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Light is a critical environmental stimulus for plants, serving as an energy source via
photosynthesis and a signal for developmental programming. Plants perceive light
through various light-responsive proteins, termed photoreceptors. Phytochromes are
red-light photoreceptors that are highly conserved across kingdoms. In the model
plant Arabidopsis thaliana, phytochrome B serves as a light and thermal sensor,
mediating physiological processes such as seedling germination and establishment,
hypocotyl growth, chlorophyll biogenesis, and flowering. In response to red light,
phytochromes convert to a biologically active form, translocating from the cytoplasm
into the nucleus and further compartmentalizes into subnuclear compartments
termed photobodies. PhyB photobodies regulate phytochrome-mediated signaling and
physiological outputs. However, photobody function, composition, and biogenesis
remain undefined since their discovery. Based on photobody cellular dynamics and
the properties of internal components, photobodies have been suggested to undergo
liquid-liquid phase separation, a process by which some membraneless compartments
form. Here, we explore photobodies as environmental sensors, examine the role of their
protein constituents, and outline the biophysical perspective that photobodies may be
undergoing liquid-liquid phase separation. Understanding the molecular, cellular, and
biophysical processes that shape how plants perceive light will help in engineering
improved sunlight capture and fitness of important crops.

Keywords: phytochrome, photobodies, biomolecular condensates, liquid–liquid phase separation, intrinsically
disordered protein

INTRODUCTION

Light is the most critical environmental stimulus for all plant development, serving as the energy
source for photosynthesis and as an environmental cue to regulate growth and development. Thus,
it is critical for plants to appropriately detect, coordinate, and respond to light cues for their
overall fitness and survival. To perceive light, plants have evolved different classes of photoreceptors
that absorb light wavelengths from the UV to far-red (380–735 nm wavelengths), including UV
RESISTANCE LOCUS 8 (UVR8), PHOTOTROPINS, CRYPTOCHROMES, LOV (Light, Oxygen,
Voltage)-KELCH DOMAIN containing F-box proteins, and PHYTOCHROMES (Butler et al.,
1959; Gressel, 1979; Kandori et al., 1992; Jansen et al., 1998; Briggs and Huala, 1999; Cashmore
et al., 1999; Lin, 2000; Nelson et al., 2000; Somers et al., 2000; Briggs et al., 2001; Jarillo et al., 2001;
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Kinoshita et al., 2001; Kagawa et al., 2001; Sakai et al., 2001;
Schultz et al., 2001; Briggs and Christie, 2002; Kasahara et al.,
2002; Lin, 2002; Frohnmeyer and Staiger, 2003; Imaizumi et al.,
2003; Kleine et al., 2003; Ulm and Nagy, 2005; Kaiserli and
Jenkins, 2007; Quail, 2010; Yu et al., 2010; Chaves et al., 2011;
Rizzini et al., 2011; Jenkins and Brown, 2018).

Phytochromes perceive red/far-red light (600–750 nm) and
regulate many aspects of plant development, including seed
germination, de-etiolation, gravitropism, flowering, circadian
rhythms, and senescence (Bae and Choi, 2008; Franklin and
Quail, 2010; Kami et al., 2010; Paik and Huq, 2019). In the
model plant Arabidopsis thaliana, phytochromes are a five-
member family, phyA-phyE (Jones and Quail, 1989; Somers et al.,
1991; Quail, 1991; López-Juez et al., 1992; Clack et al., 1994;
Mathews, 2010). PhyA is classified as light-labile and is the most
abundant phytochrome in etiolated seedlings, whereas phyB-E
are classified as light-stable (Clack et al., 1994; Nagy and Schäfer,
2002). PhyA is mainly responsible for sensing and responding
to far-red light, in addition to red light, whereas phyB-E are
responsible for photomorphogenesis in response to red light
and foliar shade (Whitelam et al., 1992; McCormac et al., 1993;
Nagatani et al., 1993; Parks and Quail, 1993; Whitelam et al.,
1993; Reed et al., 1994; Paik and Huq, 2019). Phytochrome A and
B have overlapping and distinct photosensory roles in seedling
development (Reed et al., 1994).

Phytochromes are dimeric chromoproteins, with each
monomer covalently attached to a light-absorbing linear
tetrapyrrole chromophore, phytochromobilin (Cornejo
et al., 1992; Terry et al., 1995). The protein domains in
plant phytochromes can be divided into two modules: the
chromophore-bearing, N-terminal photosensory module,
responsible for light perception and signaling, and the C-terminal
module that directs nuclear localization, dimerization, and
nuclear body formation (Rockwell et al., 2006; Nagatani, 2010).
Phytochromes exist in two stable conformers: a biologically
inactive red-light absorbing form (Pr) and a biologically active
far-red light-absorbing form (Pfr) (Rockwell et al., 2006; Bae
and Choi, 2008). The phytochrome holoprotein is assembled
in the cytosol in the inactive Pr conformation. Once converted
to Pfr in response to red light, phytochromes move from the
cytoplasm into the nucleus, where most signaling functions
occur (Sakamoto and Nagatani, 1996; Kircher et al., 1999, 2002;
Yamaguchi et al., 1999; Kim et al., 2000).

Phytochrome function is dependent on its localization in the
nucleus (Huq et al., 2003; Matsushita et al., 2003; Genoud et al.,
2008). Phytochrome A-E have differing mechanisms by which
they are transported to the nucleus. Of the phytochromes, phyA
nuclear localization is well characterized and is dependent on
FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-
LIKE (FHL) (Hiltbrunner et al., 2006; Genoud et al., 2008;
Helizon et al., 2018). FHY1 and FHL act as shuttle proteins,
binding to phyA-Pfr in the cytoplasm and transporting it to
the nucleus (Hiltbrunner et al., 2006; Genoud et al., 2008;
Rausenberger et al., 2010; Helizon et al., 2018). An NLS-like motif
in the C-terminal domain of phyB-E is sufficient for localizing
these phytochromes to the nucleus (Sakamoto and Nagatani,
1996; Chen et al., 2005), and the C-terminal module is necessary

for nuclear localization (Matsushita et al., 2003; Chen et al.,
2005). PHYTOCHROME INTERACTING FACTOR 3 (PIF3)
(Pfeiffer et al., 2012) and SUPPRESSOR OF PHYA-105 (SPA1)
(Zheng et al., 2013) have been shown to promote nuclear import
of phyB-Pfr. However, the transport mechanism remains to be
defined experimentally. PhyB nuclear localization may involve
complementary binding partners under varying light conditions.
Nuclear localization of phyC, phyD, and phyE remain the least
understood (Ádám et al., 2013; Klose et al., 2015b). Future
studies are required to define which proteins, if any, are not only
sufficient but necessary for transporting phyB-E.

Phytochrome signaling is responsive to temperature in
addition to light, since the Pfr form is thermally unstable.
Phytochromes undergo isomerization from the active Pfr form
to the inactive Pr state in a light-independent, temperature-
dependent process called dark or thermal reversion (Jung et al.,
2016; Legris et al., 2016). (For a review on phytochrome thermal
reversion, readers are pointed to Klose et al., 2020). Two studies
showed that phytochromes serve as temperature sensors through
their thermal reversion capability. Using genomic approaches,
Jung et al. demonstrated that phytochromes alter the Arabidopsis
transcriptome in response to warm temperatures (Jung et al.,
2016). Specifically, temperature affects phyB’s ability to bind
to target genes’ promoters and repress PIF4 activity. PIFs are
antagonists of phytochromes, promoting hypocotyl growth (Ni
et al., 1998; Oh et al., 2007; Shen et al., 2008; Lorrain et al.,
2009; Shin et al., 2009; Leivar and Quail, 2011). Additionally,
they showed that phyB’s dark reversion integrates temperature
signals during the night (Jung et al., 2016). Legris et al. (2016)
demonstrated in a complementary study – through genetics,
biochemical measurement of phyB Pfr:Pr isomerization, and
modeling approaches – that increased temperature reduces the
amount of phyB Pfr pool and strength of signaling. In addition,
a negative correlation was shown between temperature and
phyB activity. Overall, these two breakthrough studies concluded
that in addition to functioning as a light sensor, phyB is a
thermosensor in plants (Jung et al., 2016; Legris et al., 2016),
providing critical mechanistic insight into how plants perceive
warm temperatures. This insight shapes future research on light
signaling to mitigate the harmful effects of increasing global
temperature on agriculturally important crops.

A critical step in phytochrome signaling is the assembly
of active phytochrome Pfr into large (>500 nm) subnuclear
membraneless compartments termed photobodies (Yamaguchi
et al., 1999; Chen et al., 2003; Huang et al., 2016). Increasing the
intensity of red light, which stabilizes the Pfr form, promotes the
formation of large photobodies (Chen et al., 2003; Van Buskirk
et al., 2012). Conversely, conditions that revert Pfr to Pr, such as
far-red light, high temperature, or darkness, cause photobodies
to disassemble into many smaller foci and ultimately dissipate
within the nucleoplasm (Kircher et al., 1999; Yamaguchi et al.,
1999; Chen and Chory, 2011; Van Buskirk et al., 2012, 2014).
Photobody localization is conserved in dicots and monocots
(Kircher et al., 1999, 2002; Kim et al., 2000). Recent work supports
that photobodies are an essential cellular structure for phyB
signaling (Su and Lagarias, 2007; Chen et al., 2010; Kaiserli
et al., 2015; Huang et al., 2016, 2019; Enderle et al., 2017;

Frontiers in Plant Science | www.frontiersin.org 2 August 2021 | Volume 12 | Article 732947

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-732947 August 25, 2021 Time: 17:48 # 3

Pardi and Nusinow A New View of Photobodies

Qiu et al., 2017; Yang et al., 2019; Yoo C.Y. et al., 2019). There
are several hypothesized functions of photobodies, and multiple
proteins have been shown to colocalize with photobodies (Holm
et al., 2002; Bauer et al., 2004; Subramanian et al., 2004; Al-Sady
et al., 2006; Hiltbrunner et al., 2006; Jang et al., 2007; Yu et al.,
2008; Liu et al., 2011; Yan et al., 2011; Zuo et al., 2011; Van Buskirk
et al., 2012). However, photobody function, protein components,
and biogenesis are yet to be clearly defined.

Below, we explore the biological significance of photobodies
in Arabidopsis thaliana, how photobodies contribute to signaling
in fluctuating environments, protein components that promote
photobody formation, photobody biogenesis, how liquid–
liquid phase separation (LLPS) may underlie the biophysical
mechanism of assembly, and photobody functions. Lastly, we
discuss some of the many exciting directions for future research
on LLPS of photobodies.

DISCOVERY AND BIOLOGICAL
SIGNIFICANCE

Subnuclear structures of phytochrome were first observed in
1999 in transgenic plants overexpressing phyB-GFP (Yamaguchi
et al., 1999). Different nomenclature has been used throughout
the years to describe these subnuclear compartments: speckles,
foci, nuclear bodies, and ultimately photobodies. Using
immunoblotting and various microscopy tools, Yamaguchi
et al. reported the light-dependent subcellular distribution of
phyB-GFP. This fusion protein localized to the nucleus and
further compartmentalized into foci with a size of ∼1 µm. They
also observed a positive correlation between the duration of
red-light exposure and the size of the phyB-GFP photobody. The
authors compared these phyB nuclear bodies to promyelocytic
leukemia (PML) bodies, which are involved in RNA metabolism
and transcription regulation (Stuurman et al., 1990; Lallemand-
Breitenbach, 2010). This was the first description connecting
phyB photobodies to nuclear condensates found in other systems.
Since this fundamental study used a highly active Cauliflower
Mosaic Virus 35S promoter to express phyB-GFP, it was
suggested that the existence of these structures was merely due
to overexpression (Yamaguchi et al., 1999). However, electron
microscopy experiments using immuno-gold labeling of phyA
in Arabidopsis demonstrated that endogenous phytochromes
formed photobodies (Sheerin et al., 2015). Further work found
that all members of the phy family formed nuclear bodies at
differing rates in response to red and white light (Kircher et al.,
2002), suggesting that photobody localization was a regulated
process. Thus, the subnuclear assembly of phyB-GFP is presumed
to reflect endogenous phyB localization (Yamaguchi et al., 1999;
Gil et al., 2000; Kim et al., 2000; Kircher et al., 2002).

Even though these studies demonstrated that photobodies
are not artifacts of exogenous expression, their biological
importance remained in question. Matsushita et al. overexpressed
phyB’s N-terminal domain fused to a nuclear localization
sequence (NLS) and a dimerization domain (Matsushita
et al., 2003). They found that this phyB chimera did not
form photobodies but was sufficient for phyB signaling,

rescuing several phyB physiological responses in constant red-
light conditions (Matsushita et al., 2003). Thus, the authors
concluded that nuclear localization, not photobody formation,
was necessary for phyB signaling (Matsushita et al., 2003).
Furthermore, under low red-light conditions where phyB is
dispersed throughout the nucleoplasm rather than localized
to photobodies, plants show physiological responses reflecting
the presence of active phyB. Thus, nucleoplasmic phyB is
sufficient for signaling in these conditions (Parks and Quail,
1993; Wagner et al., 1996; Gil et al., 2000; Krall and Reed,
2000; Chen et al., 2003). It is possible that photobodies
may promote certain phyB functions but not others, or that
photobodies may act to enhance phyB activity through its
N-terminal module. In agreement with this, Chen et al.
(2003) proposed a model in which phyB is active both when
dispersed throughout the nucleoplasm and when localized to
photobodies, with different phyB mechanisms responding to
varying intensities of red light.

Although the studies above argue that photobodies are
dispensable, accumulating evidence supports the idea that
photobodies are essential for phyB signaling, as discussed below.
PhyB-GFP mutants that are nuclear-localized but do not form
nuclear bodies have impaired light signaling, demonstrating
a strong correlation between phyB biological activity and
compartmentalization into photobodies (Su and Lagarias, 2007;
Chen et al., 2010; Kaiserli et al., 2015; Huang et al., 2016, 2019;
Enderle et al., 2017; Qiu et al., 2017; Yang et al., 2019; Yoo C.Y.
et al., 2019). Although Matsushita et al. (2003) showed that
photobodies are dispensable in constant red light, a study by
Van Buskirk et al. (2014) demonstrated the role of photobodies
under more natural light/dark conditions. Using PhyB mutants, a
strong link was shown between photobodies and phyB regulated
processes after dusk. Specifically, the presence of photobodies
was highly correlated with hypocotyl elongation inhibition in
the dark and PIF3 degradation (Van Buskirk et al., 2014).
During the day, phytochromes promote photomorphogenesis
and inhibit hypocotyl elongation by repressing PIF activity
via proteasome-mediated degradation (Al-Sady et al., 2006;
Leivar et al., 2009; Shin et al., 2009; Leivar and Quail, 2011).
When photobodies disassemble, PIF3 is no longer repressed,
and hypocotyl growth is promoted (Van Buskirk et al., 2014).
In agreement, Qiu et al. (2017) demonstrated that expression
of phyB’s C-terminal module in stable transgenic lines forms
photobodies and is sufficient for degrading PIF3 and regulating a
subset of PIF-dependent genes. Challenging a previous model in
which phyB’s N-terminal module was responsible for PIF3’s light-
induced degradation, they demonstrated that PIF3’s degradation
is dependent on its interaction with the dimeric C-terminal
module (Shimizu-Sato et al., 2002; Oka et al., 2008; Kikis et al.,
2009; Leivar and Quail, 2011; Qiu et al., 2017). Additionally,
the significance of photobodies can be seen at the phenotypic
level, with phyB photobody localization patterns being tightly
correlated with the degree of hypocotyl elongation. Pfr, which
promotes the formation of large photobodies, produces a short
hypocotyl phenotype, whereas when photobodies are small or
dispersed in low red:far-red (R:FR) light, seedlings are taller
(Chen et al., 2003). Overall, there is growing acceptance that
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photobodies are essential for phyB responses (Kircher et al., 2002;
Chen et al., 2003; Oka et al., 2008).

PHOTOBODIES ARE IMPORTANT FOR
ENVIRONMENTAL SENSING AND
SIGNALING

Photobody formation is responsive to the external environment,
as is described below. They are found to be important for
light, circadian, and temperature signaling, potentially acting
as hubs connecting these signaling pathways and serving as
environmental sensors in plants (Kircher et al., 2002; Chen et al.,
2003; Huang et al., 2019; Hahm et al., 2020; Figure 1).

Light Signaling
Photobody formation responds to specific wavelengths and
intensities of light (Kircher et al., 1999; Yamaguchi et al., 1999;
Kim et al., 2000; Kircher et al., 2002; Chen et al., 2003).
The amount of phyB-Pfr to total phyB and the formation of
photobodies depends on the intensity of red light and the ratio of
R:FR. The size and distribution patterns of photobodies correlates
with the intensity of red light. As red light intensity increases
from 0.5 µmol·m−2

·sec−1 to 8 µmol·m−2
·sec−1, PhyB-GFP is

first evenly dispersed within the nucleoplasm, then hundreds of
small photobodies form, then large photobodies (∼1 µm) appear
along with the small photobodies, and finally, large photobodies
exclusively form within the nucleus. Thus, the increase in light
intensity in a dosage dependent manner and the resulting
photoconversion and nuclear localization of Pfr correlates with
the appearance of large photobodies (Chen et al., 2003). Within
minutes of initial light exposure, phyA and phyB rapidly assemble
into many small early ‘transient’ bodies, but after extended light

exposure, a few large ‘stable’ bodies form, mainly made up of
phyB (Casal et al., 2002; Kircher et al., 2002). These larger,
stable bodies are referred to as ‘photobodies,’ which are correlated
with functional phyA and phyB activity (Kircher et al., 1999,
2002; Yamaguchi et al., 1999; Kim et al., 2000). Under red light,
PIF3 transiently colocalizes with these early phyB photobodies,
where it then gets degraded in a light-dependent manner (Bauer
et al., 2004). In the biogenesis of photobodies, it is likely that
early transient bodies merge into the larger stable photobodies.
Overall, the amount of phyB-Pfr to total phyB, controlled by
red light, has to surpass a critical threshold to form photobodies
(Chen et al., 2003).

Changing R:FR ratios, responsible for shade avoidance
responses, has the same effect on photobody formation as
light intensity (Casal et al., 2002; Chen et al., 2003; Trupkin
et al., 2014). Low R:FR reduces phyB-Pfr to total phyB, which
reduces the number of large photobodies and leads to the
formation of many small photobodies (Trupkin et al., 2014).
This pattern is reversible—when plants are transferred back from
either low to high irradiance or R:FR, large photobodies form,
demonstrating their dynamic behavior (Trupkin et al., 2014).
Overall, these nuclear bodies may potentially act as light sensors,
forming and dissipating in response to specific wavelengths and
intensities of light.

Circadian Regulation
The circadian clock may regulate photobody dynamics. In
agreement with being light-responsive, photobody accumulation
increases over the day (Kircher et al., 2002). Surprisingly, when
grown under short-day conditions (8 h light:16 h dark), phyA,
phyB, phyC, and phyE-GFP nuclear body number increased
significantly before dawn in anticipation of the subjective light
period (Kircher et al., 2002). Based on these findings, it was

FIGURE 1 | Plant nuclear bodies coordinate environmental input with physiological responses. Phytochrome B photobodies (red), TZP (purple), CRY (blue), and
ELF3 (pink) bodies, perceive different environmental stimuli. Phytochrome photobodies and TZP both respond to red light, whereas CRY bodies respond to blue
light. TZP integrates red and blue light signaling. PhyB photobodies and ELF3 bodies are sensitive to temperature cues. Phy, TZP, CRY, and ELF3 bodies sense
circadian clock input signals. The components of these nuclear bodies transduce environmental signals to diverse physiological outputs, represented by the colored
dots adjacent to the developmental process. Overall, these plant nuclear bodies act as environmental sensors.
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concluded that photobodies are modulated by the circadian
clock (Kircher et al., 2002). However, it remains unclear what
mechanism allows for the circadian-regulated dispersal and
reassembly of phy-Pfr photobodies.

In addition to being regulated by the clock, phytochromes
also signal into the plant circadian clock (Somers et al.,
1998; Martínez-García et al., 2000; Hu et al., 2013). A recent
study demonstrated that photobodies are important for
the entrainment of the circadian clock oscillator (Huang
et al., 2019). This study utilized the phyB constitutively
active mutant phyBY276H (YHB) to specifically activate phyB
signaling while keeping other photoreceptors turned off in
the dark (Hu et al., 2009). YHB is sufficient for maintaining
circadian oscillations of a Luciferase reporter under darkness,
a condition that typically leads to dampening of clock rhythms
in wild-type plants (Jones, 2009). When YHB is present in
a mutant background that prevents photobody formation,
YHB’s constitutively photomorphogenic phenotype and
light input into the circadian clock are abolished (Huang
et al., 2019). Specifically, this line without photobodies
could not sustain circadian rhythms in constant darkness,
even though the YHB allele locked phyB in its active state
(Huang et al., 2019). Together, these studies demonstrate that
photobody dynamics are both an input and output of the plant
circadian clock.

Temperature Perception
Not only do photobodies sense light and circadian cues,
photobodies also act as temperature sensors through phyB’s
thermal reversion ability (Jung et al., 2016; Legris et al., 2016).
Thermal reversion causes the pool of Pfr to be reduced in
warmer temperatures and thus decreases the size of photobodies
(Legris et al., 2016). In response to temperature, photobodies
within a nucleus can vary in localization patterns, stabilities,
and tissue-specific dynamics (Hahm et al., 2020). Individual
photobodies have distinct thermostabilities; in response to warm
temperatures, thermosensitive photobodies rapidly disassemble,
while thermo-insensitive photobodies remain unaltered (Hahm
et al., 2020). Hahm et al. (2020) also found that some photobodies
are located adjacent to the nucleolus, termed nucleolar associated
photobodies, while others were found distributed throughout
the nucleus, termed non-nucleolar associated photobodies.
The non-nucleolar associated photobodies were found to be
thermosensitive, while the nucleolar associated photobodies
were thermo-insensitive, suggesting a connection between
thermostability and photobody position within the nucleus
(Hahm et al., 2020). Another recent study provided evidence that
increasing temperatures decreases the size of photobodies during
the night, and that phyB can transfer night-time temperature
information to influence the next day’s hypocotyl growth
(Murcia et al., 2020). Lastly, genetic evidence demonstrated
that the hypocotyl growth of Arabidopsis lacking photobodies
was hypersensitive to high temperature under long days,
suggesting photobodies affect thermoresponsiveness (Huang
et al., 2019). These studies provide strong evidence that
photobody assembly and disassembly are highly responsive to
fluctuating temperatures. In sum, photobodies are important

for sensing and responding to diverse environmental cues,
particularly light, circadian, and temperature signals (Figure 1).

PROTEIN COMPONENTS REGULATING
PHOTOBODY FORMATION

There are multiple protein components thought to make up
photobodies, many of which are involved in light signaling
through gene regulation or proteolysis (Holm et al., 2002;
Bauer et al., 2004; Subramanian et al., 2004; Al-Sady et al.,
2006; Hiltbrunner et al., 2006; Jang et al., 2007; Yu et al.,
2008; Liu et al., 2011; Yan et al., 2011; Zuo et al., 2011; Van
Buskirk et al., 2012). However, the term ‘photobody’ does not
necessarily encompass all the various potential components into
a single entity. There are likely distinct nuclear bodies forming
in response to different environmental stimuli. While many
proteins colocalize to photobodies, thus far, there are only a few
that are shown to regulate phyB-photobody formation.

HEMERA (HMR), also known as pTAC12, is involved in
proteolysis and transcription and was the first protein component
to be identified as essential for photobody formation (Chen
et al., 2010; Nevarez et al., 2017). The hmr mutant has an albino
and long hypocotyl phenotype, indicating its involvement in
chloroplast biogenesis and red light signaling. Ultimately, HMR
couples nuclear and chloroplastic gene expression (Chen et al.,
2010). HMR localizes in chloroplasts, functioning as an essential
plastid-encoded plastid RNA polymerase (PEP) component and
as an activator of PEP-mediated plastid-encoded photosynthetic
genes. HMR then relocates into the nucleus where it modulates
phy-PIF signaling (Pfalz et al., 2006; Chen et al., 2010; Steiner
et al., 2011; Nevarez et al., 2017). The hmr mutant displays phyB
photobodies that are either smaller in size or phyB-GFP dispersed
throughout the nucleoplasm, demonstrating that HMR promotes
phyB photobody formation (Chen et al., 2010). HMR is not
only essential for photobody formation but is also required for
phyA, PIF1, and PIF3 degradation (Chen et al., 2010; Galvão
et al., 2012). The binding of phyB Pfr with HMR promotes
the accumulation of HMR protein, which is required for PIF3
degradation in the dark (Galvão et al., 2012). In addition to
mediating PIF1 and PIF3 protein degradation, HMR alters PIFs
regulation of target genes (Galvão et al., 2012). Specifically,
HMR directly interacts with PIF1 and PIF3 as a transcriptional
coactivator to regulate a class of PIF target genes (Qiu et al.,
2015). These studies propose that photobodies are sites for
proteasomal degradation and provide evidence that supports
the tight correlation between photobody formation and phyB
function (Chen et al., 2010).

The second protein identified as essential for phyB
photobody formation was PHOTOPERIODIC CONTROL OF
HYPOCOTYL 1 (PCH1). PCH1 and its homolog PCH1-LIKE
(PCHL) directly bind to phyB, phyD, and phyE, preferentially
interacting with the Pfr form (Huang et al., 2016; Enderle et al.,
2017). Under short-day conditions, pch1 Arabidopsis seedlings
have an elongated hypocotyl phenotype, similar to phyB’s
elongated hypocotyl phenotype (Huang et al., 2016). PCH1 and
PCHL inhibit and slow phyB thermal reversion in vivo and

Frontiers in Plant Science | www.frontiersin.org 5 August 2021 | Volume 12 | Article 732947

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-732947 August 25, 2021 Time: 17:48 # 6

Pardi and Nusinow A New View of Photobodies

in vitro, stabilizing phyB-Pfr (Enderle et al., 2017; Huang et al.,
2019). The constitutively active phyB mutant, YHB, showed that
PCH1 is essential for phyB photobody formation and serves as
a structural component in vivo (Huang et al., 2019). While the
overexpression of PCHL increases photobody formation, PCHL
is not required for photobody formation. In the pch1 phyB-GFP
mutant, either one photobody is formed or phyB-GFP signal is
dispersed within the nucleus. Both HMR and PCH1 are involved
in temperature sensing, with HMR being required for phyB
daytime temperature sensing through PIF4 (Huang et al., 2019;
Qiu et al., 2019). Affinity Purification Mass Spectrometry (AP-
MS) data of PCH1 protein interactions shows an overlap of PCH1
interacting partners with other photobody components, such as
phyA-E, CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1),
SPA1, EARLY FLOWERING 3 (ELF3), and TANDEM ZINC-
FINGER PLUS3 (TZP), suggesting PCH1 and PCH1-interacting
proteins are bona fide photobody components (Huang et al.,
2016). Interestingly, PCH1 co-immunoprecipitation data
did not identify HMR as an interacting partner, suggesting
PCH1-mediated phyB photobodies may be distinct from
HMR-mediated phyB photobodies (Huang et al., 2016).

In two recent studies, the paralogs REGULATOR OF
CHLOROPLAST BIOGENESIS (RCB) and NUCLEAR
CONTROL OF PEP ACTIVITY (NCP) were identified in a
forward genetic screen as plastid and nuclear-localized proteins,
similar to HMR. Importantly, they were shown to regulate
phyB photobody biogenesis (Yang et al., 2019; Yoo C.Y. et al.,
2019). Similar to HMR, RCB, and NCP first localize to plastids,
then translocate to the nucleus where they participate in
phyB signaling. Furthermore, RCB and NCP also promote the
formation of large photobodies and the degradation of PIF1
and PIF3 in the nucleus (Yoo C.Y. et al., 2019). Similar to hmr
phyB-GFP, the rcb phyB-GFP and the ncp phyB-GFP mutants
cannot assemble into large photobodies, but instead form many
smaller nuclear bodies (Yang et al., 2019; Yoo C.Y. et al., 2019).
RCB is involved in the same phyB pathway as HMR, binds to Pfr
and Pr of phyA and phyB, and modulates chloroplast biogenesis
via PIF degradation (Yoo C.Y. et al., 2019). While NCP plays
an essential role in chloroplast biogenesis by regulating PEP
assembly, RCB is not required for chloroplast biogenesis (Yang
et al., 2019). These two studies proposed a model which connects
phyB photobody biogenesis in the nucleus to plastid anterograde
signaling, ultimately connecting photomorphogenesis with
de-etiolation (Yang et al., 2019; Yoo C.Y. et al., 2019). The
functions of photobody components support the importance of
photobodies in phy-PIF mediated physiological responses.

In addition to phytochromes forming nuclear bodies, some
phytochrome interacting proteins are sufficient for forming
nuclear bodies. One example is TZP, which forms nuclear
bodies in a red light and phyB-dependent manner (Kaiserli
et al., 2015; Figure 1). These TZP-phyB bodies are dynamic,
diurnally regulated, and associate with RNA (Kaiserli et al.,
2015). TZP’s association with RNA infers that these bodies
may be involved in RNA metabolism, a function of many
nuclear bodies that contain RNA binding proteins (reviewed
in Sabari et al., 2020). Interestingly, TZP-phyB bodies do not
colocalize with HMR (Kaiserli et al., 2015). Thus, similar

to HMR-phyB photobodies being distinct from PCH1-phyB
photobodies, HMR-phyB photobodies may be separate from
TZP-phyB photobodies.

Circadian clock proteins, such as ELF3 and GIGANTEA
(GI), and proteins involved in light signaling, such as
CRYPTOCHROME 1 (CRY1), CRY2, and E3 ubiquitin ligase
COP1, also form nuclear bodies (Ang et al., 1998; Wang et al.,
2001; Yu et al., 2009; Kim et al., 2013; Figure 1). ELF3, a member
of the Arabidopsis EVENING COMPLEX and interactor of phyB,
transmits light and temperature signals to the circadian clock,
potentially through its ability to form nuclear bodies (Jung et al.,
2020). ELF3 nuclear bodies colocalize with TZP, suggesting their
connection in circadian signaling (Kaiserli et al., 2015). CRY1
and CRY2 form nuclear bodies in response to blue light intensity
(Yu et al., 2009; Gu et al., 2012; Figure 1). For further reading on
other examples of plant nuclear bodies, readers are pointed to the
following excellent reviews (Ronald and Davis, 2019; Emenecker
et al., 2020; Meyer, 2020). Based on their protein components,
phyB photobodies, and other nuclear bodies, may have both
shared and distinct functions.

PHOTOBODY BIOGENESIS

Another long-standing question is the mechanism by which
photobodies form. However, studies directly testing photobody
biogenesis are limited. Thus far, synthetic biology and
mathematical modeling have been the main approaches
taken in elucidating their association.

The first study to assess how photobodies form utilized
a nucleolus-tethering system (NoTS) (Liu et al., 2014). They
designed their NoTS based on the bacterial LacO/LacI tethering
system used previously to study nuclear body assembly in
mammalian cells (Kaiser et al., 2008; Mao et al., 2011; Shevtsov
and Dundr, 2011; Dundr, 2013). The NoTS artificially tethers a
protein of interest to the nucleolus by fusion with a nucleolus
marker protein (Liu et al., 2014). This allows the visualization of
components localizing to and initiating nuclear body formation
(Liu et al., 2014). They showed that these tethered photobodies
are functional and found that the efficiency of phyB to initiate
photobody formation was lower than that of other proteins,
such as COP1, CRY1, and CRY2 (Liu et al., 2014). The lower
efficiency of phyB to initiate assembly suggests that other factors
assist phyB in photobody formation (Chen et al., 2010; Huang
et al., 2019; Yang et al., 2019; Yoo C.Y. et al., 2019). Overall,
this study concluded that since multiple photobody-localized
proteins are sufficient to form nuclear bodies, photobodies form
via self-organization (Liu et al., 2014).

Mathematical modeling has been another approach in
understanding how photobodies form. Previous studies used
mathematical modeling to assess the effect of phyB-Pfr
conformation and dimerization on photobody association and
dissolution (Rausenberger et al., 2010; Klose et al., 2015a).
One study used mathematical modeling and statistical physics
to understand the mechanism of phyB photobody biogenesis
(Grima et al., 2018). Although their model assumed that
photobodies are solely made up of phyB dimers, which is not the
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case in vivo (Van Buskirk et al., 2012), their calculations suggested
that the kinetics of building photobodies could not simply reflect
the assembly phyB dimers (Grima et al., 2018). Therefore, they
reasoned that photobody formation consists of two steps: a fast
nucleation step in which phyB aggregates or binds to other
proteins, followed by a slower step of more complex binding.
Grima et al. (2018) also suggested that photobodies may be
hollow, which has since been supported by microscopy evidence
(Perrella et al., 2021). In this case, phyB may bind to a structural
component, also referred to as a seed component, to initiate
formation (Mao et al., 2011; Shevtsov and Dundr, 2011; Figure 2).
Since phytochromes homodimerize and heterodimerize with
each other (Sharrock and Clack, 2004), phyB may first form
small aggregates, followed by the slower process of more complex
associations with other proteins and or nucleic acids (Figure 2).
Although there are a few studies on photobody formation
utilizing synthetic biology and mathematical modeling, another
approach to study this cellular process may be through the
lens of biophysics.

PHOTOBODIES MAY UNDERGO
LIQUID–LIQUID PHASE SEPARATION

Photobodies have been described as plant-specific biomolecular
condensates (Cuevas-Velazquez and Dinneny, 2018; Emenecker
et al., 2020). Biomolecular condensates are subcellular,
membraneless compartments that concentrate biomolecules,
such as proteins and nucleic acids, to organize cellular processes
(Spector, 2006; Banani et al., 2017). Although terminology varies
for these membraneless compartments, biomolecular condensate
is a general term to describe the assembly of biomolecules,
regardless of material properties or function (Banani et al.,
2017). Many examples connect biomolecular condensates to
neurodegenerative diseases, such as Alzheimer’s, amyotrophic
lateral sclerosis (ALS), Huntington’s, and certain cancers
(Spannl et al., 2019). Thus, understanding their biogenesis is

FIGURE 2 | A potential mechanism of photobody biogenesis via nucleation
and ultimately through liquid-liquid phase separation. Illustration of (1) inactive
phytochrome (Pr) converting to active phytochrome (Pfr) and traveling into the
nucleus, (2) nucleation of Pfr, (3) Pfr accumulating around an unknown core
structural component or ‘seed,’ and (4) localizing into a single photobody.
Phytochrome photobodies may be undergoing an initial nucleation step,
which can initiate protein phase transitions, followed by more complex
molecular interactions with other proteins (orange and green spheres) and
nucleic acids (yellow curved lines).

of significance in the medical field. Studies on the assembly of
biomolecular condensates in fungal and mammalian systems are
extensive but are less developed in plant systems.

A biophysical process by which condensates can form is
through LLPS (Hyman et al., 2014). LLPS is the biophysical
process by which two distinct liquid phases are formed, or
demixed, into a dense phase and a less dense phase (Boeynaems
et al., 2018; Posey et al., 2018; Gomes and Shorter, 2019; Figure 3).
The key characteristics of condensates undergoing LLPS are that
they display liquid-like properties: they are spherical, can fuse
and relax like liquid droplets, and are dynamic – able to rapidly
exchange with the surrounding cellular environment (Alberti
et al., 2019). Previous fluorescence recovery after photobleaching
(FRAP) experiments on phyB-YFP demonstrate that phyB
photobodies are, in fact, dynamic (Rausenberger et al., 2010).
Biomolecular condensates do not necessarily need to be liquid-
like, they can be gel-like or take on a solid material state
depending on the properties of the resident molecules.

Proteins that promote phase separation are typically
multivalent and frequently contain intrinsically disordered
regions (IDRs) or prion-like domains (Figure 4; Banani
et al., 2017). Multivalent molecules can undergo inter- or
intra- molecular interactions, binding to multiple partners
simultaneously (Harmon et al., 2017). It is important to note that
multivalent interactions drive phase separation, not necessarily
intrinsically disordered proteins (IDPs) (Martin and Holehouse,
2020). Phytochrome’s N-terminal extension (NTE) contains a
predicted IDR, which may promote their condensation into
photobodies (Burgie et al., 2021). Several proteins that colocalize
to phyB photobodies are predicted to contain prion-like domains
or IDRs, such as ELF3 and HY5 (Covarrubias et al., 2017;
Cuevas-Velazquez and Dinneny, 2018; Jung et al., 2020).
Proteins with IDRs in plant cells seem to play a role in different
mechanisms underlying responses to environmental stimuli
(Covarrubias et al., 2017).

The presence and concentration of key protein components
contribute to the phase separation of condensates. As the
abundance of nuclear Pfr increases with increasing red light
intensity in a dosage dependent manner, large photobodies form,
thus red light may promote the phase separation of photobodies
in vivo (Figure 3). Conversely, as warm temperatures lead to
the thermal reversion of Pfr back to Pr and the dissipation of
photobodies, temperature may also regulate the phase separation
of photobodies in vivo (Figure 3). Models that have been used
to describe biomolecular condensate formation are the “stickers
and spacers” model and the “scaffold and client” model (Semenov
and Rubinstein, 1998; Banani et al., 2017; Posey et al., 2018;
Wang A. et al., 2018; Holehouse, 2019). In the former model,
stickers are portions of an amino acid sequence that promote
intermolecular interactions, while the spacers are regions that are
inert in promoting interactions (Wang A. et al., 2018). In the later
model, scaffold proteins are necessary for condensate formation
to occur, whereas client proteins localize to the condensate but
are not necessary or sufficient for formation (Banani et al., 2017).
In the context of photobodies, it may be helpful to think of
HMR, PCH1, RCB, or NPC as ‘scaffold’ proteins, as they are
essential for proper photobody formation (Figure 3). In contrast,
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FIGURE 3 | Phytochrome photobodies are a controllable system for studying factors that influence liquid-liquid phase separation in vivo. Within Arabidopsis nuclei
(ovals), active phytochrome can transition from a single diffuse phase throughout the nucleoplasm (1) into two distinct phases: one with a low concentration that is
evenly distributed throughout the system and a denser phase that takes the shape of liquid droplets, or photobodies (2), and finally into large photobodies (3). Green
represents nuclear phy-Pfr, and the green circles represent phytochrome photobodies. Environmental and cellular factors influence the formation and dissipation of
phytochrome photobodies. Increasing red-light intensity and the concentration of presumptive scaffold proteins, such as HMR, PCH1, RCB, and NCP, promote the
formation of photobodies. Conversely, warm temperatures and low red:far-red ratios under foliar shade conditions promote the dissipation of photobodies.

FIGURE 4 | Phytochrome photobodies may share features associated with other nuclear biomolecular condensates. Illustration of active phytochrome (Pfr) within a
single photobody (green sphere). Factors that promote nuclear condensate formation via liquid-liquid phase separation, including protein–protein interactions,
protein–nucleic acid interactions, and posttranslational modifications, may also function in photobodies. (Top left) Phytochrome photobodies may contain nucleic
acids, as demonstrated by the co-localization of RNA with TZP-phyB nuclear bodies. (Top right) Phytochromes undergo posttranslational modifications such as
SUMOylation, phosphorylation, and polyubiquination. Phytochromes target PIFs for phosphorylation and polyubiquitination. (Bottom left) Multivalent molecules, such
as intrinsically disordered proteins (curved lines), may promote photobody formation.

the proteins that are shown to colocalize but are not necessary
for formation may be thought of as ‘clients’. Other factors, such
as pH, temperature, salinity, and environmental factors, also
contribute to phase separation and formation of condensates
(Yoo H. et al., 2019).

In addition, posttranslational modifications, such as
SUMOylation, phosphorylation, and ubiquitination, are
found to be associated with condensate formation or dissolution
(reviewed in Owen and Shewmaker, 2019). Phytochromes
are SUMOylated, phosphorylated, and ubiquitinated (Quail
et al., 1978; Kim et al., 2004; Jang et al., 2010; Sadanandom
et al., 2015; Figure 4). SUMOylation is shown to modulate
far-red light-induced phyA signaling (Qu et al., 2020). PhyB is
SUMOylated at its C-terminal module, which is enhanced by

red light (Sadanandom et al., 2015). Since phyB’s C-terminal
module is required for photobody formation, there may be a
potential connection between this posttranslational modification
and photobodies. (For a review on plant SUMOylation, readers
are pointed to reviews by Augustine and Vierstra, 2018;
Srivastava et al., 2021). Phosphorylation of phytochromes at
serine residues attenuates light signaling and interrupts protein-
protein interactions with downstream partners (reviewed
in Hoang et al., 2019). For example, phosphorylation of
phyBSer86 accelerates its thermal reversion and inhibits binding
with PIF3 (Medzihradszky et al., 2013). The reversion of
Pfr back to Pr in thermal reversion leads to the disassembly
of photobodies; therefore, phyB’s phosphorylation may be
connected to photobody disassembly. Furthermore, nuclear
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phytochrome is targeted for polyubiquitination by COP1 in a
red light and PIF mediated manner (Jang et al., 2010). Like other
biomolecular condensates, the posttranslational modifications
of phytochromes or binding partners could potentially be
associated with photobody formation or dissipation (Figure 4).

Biomolecular condensates undergoing LLPS is an emerging
topic in the plant field, and there are a growing number of
studies on plant biomolecular condensates demonstrating LLPS
(Fang et al., 2019; Powers et al., 2019; Dorone et al., 2020;
Jung et al., 2020; Ouyang et al., 2020; Zavaliev et al., 2020;
Huang et al., 2021). One of these recent findings was on a
phyB interacting protein, ELF3, demonstrating that ELF3 nuclear
bodies form via LLPS (Jung et al., 2020). Through biochemical
and phenotypic analysis, Jung et al. (2020) demonstrated that the
Arabidopsis ELF3 prion-like domain is necessary and sufficient
for its temperature responsive phase separating ability in vivo
and in vitro. ELF3’s prion-like domain was shown to regulate
thermoresponsive binding of ELF3 to target genes and flowering
time (Jung et al., 2020). LLPS may be the mode by which ELF3
connects temperature signals with the circadian clock (Jung
et al., 2020; Wilkinson and Strader, 2020). The field is just
beginning to understand how plant biomolecular condensates
form. Overall, there is a whole realm of exciting questions
awaiting to be answered regarding the formation process of plant
biomolecular condensates.

PHOTOBODY FUNCTIONS

The functions of nuclear condensates include, but are
not limited to, protein/nucleic acid sequestration, protein
ubiquitination, transcription regulation, RNA processing, and
organizing genome structure (Sabari et al., 2020). To date,
the function of photobodies has yet to be clearly defined.
However, their hypothesized functions overlap with functions
associated with other nuclear condensates, including protein
storage, proteolysis, protein sequestration, and gene regulation
(Van Buskirk et al., 2012).

The first hypothesized function is that nuclear bodies act as
storage sites to stabilize Pfr and prevent phyB from reverting
back to Pr (Rausenberger et al., 2010; Van Buskirk et al., 2014).
In agreement with this, PCH1, one of the essential components
of photobodies, stabilizes phyB-Pfr, slowing its thermal reversion
rate and stabilizing phyB photobodies in the dark (Huang et al.,
2016, 2019; Enderle et al., 2017). It is likely that being a storage
center for active phyB is not the only role that photobodies play.

There is a strong line of evidence for the second hypothesized
function that photobodies are sites for protein degradation.
HMR is an essential component of photobodies and is critical
for phyA, PIF1, and PIF3 degradation (Chen et al., 2010;
Galvão et al., 2012). Light induces phyA and phyB’s negative
regulation of PIFs through phosphorylation, polyubiquitination,
and 26S proteasomal degradation, possibly within nuclear
bodies (Al-Sady et al., 2006; Lorrain et al., 2008; Dong et al.,
2017). Conversely, PIF3 promotes the degradation of phyB
(Ni et al., 2013). Light-Response-Bric-a-Brack/Tamtrack/Broad
(LRB1/2/3) promotes the polyubiquitination of phyB and PIF3 in

a light-dependent manner (Christians et al., 2012; Ni et al., 2014).
PIF3 enhances LRB2 binding to phyB-Pfr, which is required
for proteasome-mediated phyB protein degradation (Christians
et al., 2012). This negative regulatory mechanism was termed
the mutually assured destruction model. In this model, phyB
stimulates the phosphorylation of PIF3, promoting the binding
to LRBs, which leads to the polyubiquitination of both phyB and
PIF3, targeting them for 26S proteasomal degradation in a light-
dependent manner (Ni et al., 2014). This bidirectional feedback
loop of PIF3 and phyB proteolysis may occur within photobodies
since their co-localization into early bodies is associated with
PIF3 degradation (Bauer et al., 2004). Similarly, blue light-
induced CRY2 nuclear bodies are involved in degradation via
its association with the 26S proteasome (Shalitin et al., 2003;
Yu et al., 2007, Yu et al., 2010; Wang et al., 2015; Liu et al.,
2017). Overall, these light-mediated nuclear bodies may be sites
for proteasomal degradation in light signaling.

A third hypothesized function of photobodies is to sequester
proteins to modulate signaling. PhyA and phyB colocalize with
SPA1 into nuclear bodies, which are important for the phyA-
SPA1 interaction (Lu et al., 2015). Light activation of phyA
nuclear bodies prevents COP1-SPA1-mediated degradation of
LONG HYPOCOTYL IN FAR-RED 1 (HFR1), a promoter of
photomorphogenesis (Sheerin et al., 2015). Similar to phyA
bodies and their ability to block COP1-SPA1 activity, CRY1
co-localizes and directly interacts with SPA1 in CRY-bodies,
attenuating the COP1-SPA1 interaction and negatively regulating
COP1, albeit in a blue light-dependent manner (Lian et al., 2011;
Zuo et al., 2011).

Lastly, there is evidence that photobodies may be involved in
gene regulation. PhyB has been shown to regulate transcription,
alternative splicing, and alternative promoter selection to mediate
light responses, which could take place within photobodies
(Shikata et al., 2014; Ushijima et al., 2017; Dong et al.,
2020). Splicing factors, transcription factors, and transcriptional
regulators are shown to colocalize to phyB-photobodies,
suggesting a potential overlap of transcriptional and post-
transcriptional regulation within these subnuclear compartments
(Van Buskirk et al., 2012; Xin et al., 2017). One compelling
example of photobodies demonstrating transcriptional activity
are TZP-phyB bodies. TZP-phyB nuclear bodies are shown to
serve as sites of active transcription, activating gene expression
to promote flowering (Kaiserli et al., 2015). TZP is an
RNA binding protein, and TZP-phyB bodies are shown to
associate with RNA (Kaiserli et al., 2015; Figure 4). There are
many examples of biomolecular condensates associating with
nucleic acids, particularly RNA, such as paraspeckles and P
granules (reviewed in Roden and Gladfelter, 2021). Since many
condensates containing RNA binding proteins are involved in
RNA processing, TZP bodies may also be involved in RNA
metabolism. Similarly, blue light-induced CRY nuclear bodies are
associated with transcription regulation (Wang Q. et al., 2018).

As there is supporting evidence for all hypothesized functions,
including sites for storage, proteolysis, protein sequestration,
and transcription regulation, photobodies likely have multiple
functions within the cell to shape plant responses to various
environmental stimuli.
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RESEARCH DIRECTIONS AND
OUTSTANDING QUESTIONS

There has been a recent explosion of excitement and interest
in biomolecular condensates across kingdoms. The idea that
photobodies may be undergoing LLPS is not new (Cuevas-
Velazquez and Dinneny, 2018). However, the idea that phase
separation of biomolecular condensates connects cellular
signaling in plants with the external environment is novel.

Phytochrome photobodies may serve as a controllable system
to study LLPS in vivo and in vitro through its reversible
formation and dissipation in response to environmental and
cellular factors (Figure 3). Optogenetic tools use light to
tightly control molecular and cellular signaling (Taslimi et al.,
2014; Dine and Toettcher, 2018; Goglia and Toettcher, 2019).
A recent optogenetic tool named OptoDropletTFs uses the
Arabidopsis photoreceptors CRY2 or phyB, through their light-
induced oligomerization, as a molecular switch to induce
LLPS (Schneider et al., 2021). Through the red light-inducible
phyB-PIF6 interaction, this study made a phytochrome-based
OptoDropletTF system by creating a phyB-IDR fusion protein to
significantly increase transcriptional output via LLPS (Schneider
et al., 2021). IDR-mediated phase separation may be a common
mechanism in regulating transcription (Boija et al., 2018).
As phyA, phyB, and PIFs are recruited to promoters to
regulate transcription, LLPS may be occurring via the formation
of photobodies to enhance these gene regulatory processes
(Chen et al., 2010; Guo et al., 2012; Pfeiffer et al., 2012;
Jung et al., 2016; Brodsky et al., 2020). Overall, photobodies
may provide a useful system in studying LLPS to regulate
cellular processes.

Photobody function, composition, and biogenesis have yet to
be clearly defined since their discovery in 1999. Photobodies
may be central points for regulating, organizing, and tightly
coordinating the complex interception of phytochrome-mediated
processes: photomorphogenesis, de-etiolation, flowering, etc.
There is likely not just a single type of ‘photobody’, but
rather numerous nuclear bodies that organize the complex
overlapping of light, temperature, and circadian signaling
pathways. Investigating the molecular, cellular, and biophysical
properties that lead to the formation of these nuclear condensates
will provide great insight into a potentially conserved mechanism
by which nuclear condensates form. A combination of
high-resolution microscopy, proteomic, genomic, structural,
computational, and biophysical approaches will begin to answer
questions such as: How do phytochrome photobodies form?
What is their function? What is their composition? And can they

be manipulated to improve crop fitness? It will be very exciting to
see what new information is discovered in the coming years.

There are boundless avenues for future research to further
explore and characterize photobody biomolecular condensates
through the lens of LLPS. Below are questions and topics that will
be of interest:

• How can our understanding of photobodies and their role
as environmental sensors be used to improve crops through
altering shade, temperature, and daylength sensitivity?

• Are there multiple different types of photobodies present
simultaneously in a single nucleus?

• Is there a physical interaction between nucleolar associated
photobodies and the nucleolus?

• Do nucleolar associated photobodies share commonalities
with Cajal bodies, which frequently associate with the
nucleolus (Monneron and Bernhard, 1969; Trinkle-
Mulcahy and Sleeman, 2017)?

• Does LLPS occur in vivo during phyB and PIF transcription
regulation?

• Are there other nuclear bodies that associate with nucleic
acids? If so, are target genomic loci recruited to photobodies
for transcription?

• Are posttranslational modifications associated with
photobody formation or dissipation?

• Can the effects of photobodies seen so far be recapitulated
with phyB expression at endogenous levels?
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