYBR qPCR
mixture (Vazyme), 7.4 µL of ddH2O, 0.8 µL of upstream and
downstream primers, and 1 µl of cDNA. RT-qPCR reacted in the
96-well optical reaction plates at 95◦C for 30 s, followed by 40
cycles at 95◦C for 5 s and reaction at 60◦C for 30 s PCR product
amplification specificity was determined using the melting curve
(55–95◦C). Three biological replicates and three experimental
replicates were applied for each sample. The relative expression
values were calculated using the 2−11Ct method. In each group,
untreated branches were used as control. All primers used for
RT-qPCR analysis were recorded in Supplementary Table 4.

Subcellular Location Analysis
The steps of subcellular localization analysis were referred to
Yoo et al. (2007), and some modifications were made. CsMIEL1
was constructed on pUC19-GFP vector and transformed into
Arabidopsis protoplasts of leaves.

In vitro Ubiquitination Assays
The entire CsMIEL and CsMIEL1-C192S open reading frame was
cloned into the pEGX vector and expressed in Escherichia coli,
the primers are displayed in Supplementary Table 5. The in vitro
ubiquitination assays were performed as described elsewhere
(Zhao et al., 2012). For the E3 ubiquitin ligase activity assay,
recombinant wheat (Triticum aestivum) E1 (GI: 136632), human
E2 (UBCH5B; 100 ng), and purified Arabidopsis ubiquitin with
HIS-tag (UBQ14, AT4G02890; 500 ng) were mixed and used
for the assay. The mixture was incubated at 30◦C for 2 h,
boiled at 100◦C for 5 min, and frozen at −20◦C until the SDS-
PAGE analysis. After Western blotting, the reactants isolated by
SDS-PAGE were incubated with GST antibody (1:10,000) and
observed using ECL chromogenic solution.

Sequence Alignment and Phylogenetic
Analysis
Multiple sequence alignments of the full-length RING
proteins were performed by DNAMAN (Version 6.0; Lynnon
Corporation, Quebec City, QC, Canada) with default parameters.
The phylogenetic tree was constructed with molecular
evolutionary genetics analysis (MEGA) software (Version
6.0)7 (Tamura et al., 2013), using the neighbor-joining (NJ),
minimal evolution (ME), and maximum parsimony (MP)
methods and the bootstrap test carried out with 1,000 iterations
to test the significance of the nodes.

Generation of the Overexpressing
Transgenic Arabidopsis thaliana
Arabidopsis ecotype Columbia (Col-0) plants were grown in
Murashige and Skoog (MS) media at 22◦C in long day conditions
(16 h of light and 8 h of darkness) and used as wild types and for
genetic transformation and other analyses. The Agrobacterium
tumefaciens GV3101 strain was grown in LB media supplemented
with 50 µg/mL kanamycin and 20 µg/mL rifampicin. The
CsMIEL1-MYC and CsMIEL1-C192S-MYC construct consisted
of the coding sequence under the control of a 35S promoter.
Transgenic Arabidopsis thaliana organisms were generated
using floral-dip transformation (Clough and Bent, 1998). All
T0 generation seeds were sown on MS medium containing
15 µg/mL glyphosate for selection. RNA was extracted and
reverse transcribed into cDNA for semi-quantitative PCR, and
finally four CsMIEL1-MYC transgenic lines and CsMIEL1-C192S-
MYC transgenic lines were obtained. Among them, Line 2, 4, and
6 of CsMIEL1 have high expression level, and Line 8 is low. Line
2, 3, and 4 of C192S are high, and Line 1 has low expression level
(Supplementary Figure 3). Through the glyphosate selecting of
each generation until the T3 generation, PCR verification assays
have confirmed that the overexpressing line is homozygous.

Stress Induction in Arabidopsis thaliana
Seedlings
Wild-type, CsMIEL1-MYC, and CsMIEL1-C192S-MYC
overexpressing Arabidopsis thaliana were sown simultaneously

7http://www.megasoftware.net/
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in Petri dishes containing the same volume of MS medium under
common growth conditions. After 10 days of pre-culture, the
seedling of the same size was selected and treated on the MS
medium with 100 mM NaCl (Zhang et al., 2008; Kuki et al.,
2020), 200 mM mannitol (Malefo et al., 2020), 100 µm of MeJA
(Leon-Reyes et al., 2010), and 10◦C (Zhang et al., 2008) for
another 10 days. Plants were grown for 10 days under normal
conditions after pre-culture as controls (Mock). In all biological
replicates, at least 50 plants were used for each treatment, and
the error bars represent the standard deviation of replicates.

Extraction of Anthocyanin Content
Extraction of anthocyanin was extracted according to Jiang et al.
(2017) with some modifications. In total, 0.2 g of plant tissue was
quick-frozen in liquid nitrogen for preparation for subsequent
experiments. During extraction, plant tissues were fully ground
with a ball mill and extracted four times through the addition
of a 500 µL extraction buffer. The ratio of the buffer was 80%
methanol, 1% hydrochloric acid, and 19% water. After each
extraction, the homogenate was centrifuged at 12,000 rpm for
10 min and combined. The absorbance values were measured at
530 nm, and each genotype was repeated at least three times.

Measurement of Plants Growth Index
The plants were stripped from the MS medium, and various
growth indicators were measured manually. We recorded the
data of all biological replicates for calculating the average and
standard deviation. The measurement was all done by one person
to control the error.

Statistical Analysis
For statistical analyses, IBM SPSS Statistics version 19 were
use. The Tukey’s and least significant difference (LSD) multiple
comparison tests were used to analyze significant differences
between pairs. Differences were considered statistically
significant when ∗P < 0.05 and ∗∗P < 0.01. All the results
were based on the average of three parallel experiments.

RESULTS

Classification of RING Protein in
Camellia sinensis
We downloaded the sequence of the RING family in Arabidopsis
for analysis of this huge family in the tea plant. After
deduplication and comparison, 335 RING-contain proteins were
identified. On the basis of the differences in amino acid sequences
at these binding sites and the number of amino acids between
each site, these 335 domain in tea plant were divided into
six categories: RING-H2, RING-HCa, RING-HCb, RING-C2,
RING-v, and RING-G. In all types, the amino acid residues at
positions 1, 2, 3, 6, 7, and 8 were conserved and consisted of Cys,
whereas the amino acid residues 4 and 5 were not conserved.
According to the aforementioned classifications, 64% (214) of
the RING domain in tea plant were distributed into the RING-
H2 group. The metal-ligand positions 4 and 5 are two His

residues, which accounted for the name of the RING-H2 group.
According to the characteristics of the amino acid residues of
metal ligands 4 and 5, the remaining RING types were classified
into RING-HCa, HCb, C2, V, and G groups. The differences
between HCa and HCb groups corresponded to the number of
amino acids between positions 7 and 8. Between metal ligands
7 and 8, the HCa group comprised two and four amino acids,
respectively. Few members belonged to the HCb and G groups
(only three members and one member, respectively). Similar to
Arabidopsis, most proteins were the H2 type followed by the HCa
type. In contrast to Arabidopsis thaliana, among the 477 RING
proteins in Arabidopsis thaliana, 41 (8.6%) HCb-type proteins
were present, whereas only 3 HCbs were present in the tea plants.
We downloaded data from the Grape Genome Browser8 database
and performed the same manual search and identification of the
RING domain in grapes to compare the RING-containing protein
classifications of different species (Supplementary Table 2).
Apple’s data in the table comes from previous reports (Zhang
et al., 2008). Among the four species, the distribution of RING
domains was consistent; the H2-type domains were the most
numerous followed by the HCa-type domains. The number of
V-type and C2-type domains in each species was nearly identical,
but the number of HCb-type domains differed substantially.
Research has speculated that the RING-D domain may only exists
in Arabidopsis thaliana (Stone et al., 2005). Accordingly, in our
search of tea plants and grapes, we did not identify this type of
RING domain. But in Apple, a D-type RING domain was found
(Zhang et al., 2008). However, no C2-type grape RING domains
were found in this selection. Perhaps due to the problem of
genome assembly and annotation, the identification in tea plant
did not involve S/T-Type, D-type, mH2-type and mHC-type, and
the structure of these types was not explained in detail (Figure 1).

We predict other motifs of RING finger proteins in tea
plants. The results indicated that 235 members exhibited no
other motifs and contained only the RING finger domain. An
additional 17 domains were identified in the remaining RING-
containing proteins, such as the WD40 domain, IBR domain, and
other motifs with unknown functions (Supplementary Table 3).
The WD40 domain is cited as a binding module for pSer/Thr.
Additionally, when present in ubiquitin ligase, the WD40 domain
may also be related to the phosphorylation of the relevant
substrate (Deshaies, 1999; Koepp et al., 1999; Nakayama et al.,
2000). The IBR domain is a common Cys-rich region located
between two RING domains, but its function is unknown (van
der Reijden et al., 1999). The identification of numerous domains
suggests that the RING-containing proteins in tea plants may
have multiple regulation or regulated mechanisms and perform
diverse functions.

Selection of RING-Containing Proteins
Involved in Stress Resistance
To figure out the RING finger genes related to stress responses
in tea plants, we analyzed the induced expression difference data
of 335 genes provided by TPIA under different stresses. Abiotic
stresses included cold, salt, and drought treatments. Responses

8https://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/
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FIGURE 1 | Structural analysis of RING finger domains. Bracketed numbers represent the amount in each RING domain. *Eight conserved docking sites. Red
represents amino acid conserved sites, other colors represent different residues.

FIGURE 2 | Selection of RING-containing proteins in response to stresses in tea plants. (A) Number of genes responding to various types of stresses. (B) Venn
diagram of genes responding to different stresses. (C) The number of genes responding to stresses at the same time. (D) List of genes responding to different
stresses.

to biological stress were simulated by detecting the response
of plants to exogenous methyl jasmonate (MeJA). Differentially
expressed H2-type RING genes were individually compared and
analyzed, and the results are presents in Supplementary Figure 2.
Figure 2A reports the number of genes responding to various
stresses. In total, 128, 134, 121, and 82 genes responded to
cold stress, salt stress, drought stress, and exogenous MeJA
treatment, respectively. A Venn diagram indicates that 53 genes

responded to all stresses (cold stress, drought stress, salt stress,
and MeJA treatment), and 31 genes respond to only one form
of stress. A total of 26 genes responded only to salt stress, and
five responded only to cold stress. However, no gene responded
only to drought stress or MeJA treatment (Figures 2B,C). These
findings are reported in Figure 2D.

To verify the response of these genes to stress, we treated the
branches of tea plants with a low degree of lignification with
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FIGURE 3 | Validation of transcriptomic data by quantitative real-time analysis. (A) Schematic of four stress treatments on branches of the tea plant. (B–E)
Quantitative real-time analysis data of five selected genes subjected to four stresses.

NaCl, PEG4000, a low-temperature condition, and exogenous
MeJA to simulate the four selected stresses. After the treatments
were completed, RNA was extracted from the second leaf
and reverse transcribed into cDNA for Quantitative real-time
RT–PCR analysis (RT-qPCR) (Figure 3A). In the process of
designing and RT-qPCR primers, we found that for many genes,
the target fragments could not be cloned, or the amplified
products were not specific, and most genes could not design
primers with an efficiency of 90–110%. This may be caused
by genome assembly and annotation issues. Therefore, we
selected five genes that met the requirements of amplification
efficiency for RT-qPCR: TEA031033, TEA023239, TEA28518,
TEA030031, and TEA018024. The results of the RT-qPCR
analysis indicated that gene responses to salt and MeJA were
relatively low (Figures 3B,E), but responses to drought and
cold were more substantial (Figures 3C,D). Among the selected
genes, TEA031033 had the strongest response when treated
with NaCl for 12 h: the response was 3.28 times that of
the control (Figure 3B). After 24 h of MeJA treatment,
the expression level of TEA031033 was approximately three
times that of the control (Figure 3E), which also represented
the most considerable gene response to exogenous MeJA.
TEA030031 and TEA018024 responded significantly to cold
stress; their strongest response to cold stress were 9.6 and
6.6 times that of the control, respectively (Figure 3C), but
TEA030031 had a weak response to salt, drought, and MeJA
treatment. Under drought stress, the strongest response values
of TEA28518, TEA031033, and TEA018024 were 8.23, 7.55,
and 4.8 times that of the control, respectively. These five
genes exhibited different levels of response to biotic and

abiotic stresses, but TEA031033 had a relatively high level of
response to all four types of stress. Therefore, we conducted
an in-depth investigation on this gene to identify its specific
function in tea plants.

CsMIEL1 as an E3 Ubiquitin Ligase
We cloned TEA031033 and compared its sequence with that
of other species. Our results indicated that TEA031033 has
a RING finger domain at the C-terminus and a Zinc-finger
domain at the N-terminus (Figure 4A). The phylogenetic analysis
results indicated that AtMIEL1 had the highest homology with
TEA031033 (Figure 4B). Consequently, TEA031033 was named
CsMIEL1. Subcellular localization results show that CsMIEL1 is
localized in the nucleus (Supplementary Figure 4).

First, to verify the specific function of CsMIEL1 in tea plants,
we investigated the potential presence of E3 ubiquitin ligase
activity, an in vitro ubiquitination assay was conducted. We
cloned the open reading frame of the CsMIEL1 and C192S site-
directed mutagenesis, the 192th residue of C192S was changed
from Cys to Ser (Figure 5A). Polyubiquitinated CsMIEL1 were
found in the presence of ATP, ubiquitin, E1, E2, and CsMIEL1-
GST fused proteins using an anti-GST antibody, an absence of
any factor had cause CsMIEL1 to not be ubiquitinated. However,
even in the presence of all the auxiliary factors, no polyubiquitin
CsMIEL1-C192S was detected in assays (Figure 5B). As a
result, we concluded that the RING finger family protein
CsMIEL1 exhibited E3 ubiquitin ligase activity and that this
ubiquitination activity was lost after mutation at position 192.
Moreover, we concluded that the complete RING domain is
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FIGURE 4 | Bioinformatics analysis of CsMIEL1. (A) Amino acid sequence alignment of MIEL1 in different species. (B) Phylogenetic analysis of TEA031033 and
RING-containing proteins in Arabidopsis.

necessary to preserve the E3 ubiquitin ligase activity of the
RING finger protein.

Overexpression of CsMIEL1 Alters Root
Development Under Various Stresses
To investigate the functions of CsMIEL1, we obtained 35S:
CsMIEL1-MYC and 35S: CsMIEL1-C192S-MYC overexpressing
Arabidopsis plants. The four selected stress treatments were
performed on the wild-type, CsMIEL1-MYC, and CsMIEL1-
C192S-MYC, respectively (Figure 6A). For the transgenic plant
seedlings and wild-type seedlings grown at room temperature
for 10 days without any exogenous hormones, no significant
differences existed across the growth indicators, including leaf
length (LL) and width (WL), hypocotyl length (LH), and root
number and length (Figure 6B).

Under salt stress conditions, the growth of both transgenic
plant seedlings and wild-type (WT) seedlings was inhibited.
The growth of CsMIEL1-MYC transgenic plants was less
pronounced than that of wild-type and CsMIEL1-C192S-
MYC plants, which was reflected in the significantly
longer length of the petiole (LP) and primary root (LPR)
compared with the control (Figure 6C). Similarly, under
drought stress, the growth of the transgenic plant and wild-
type seedlings was also inhibited, but the length of the
primary root (LPR) and hypocotyl (LH) and the number

FIGURE 5 | Verification of the activity of CsMIEL1. (A) Comparison of the
amino acid sequence of CsMIEL1 and CsMIEL1-C192S. (B) In vitro
ubiquitination analysis of CsMIEL1 and CsMIEL1-C192S. *Sited-directed
mutagenesis position.

of lateral roots (NL) of CsMIEL1-MYC transgenic plants
were significantly greater than those of the control and
CsMIEL1-C192S-MYC (Figure 6D).
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FIGURE 6 | Resistance experiment of transgenic Arabidopsis plants to four stresses. (A) Four stress treatments for wild-type (Col-0), CsMIEL1, and
CsMIEL1-C192S overexpressing Arabidopsis thaliana seedlings. (B–F) Data on each index of the three types of seedlings under the four stress treatments. Mock,
Seedlings without stress treatment; WL, Width of leaf; LL, Length of leaf; LP, Length of petiole; LPR, Length of primary root; LH, Length of hypocotyl; NL, Number of
lateral roots. (G,H) Anthocyanin concentration of three Arabidopsis genotype under cold stress and normal conditions. In all biological replicates, at least 50 plants
were used for each treatment, and the error bars represent the standard deviation of replicates. The asterisks indicate the significance level (*P < 0.05, **P < 0.01)
based on the LSD’s honestly significant difference test.
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The effect of cold treatment on the growth of all seedlings
was not particularly notable. The difference in growth indicators
between CsMIEL1-MYC transgenic plants and WT did not
reach a significant level, although its primary root length
(LPT) was lower than these of wild-type and CsMIEL1-C192S-
MYC transgenic plants (Figure 6F). Under low-temperature
conditions, the anthocyanin levels of CsMIEL1-MYC transgenic
plants were significantly lower than these in the control and
CsMIEL1-C192S-MYC transgenic plants (Figures 6G,H).

The result in Figure 6E showed that CsMIEL1-overexpressing
plants were hypersensitive to MeJA and that the growth of
the root system of the CsMIEL1-MYC transgenic plant was
significantly inhibited. Additionally, after these three genotypes
were treated with exogenous MeJA, the primary root length
(LPT), hypocotyl length (LH), and lateral root number (NL) of
the CsMIEL1-overexpressing plants were shorter than those of
the wild-type and CsMIEL1-C192S-MYC transgenic plants.

DISCUSSION

RING finger proteins are vital in plant growth, development, and
stress resistance (Deshaies and Joazeiro, 2009). Researchers have
thoroughly investigated the RING finger family in Arabidopsis;
at least 477 RING proteins have been identified (Stone et al.,
2005; Yang et al., 2016), and many genes encoding RING domain
proteins have been proven to be involved in cold stress (Dong
et al., 2006; Suh et al., 2016), heat stress (Lim et al., 2013; Liu
et al., 2016), drought stress (Lee et al., 2009; Ryu et al., 2010), salt
stress (Qin et al., 2008; Fang et al., 2015), sugar treatment (Huang
et al., 2010), and defense responses (Huang et al., 2010; Marino
et al., 2019). Although RING proteins have been reported in many
species, few studies have explored RING finger family proteins in
tea plants. In this study, we could at least find 335 genes encoding
RING proteins from tea plants genome. It can be seen that RING
finger proteins is a superfamily in the plant kingdom.

In order to understand the role of RING finger proteins in the
resistance of tea plants, we used the transcriptome sequencing
data provided by the TPIA to select the RING finger genes
involved in the resistance of tea plants to biotic and abiotic
stresses. By comparing their gene expression differences, a total of
53 H2-type genes encoding RING proteins were found to respond
to cold stress, drought stress, salt stress, and MeJA treatments.
This also shows that the RING finger proteins family may be
widely involved in the anti-stress effects of tea plants. Among
them, TEA031033 was selected for function confirmation in this
paper, due to its relatively high level of response to all four
types of stress.

The protein cloned from TEA031033 is highly conserved
with the MIEL proteins reported in other species (Lee and
Seo, 2016; An et al., 2017), and named as CsMIEL1. CsMIEL1
contains a Zinc-finger domain at the N-terminus and a RING
finger domain at the C-terminus, with 79.78% sequence identity
with AtMIEL1 and 83% sequence identity with MdMIEL1.
In vitro ubiquitination analysis has confirmed that CsMIEL1
has ubiquitin ligase activity, and its 192th amino acid Cys is
closely related to its ubiquitination activity. Under exogenous

hormones treatments, overexpressing CsMIEL1 transgenic plants
showed a certain degree of resistance to salt stress and drought
stress and were hypersensitive to exogenous MeJA. But C192S
transgenic plants did not show the same response to these stresses
as CsMIEL1, and most were no different from wild-type.

The lack of understanding of the targets of MIEL1 limits
our understanding of the diversity of their responses to stress.
E3 ubiquitin ligases often function by interacting with their
target proteins. AtMYB30, acts as a positive regulator of the
hypersensitive cell death program in plants, and it can interact
with AtMIEL1 (Marino et al., 2019). Besides, AtMIEL1 can
also change the response to ABA by interacting with AtMYB96
(Lee and Seo, 2016). MdMYB308L is a known target gene
identified to interact with MIEL1. It positively regulates cold
tolerance and anthocyanin accumulation by interacting with
MdbHLH33 and enhancing its binding to MdCBF2 and MdDFR
promoters, while apple RING E3 ubiquitin ligase MdMIEL1
decreases the cold tolerance and anthocyanin accumulation
promoted by MdMYB308L and directly degrade MdMYB308L
(An et al., 2017). The response of CsMIEL1 overexpressing plants
to various stresses indicates the diversity of downstream target
proteins. Consequently, the selection of CsMIEL1-interacting
proteins is particularly critical for future research. In the previous
studies, MIEL1 has a negative regulatory effect on both salt and
drought stress, which is contrary to our results, while CsMIEL1’s
regulation of cold stress was similar to MIEL1 in apples. Because
E3s have a high selectivity for downstream proteins, we speculate
that the downstream target protein of CsMIEL1 may not be
homologous to the target protein reported in previous studies.
We also need a variety of other methods (such as yeast library
screening) to screen and identify the target protein.
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