
fpls-12-730181 December 14, 2021 Time: 13:49 # 1

ORIGINAL RESEARCH
published: 20 December 2021

doi: 10.3389/fpls.2021.730181

Edited by:
Wenting Han,

Northwest A&F University, China

Reviewed by:
Jibo Yue,

Henan Agricultural University, China
Shouyang Liu,

Nanjing Agricultural University, China
Awais Rasheed,

Quaid-i-Azam University, Pakistan

*Correspondence:
Zhen Chen

chenzhen@caas.cn
Yonggui Xiao

xiaoyonggui@caas.cn

Specialty section:
This article was submitted to

Technical Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

Received: 24 June 2021
Accepted: 08 November 2021
Published: 20 December 2021

Citation:
Fei S, Hassan MA, Ma Y, Shu M,

Cheng Q, Li Z, Chen Z and Xiao Y
(2021) Entropy Weight Ensemble

Framework for Yield Prediction
of Winter Wheat Under Different
Water Stress Treatments Using

Unmanned Aerial Vehicle-Based
Multispectral and Thermal Data.

Front. Plant Sci. 12:730181.
doi: 10.3389/fpls.2021.730181

Entropy Weight Ensemble
Framework for Yield Prediction of
Winter Wheat Under Different Water
Stress Treatments Using Unmanned
Aerial Vehicle-Based Multispectral
and Thermal Data
Shuaipeng Fei1,2,3, Muhammad Adeel Hassan2,4, Yuntao Ma3, Meiyan Shu3, Qian Cheng1,
Zongpeng Li1, Zhen Chen1* and Yonggui Xiao2*

1 Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China, 2 National Wheat Improvement
Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China, 3 College of Land Science
and Technology, China Agricultural University, Beijing, China, 4 Dezhou Academy of Agricultural Sciences, Dezhou, China

Crop breeding programs generally perform early field assessments of candidate
selection based on primary traits such as grain yield (GY). The traditional methods of
yield assessment are costly, inefficient, and considered a bottleneck in modern precision
agriculture. Recent advances in an unmanned aerial vehicle (UAV) and development of
sensors have opened a new avenue for data acquisition cost-effectively and rapidly.
We evaluated UAV-based multispectral and thermal images for in-season GY prediction
using 30 winter wheat genotypes under 3 water treatments. For this, multispectral
vegetation indices (VIs) and normalized relative canopy temperature (NRCT) were
calculated and selected by the gray relational analysis (GRA) at each growth stage,
i.e., jointing, booting, heading, flowering, grain filling, and maturity to reduce the data
dimension. The elastic net regression (ENR) was developed by using selected features
as input variables for yield prediction, whereas the entropy weight fusion (EWF) method
was used to combine the predicted GY values from multiple growth stages. In our
results, the fusion of dual-sensor data showed high yield prediction accuracy [coefficient
of determination (R2) = 0.527–0.667] compared to using a single multispectral sensor
(R2 = 0.130–0.461). Results showed that the grain filling stage was the optimal stage
to predict GY with R2 = 0.667, root mean square error (RMSE) = 0.881 t ha−1, relative
root-mean-square error (RRMSE) = 15.2%, and mean absolute error (MAE) = 0.721 t
ha−1. The EWF model outperformed at all the individual growth stages with R2 varying
from 0.677 to 0.729. The best prediction result (R2 = 0.729, RMSE = 0.831 t ha−1,
RRMSE = 14.3%, and MAE = 0.684 t ha−1) was achieved through combining the
predicted values of all growth stages. This study suggests that the fusion of UAV-based
multispectral and thermal IR data within an ENR-EWF framework can provide a precise
and robust prediction of wheat yield.
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INTRODUCTION

Bread wheat is one of the most important food crops that
feed 40% of the world population (Liu et al., 2020). The
timely and accurate evaluation of the grain yield (GY) before
harvest can aid the selection of elite genotypes in large breeding
programs (Mcbratney et al., 2005; Panda et al., 2010). Yield
advocating traits, such as green biomass, leaf area index (LAI),
and chlorophyll contents, have been used for within-season yield
prediction (Hassan et al., 2018, 2019a). The canopy temperature
is another important indicator of transpiration and leaf water
potential under drought and heat stress and can help facilitate
the selection of resilient genotypes (Zubler and Yoon, 2020).
However, phenotyping most of these traits is destructive, time-
consuming, and is associated with a high error probability.
Therefore, the nondestructive measurements of the above proxy
traits of the GY have been employed to increase the prediction
accuracy of crop yield cost-effectively (Yu et al., 2016; Elsayed
et al., 2017; Hassan et al., 2019a).

In the past few years, low-altitude remote sensing has
attracted interest for its application in high-throughput crop
phenotyping (Hassan et al., 2019b; Maimaitijiang et al., 2020).
The advances in sensor technology have significantly accelerated
the use of unmanned aerial vehicles (UAVs) for data collection
with high spectral resolution as compared to satellite platforms
(Colomina and Molina, 2014; Sidike et al., 2018). Various types
of sensors mounted on UAV platforms, such as multispectral,
hyperspectral, RGB, and thermal, are being widely used in the
phenotypic evaluation of crops, with satisfactory data accuracy.
The UAV-based nondestructive multispectral assessments of
the LAI (Comba et al., 2020), biomass (Yue et al., 2019),
chlorophyll content (Qiao et al., 2020), nitrogen use efficiency
(Yang et al., 2020), senescence (Hassan et al., 2021), and GY
(Hassan et al., 2019a) have been reported for several crops.
These assessments are based on the spectral reflectance from
the canopy of plants in the form of light bands with different
wavelengths (Li et al., 2014). Thermal remote sensing is also
being applied in precision agriculture to detect water stress
(Suyoung et al., 2017) and plant resistance (Ludovisi et al.,
2017). Recently, the focus has been increased on combining the
data from multiple sources, where a group of datasets from
multiple sensors is utilized obtained for plant trait estimation.
Multi-source data models have the capability to improve crop
trait estimations (Maimaitijiang et al., 2020). The use of canopy
temperature and spectral information have been demonstrated
to improve the model performance in estimating important
plant traits for assessment of biotic/abiotic stress (Appeltans
et al., 2020; Zubler and Yoon, 2020) and predicting the yield
of soybean (Elmetwalli et al., 2020), barely (Rischbeck et al.,
2014), and maize (Zhang et al., 2020). For crop yield prediction,
flowering to grain filling stages are highly reliable, with good
accuracy and repeatability (Hassan et al., 2019a; Hernandez et al.,
2015). The predictions made in most studies have been based
on the spectral information of an individual growth stage. The
accumulation of VIs from jointing to the grain filling stage
using a multiple linear regression algorithm has shown good
prediction results in rice (Zhou et al., 2017). Since UAV-based

temporal information of multispectral vegetation indices (VIs)
and temperature can be obtained cost-effectively from multiple
growth stages, combining data across the growth stages could
help to achieve higher yield prediction accuracy. Machine
learning algorithms have been employed with the canopy spectral
features as input to construct models for crop trait evaluation,
showing high prediction accuracy and adaptability (Wang et al.,
2016; Wang J. et al., 2018). The commonly used machine learning
algorithms are the random forest (RF) (Breiman, 2001), support
vector machine (SVM) (Sain, 1997), and artificial neural network
(ANN) (Bradley, 1995), and these have been successfully used
for estimating biomass (Wang et al., 2016), LAI (Wang L.
et al., 2018), chlorophyll content (Shah et al., 2019), and water
content (Tavakoli and Gebbers, 2019). Among the machine
learning algorithms, the emerging elastic net regression (ENR)
algorithm has been considered one of the most precise prediction
method for regression problems (Hui and Hastie, 2005). The
ENR algorithm combines the advantages of ridge regression
and least absolute shrinkage and selection operator (LASSO)
regression to obtain better prediction results (Ogutu et al., 2012).
At present, relatively few studies have been conducted on utilizing
information obtained by UAV-based sensors as input to the ENR
algorithm for the yield prediction of winter wheat.

The entropy weight algorithm is an emerging method in
agricultural studies. It works by allocating the weight-based
information entropy of the trait in the model (Li et al., 2011).
It has been typically used for feature selection and model
combination for combining datasets to assess ecosystem health
(Cheng et al., 2020), monitor land-use change (Lu et al.,
2014), and evaluate the coverage effectiveness of remote sensing
satellites (Li et al., 2018). To the best of our knowledge, the
entropy weight method has not been used to predict the yield
values from multiple growth stages using UAV datasets. The
objectives of this study were (1) to evaluate the potential of UAV-
based multispectral and thermal sensors for the yield prediction
of wheat using the ENR algorithm, (2) to identify the appropriate
wheat growth stage for data collection to maximize the yield
prediction accuracy, and (3) to investigate the potential of the
entropy weight method in combining the predicted GY values
from multiple growth stages.

MATERIALS AND METHODS

Germplasm and Experimental Design
Field trials were conducted at the experimental station of
the Institute of Farmland Irrigation of Chinese Academy of
Agricultural Sciences in Xinxiang (113.8◦E, 35.2◦N) during the
2019–2020 cropping season (Figure 1). In total, 30 winter
wheat varieties widely cultivated in the Yellow and Huai Valleys
Winter Wheat Zone of China were used in this experiment.
Germplasm was planted under three water stress treatments,
namely, mild irrigation, moderate irrigation, and high irrigation,
to obtain the UAV-based multispectral, thermal, and ground-
truth GY data. Irrigation for each treatment was performed in the
tillering, wintering, reviving, jointing, heading, and grain filling
stages using a laterally moving sprinkler irrigation machine. The
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FIGURE 1 | Experimental location, design, and management.

irrigation volume was calculated by the flow rate of the sprinkler
nozzle and the duration of irrigation. The total irrigation volume
for the mild, moderate, and high irrigation treatments were
145, 190, and 240 mm, respectively (Table 1). A completely
randomized block design with two replications was adopted for
the experiment. The size of each plot was maintained at 11.2 m2

with the dimensions of 8 m × 1.4 m, representing one cultivar
with six rows at a spacing of 0.20 m. Field management (e.g.,
disease and pest control, fertilizer) was maintained at optimal
levels depending on the local conditions. In the 2019–2020
growing season, the total precipitation was 115 mm, and the
monthly average temperature was highest (23◦C) in July and
lowest (−6◦C) in January. Wheat was harvested using a plot
combine harvester in June 2020. The GY of each plot was weighed
at a moisture content of approximately 12.5%.

Data Acquisition and Processing
Figure 2 shows the workflow for the data acquisition. A DJI M210
(DJI Technology Co., Shenzhen, China) carrying a RedEdge
MX (MicaSense Parrot, France) multispectral camera and a

Zenmuse XT2 (DJI Technology Co., Shenzhen, China) thermal
sensor was used to collect high-resolution multispectral and
thermal images simultaneously. The RedEdge MX featured five
spectral sensors, namely, blue (475 nm), green (560 nm), red
(668 nm), red-edge (717 nm), and near-IR (842 nm). The
RedEdge MX camera automatically adjusts the ambient light
effects through the sunshine sensor, thereby minimizing the

TABLE 1 | Irrigation strategy for each treatment.

Growth stage Mild irrigation
(mm)

Moderate irrigation
(mm)

High irrigation
(mm)

Tillering 35 35 35

Wintering 35 35 35

Turning green 20 25 35

Jointing 20 35 50

Heading 20 35 50

Grain filling 15 25 35

Total 145 190 240
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error in the multispectral images. Zenmuse XT2 contains an
8-mm lens with a 57.12◦ × 42.44◦ field of view to record
temperature measurements in the 7.5–13.5-µm spectral range
with a measurement accuracy of ± 5◦C. The DJI ground
station was used as an automated flight control system, allowing
the user to define the air route and customize the mission
plan. Flight mission was executed for all the six growth stages
from 11 a.m. to 1 p.m. under a cloudless sky. To avoid the
effect of the phenological differences between treatments, the
flight missions for each treatment were collected according
to the growth stages. To obtain high-resolution images, each
flight was set at an altitude of 30 m with 85% front and
80% side image overlapping. Before and after each flight, the
calibration board was photographed to convert the digital
number (DN) value of the multispectral image into reflectance
during subsequent data processing. During the flights, the surface
temperature of 12 boards was measured using a handheld
thermometer for the radiometric calibration of the thermal
images. To obtain the geographic reference of the multisensor
UAV image, 18 ground control points (GCPs) were evenly
arranged in the field, and their coordinates were measured
with a millimeter-level accuracy using a differential global
positioning system.

The Pix4Dmapper software (Pix4D SA, Lausanne,
Switzerland) was employed for the orthomosaic generation
using the UAV-based multispectral and thermal IR images.
The geographic coordinates (World Geodetic System, 1984)

of the GCPs were used in the photogrammetric workflow
of Pix4Dmapper to improve the accuracy of the composite
orthomosaics. Dense point clouds were generated using
the structure-from-motion (SfM) method in Pix4Dmapper
along with the photogrammetric workflow. After radiometric
correction, the DN values of the multispectral and thermal IR
images were converted to reflectance and temperature (◦C).
To extract the reflectance and temperature information for
each plot, the orthomosaic images were segmented into 180
polygon shapes with assigned IDs defining the cultivars under
different irrigation treatments. Polygon shape generation and
information extraction are completed in QGIS 3.1.0.1 A total
of 22 indices were used in this study, of which 21 VIs were
estimated from multispectral reflectance, and 1 index was
calculated from the canopy temperature across the irrigation
treatments (Table 2).

Gray Relational Analysis
In a gray relational analysis (GRA), a system with incomplete
information is called a gray system, meaning that the relationship
between the factors is uncertain (Aslan et al., 2012). When
the experiment is unclear or when the experimental method
cannot be implemented accurately, a gray analysis can help
overcome the drawbacks in statistical regression (Jin et al.,
2013). For example, there is a close relationship between VIs

1https://www.qgis.org/

TABLE 2 | Formulae of multispectral vegetation indices and normalized relative canopy temperature.

Acronym Index Formulae Developer(s)

CIRE Chlorophyll index RedEdge (RNIR/RRE)−1 Gitelson et al., 2003

DVI Difference vegetation index RNIR−RR Tucker et al., 1979

EVI Enhanced vegetation index 2.5× (RNIR−RR)/(1RNIR + 6× RR−7.5× RB) Huete et al., 2002

GNDVI Green normalized difference vegetation index (RNIR−RG)/(RNIR + RG) Gitelson et al., 1996

MCARI1 Modified chlorophyll absorption in reflectance index 1 (RREG−RR−0.2× ((RREG−RG))× (RREG/RR) Daughtry et al., 2000

PSRI Plant senescence reflectance index (RR−RB)/RNIR Merzlyak et al., 1999

MSR Modified simple ratio index ((RNIR/RR)−1)/
√

RNIR/RR1 Chen, 1996

MTCI MERIS terrestrial chlorophyll index (RNIR−RREG)/(RRE−RR) Dash and Curran, 2004

MTVI2 Modified triangular vegetation index 2 1.5× [1.2× (RNIR−RG)− 2.5× (RR−RG)]/[√
2× (RNIR + 1)2−6× RNIR + 5×

√
RR−0.5

] Haboudane et al., 2004

NDVI Normalized difference vegetation index (RNIR−RR)/(RNIR + RR) Rouse, 1972

NDVIRE Normalized difference vegetation index RedEdge (RNIR−RREG)/(RNIR + RREG) Elsayed et al., 2015

NLI Nonlinear vegetation index (RNIR × RNIR−RR)/(RNIR × RNIR + RR) Goel and Qin, 1994

OSAVI Optimized soil-adjusted vegetation index (RNIR−RR)/(RNIR + RR + 1.6)× 1.16 Rondeaux et al., 1996

PPR Plant pigment ratio (RG−RB)/(RG + RB) Metternicht, 2003

RDVI Re-normalized difference vegetation index (RNIR−RR)/
√
(RNIR + RR) Wang et al., 1998

RVI Ratio vegetation index (RNIR/RR) Ba Ret and Guyot, 1991

NRI Nitrogen reflectance index (RG−RR)/(RG + RR) Diker and Bausch, 2003

SAVI Soil-adjusted vegetation index (RNIR−RR)/(RNIR + RR + 0.5)× 1.5 Huete, 1988

SIPI Structure insensitive pigment index (RNIR−RB)/(RNIR + RB) Penuelas et al., 1995

TCARI Transformed chlorophyll absorption ratio index 3 [(RREG−RR)−0.2× (RREG−RG)× RREG/RR] Eitel et al., 2007

TVI Triangular vegetation index 0.5× [120× (RNIR−RG)− 200× (RR−RG)] Broge and Leblanc, 2001

NRCT Normalized relative canopy temperature Ti−Tmin
Tmax−Tmin

Elsayed et al., 2015

RB, RG, RR, RREG, and RNIR represent the reflectance of the blue, green, red, red-edge, and near-IR bands of RedEdge MX, respectively. T represents the canopy
temperature obtained from Zenmuse XT2.
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and yield; however, their detailed relationships remain unclear.
Therefore, the main purpose of the GRA is to measure the
degree of relationship within this system by analyzing the gray
relationships between VIs and GY. The GRA procedure includes
the following steps:

1. The reference series reflect the characteristics of the
system behavior, and the comparison series influences the
system behavior. In this study, the GY was considered
the reference series, and each index was considered a
comparison series. The reference sequence is represented
by the following formula:

X0 = X0(k)|k = 1, 2...n (1)

where n represents the number of samples, and n is 180 in this
study. Comparison data series can be expressed as follows:

Xi = Xi(k)|k = 1, 2...n, i = 1, 2...m (2)

There are m comparison data series, each containing n-values.

2. Data in each factor column in the system may have
different dimensions, making it difficult to compare or
obtain a correct conclusion when comparing. Therefore,
to ensure the reliability of the results, the following non-
dimensional processing of the data is generally required
when performing the GRA:

xi
(
k
)
=

Xi
(
k
)

Xi
(
l
) (3)

Xi(l) =
1
n

n∑
k=1

Xi
(
k
)

(4)

3. The calculation of the difference data series 4i is as follows:

4i =
(∣∣x01, − xi1

∣∣ , ∣∣x02, − xi2
∣∣ , ... ∣∣x0n, − xin

∣∣) (5)

4. The gray relational coefficient ξ i(k) for the kth data point
in the ith difference data series can be expressed as follows:

ξi(k) =
4min + ζ4max

4i(k) + ζ4max
(6)

where 4min and 4max are the global maximum and minimum
values in the difference data series, respectively. 4i(k) is the kth
value in the 4i difference data series, and ζ is the distinguishing
coefficient: ζ ∈ [0, 1]. In this study, the distinguishing
coefficient is set to 0.5.

5. Generally, the average value of the gray relational
coefficient is taken as the gray relational degree (GRD),
which is expressed as follows:

γi =
1
n

n∑
k=1

ξi(K). (7)

Elastic Net Regression
To avoid the instability of the LASSO solutions when the input
features are highly correlated (e.g., a large number of VIs
constructed from limited bands), the ENR has been proposed to
analyze the high-dimensional data. The ENR is an extension of
the LASSO, which is robust to severe multicollinearity among
the input features (Ogutu et al., 2012). The ENR combines the
penalties of the ridge regression ( `1) and LASSO ( `2) and can be
expressed as follows:

β̂(enet)=
(

1+
λ2

n

){
arg min
β ||y− Xβ|| 2

2 + λ2||β||
2
2 + λ1||β|| 1

}
(8)

On setting α = λ2/(λ1 + λ2), the ENR is equivalent to the
minimizer of the following:

β̂(enet2) = arg min
β ||y− Xβ|| 2

2 (9)

subject to Pα (β) = (1−α) ||β||1 + α||β|| 2
2 ≤ s for some s,

where Pα (β) represents the penalty of the ENR. The ENR can
be considered LASSO and ridge regression when a = 0 and
1, respectively. The `1 part of the ENR is used for automatic
variable selection, while the `2 part encourages grouped
selection and stabilizes the solution paths with respect to the
random sampling, thereby improving the prediction results.
By introducing a grouping effect when selecting the variable, a
group of highly correlated input features tends to have similar
coefficients. The ENR can choose the groups of correlated
features when these groups are unknown in advance. Notably,
the ENR selects more than n variables when p>> n, which is
different from the LASSO. In this study, there is inevitably a
high correlation between the various VIs. Therefore, the ENR
will be an ideal choice when using VIs as the input features for
yield prediction.

Modeling Framework
In this study, a 10-fold outer cross-validation method was
adopted to train and test the model. To avoid contingency, we
conducted 50 iterations for the outer cross-validation, resulting
in a total of 500 models. The average of the accuracy evaluation
index generated from the 500 models was used to evaluate the
model performance. In the process of outer cross-validation, the
inner cross-validation and the grid search were conducted for
parameter tuning of the ENR models (Figure 2). In the outer
cross-validation, the VIs and GY data were randomly divided
into 10 equal subsets. One of them was used for testing each
time, and the remaining nine subsets were used for training. Each
training set of the outer cross-validation was evenly divided into
10 sets, similar to the outer cross-validation. One of them was
used for testing, and the nine subsets were used for training.
During the inner cross-validation process, multiple combinations
of the candidate parameters were set in the inner training
set for model construction and then tested on the inner test
set. Each parameter combination was tested 10 times, and the
hyperparameter combination with the lowest average test error
was set for the outer cross-validation for model training. This
study uses the R package “caret”2 to construct the ENR model

2https://CRAN.R-project.org/package=caret
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FIGURE 2 | Schematic workflow of the methodology used in this study. P denotes the predicted grain yield (GY) value, and C1–C8 indicate the combinations of the
values predicted from multiple growth stages. CV, cross-validation; VIs, vegetation indices; NRCT, normalized relative canopy temperature.

for yield prediction. In the “caret” package, the parameters to be
adjusted are the fraction and quadratic penalty parameter lambda.
Table 3 represents the candidate ranges of these two parameters.

TABLE 3 | Candidate hyperparameters for elastic net regression.

Number Lambda Fraction Number Lambda Fraction

1 0.050 0.000E+00 16 0.541 3.162E-03

2 0.083 1.000E-04 17 0.574 4.047E-03

3 0.116 1.280E-04 18 0.607 5.179E-03

4 0.148 1.638E-04 19 0.640 6.629E-03

5 0.181 2.096E-04 20 0.672 8.483E-03

6 0.214 2.683E-04 21 0.705 1.086E-02

7 0.247 3.433E-04 22 0.738 1.389E-02

8 0.279 4.394E-04 23 0.771 1.778E-02

9 0.312 5.623E-04 24 0.803 2.276E-02

10 0.345 7.197E-04 25 0.836 2.913E-02

11 0.378 9.211E-04 26 0.869 3.728E-02

12 0.410 1.179E-03 27 0.902 4.771E-02

13 0.443 1.509E-03 28 0.934 6.105E-02

14 0.476 1.931E-03 29 0.967 7.814E-02

15 0.509 2.471E-03 30 1.000 1.000E-01

Moreover, we tested the model performance on the test
samples in the cross-validation procedure to test the adaptability
of the model. The coefficient of determination (R2), root mean
square error (RMSE), relative root-mean-square error (RRMSE),
and mean absolute error (MAE) were adopted to evaluate the
model performance. The calculation formulae of the parameters
are as follows:

R2
= 1−

∑n
i=1 (yi − ŷi)2∑n
i=1 (yi − y)2

(10)

RMSE =

√√√√ 1
n

n∑
i=1

(
yi − ŷi

)2 (11)

RRMSE =
RMSE

y
∗100% (12)

MAE =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣ (13)

where n represents the number of samples, yi and ŷi are the
measured and predicted GY of sample i, and y is the average
value of the measured GY. The higher the R2-value, the lower the
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RMSE, RRMSE, and MAE values and the better the performance
of the model for GY prediction.

Entropy Weight Method
The ENR algorithm was independently implemented at each
growth stage. Instead of using these results to predict the GY
individually, we proposed an entropy weight fusion (EWF) model
that combines the predicted results from the different growth
stages via weights obtained during the model training stage.
The basic mechanism of the entropy weight method is to use
the entropy to characterize the degree of disorder in the system
(Farhadinia, 2017). In this method, the relative error between
the predicted and measured values of the GY obtained in an
individual growth stage by the selected ith prediction model can
be expressed as follows:

Eij

 1,when
∣∣∣ (yj−yij)yj

∣∣∣ ≥ 1;∣∣∣ (yj−yij)yj

∣∣∣ ,when 0 ≤
∣∣∣ (yj−yij)yj

∣∣∣ ≤ 1
(14)

where i = (1, 2, 3. . .m), j = (1, 2, 3. . .n), and yij represents the
predicted value of the yield forecast model for the ith individual
growth stage on the jth plot. The process for calculating the
weights is as follows:

The relative error ratio was calculated between the predicted
value of the ith individual growth stage and the measured value
at plot j:

Pij =
Eij∑n
i=1 Eij

(15)

where
∑n

i=1 Pij = 1. The entropy value hi was calculated for the
relative error in the ith individual growth stage prediction:

hi = −k
n∑
j=1

[
Pijln(Pij)

]
k = 1/ln(n) (16)

The relative error variation coefficient was determined based on
the principle of the opposite of the entropy value and its degree
of variation:

di = 1− hi (17)

The weight was then obtained for the predicted output value
from a single growth stage:

wi =
1
n

(
1− di

/ n∑
i=1

di

)
(18)

The weights were obtained by combining the output forecast
values from the multiple growth stages. The final output forecast
value can be expressed as follows:

ŷ =
n∑

i=1

wiyij (19)

The higher the entropy of the prediction error sequence of a
single growth stage, the lower the degree of variation and the
greater the weight. The entropy weight method fully considers

the relative error in the output prediction value from the different
growth stages. Therefore, the predicted results from the multiple
growth stages complement each other to improve the accuracy
of yield prediction. In this study, eight combinations were
created to evaluate the accuracy of the entropy weight method
for GY prediction. Table 4 represents a detailed description of
each combination.

RESULTS

Descriptive Statistics of Grain Yield
The distribution of yield from wheat plots is shown in Figure 3.
The GY was normally distributed under all the irrigation
treatments as well as across the treatments. The GY was found
to be higher under high irrigation treatments than under the
moderate and mild irrigation treatments. The mean GY values
for the high, moderate, and mild irrigation treatments were 7.09,
5.99, and 4.40 t ha−1, respectively. The highest coefficient of
variation (19.51%) was observed in the mild irrigation treatment
and the lowest (12.70%) in the high irrigation treatment. The
overall range of the GY data across the irrigation treatment was
2.79–8.64 t ha−1, with a data variation of up to 24.35%. Across
treatment data with this type of variation can help evaluate the
prediction accuracy of the model.

TABLE 4 | Combination of different growth stages used in the model for grain
yield prediction.

Combination Combination of growth stages

C1 Jointing, booting, heading

C2 Jointing, booting, heading, flowering

C3 Jointing, booting, heading, flowering, grain filling

C4 Jointing, booting, heading, flowering, grain filling, maturity

C5 Booting, heading, flowering

C6 Heading, flowering, grain filling

C7 Flowering, grain filling, maturity

C8 Heading, flowering, maturity

FIGURE 3 | Grain yield distribution curves under various irrigation treatments.
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Results of Gray Relational Analysis and
Feature Selection
A total of 22 indices were ranked using the GRA method.
Table 5 lists the results for all the growth stages. The
GRD of the normalized relative canopy temperature (NRCT)
ranked first for the jointing, booting, and flowering stages
and relatively high for the heading (rank = 10) and grain
filling (rank = 9) stages. However, the NRCT ranked last at
maturity. The rankings for most VIs were unstable across all
the growth stages. For example, plant pigment ratio (PPR)
and difference vegetation index (DVI) had a high ranking at
both jointing and booting but ranked low at flowering and
grain filling. In accordance with the GRA mechanism, the
higher the GRD between the main and the reference sequence,
the more closely the sequences are related, which indicates a
close relationship between the NRCT and the yield during the
multiple growth stages.

To further explore the features with better performance and
to reduce the dimensionality of the data, the top feature was
iteratively added into the ENR. The performance of the model
(i.e., MAE) in the training process was updated until all the
features were inputted into the ENR (Figure 4). Among the six
developmental stages, the grain filling stage yielded the lowest
error, and it tended to be stable when the number of features
was 19. The highest error was observed in jointing, and the
model showed a stable tendency after inputting 16 features. The
appropriate numbers of input features for the booting, heading,
flowering, and maturity stages were found to be 18, 18, 22, and
22, respectively.

TABLE 5 | Ranking of indices using the gray relational analysis (GRA) for
six growth stages.

Rank Jointing Booting Heading Flowering Grain filling Maturity

1 NRCT NRCT NLI NRCT MSR TVI

2 PPR PPR NDVI RVI RVI NLI

3 OSAVI SAVI TCARI MSR NDVI SAVI

4 MTVI2 OSAVI MSR NDVI NLI RDVI

5 SAVI RDVI RVI NLI NRI EVI

6 RDVI MTVI2 MTVI2 OSAVI OSAVI DVI

7 MCARI PSRI OSAVI MTVI2 MTVI2 OSAVI

8 PSRI TCARI PPR TCARI CIRE MTVI2

9 TCARI DVI SAVI RDVI NRCT PSRI

10 DVI TVI NRCT NRI NDVIRE MCARI

11 TVI MCARI SIPI SAVI GNDVI MTCI

12 EVI EVI RDVI GNDVI RDVI NDVI

13 SIPI SIPI MCARI SIPI SIPI RVI

14 GNDVI NLI PSRI PSRI PSRI MSR

15 NRI NDVI EVI EVI SAVI CIRE

16 NDVIRE MSR DVI CIRE EVI NDVIRE

17 NLI RVI TVI NDVIRE TCARI SIPI

18 CIRE MTCI GNDVI DVI TVI NRI

19 MTCI CIRE NRI TVI DVI GNDVI

20 NDVI NRI NDVIRE MTCI MTCI TCARI

21 MSR GNDVI CIRE PPR MCARI PPR

22 RVI NDVIRE MTCI MCARI PPR NRCT

Performance of Elastic Net Regression
Model for Individual Growth Stage
To analyze the improvement of the thermal data for yield
prediction accuracy, the model was first built using the features
extracted from the multispectral images (Figure 5). The mean
prediction values for the grain filling stage was R2 = 0.461,
followed by flowering (R2 = 0.432), heading (R2 = 0.422),
maturity (R2 = 0.417), booting (R2 = 0.290), and jointing
(R2 = 0.130). Figure 6 represents the accuracy assessment results
of the ENR model for GY predictions by using both thermal
and multispectral features. The results show that the dual-sensor
data fusion method achieves higher prediction accuracy at all
measured stages compared to using single multispectral sensor-
based features. As with using only multispectral features, the
ENR showed the highest prediction results with a low error
at the grain filling (R2 = 0.667) stage. The mean prediction
results at jointing, booting, heading, flowering, and maturity
were R2 = 0.544, R2 = 0.571, R2 = 0.602, R2 = 0.640, and
R2 = 0.527, respectively.

After obtaining the predicted GY using thermal IR and
multispectral features, the regression between the predicted
GY from the various stages was conducted (Figure 7). High
correlations ranging from R2 = 0.59 to R2 = 0.89 between adjacent
growth stages were observed across the growth stages. Moreover,
the greater the interval between the growth stages, the lower the
R2-value. For example, the R2 between the jointing stage and
the booting, heading, flowering, grain filling, and maturity stages
were 0.78, 0.66, 0.64, 0.52, and 0.41, respectively. In comparison,
the correlations between the predicted yield in the maturity and
other growth stages were lower, with quite weak regression values
ranging from R2 = 0.41 to R2 = 0.59. There were differences in
the distribution curves of predicted GY values, which provides
complementary information.

Performance of Entropy Weight Fusion
Method
For comparison with the EWF method, multispectral and
thermal features from multiple stages were used as the inputs of
ENR to the training model. The results indicated that combining
the features of multiple stages increases the accuracy of yield
prediction than individual stages (Figure 8). The C4 yielded
the highest R2-value of 0.725, followed by C3 (R2 = 0.717) and
C2 (R2 = 0.691). The remaining combinations achieved similar
prediction accuracy (R2 = 0.669–0.681). However, the obvious
fluctuations of accuracy parameters (R2, RMSE, RRMSE, and
MAE) with wide ranges were observed.

Figure 9 represents the performance of the EWF model in
predicting the GY using the combined predicted values from the
multiple growth stages. Comparing with the individual growth
stages, the EWF model also provides a more accurate result
regardless of the number of stages adopted. Among the eight
combinations, the optimal test results of the EWF model were
observed in C4, with a mean R2 of 0.729. An increase of
0.062 compared with the highest mean R2-value was observed
in the grain filling stage (R2 = 0.667). Moreover, the RMSE,
RRMSE, and MAE values were reduced to 0.831 t ha−1, 14.3%,
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FIGURE 4 | Model training error as a function of the number of features. The order of input of features depends on the gray relational degree (GRD). MAE, mean
absolute error.

FIGURE 5 | Statistical distributions of (A) coefficient of determination (R2), (B) root mean square error (RMSE), (C) relative root-mean-square error (RRMSE), and
(D) mean absolute error (MAE) of the elastic net regression (ENR) algorithm for GY prediction using multispectral features in test phases. JS, jointing stage; BS,
booting stage; HS, heading stage; FS, flowering stage; GFS, grain filling stage; MS, maturity stage.

and 0.684 t ha−1, respectively. A low prediction was observed in
C1 (R2 = 0.681). Compared to C5 (R2 = 0.692), C6 (R2 = 0.678),
C7 (R2 = 0.677), and C8 (R2 = 0.688), C2 (R2 = 0.721) and C3

(R2 = 0.719) had a more accurate predictions. The fluctuations
in the accuracy parameters (R2, RMSE, RRMSE, and MAE) of
the EWF model were more moderate compared to the model
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FIGURE 6 | Statistical distributions of (A) R2, (B) RMSE, (C) RRMSE, and (D) MAE of the ENR for GY prediction using both multispectral and thermal features in test
phases. JS, jointing stage; BS, booting stage; HS, heading stage; FS, flowering stage; GFS, grain filling stage; MS, maturity stage.

FIGURE 7 | Regression plots, density curve, and R2-values between predicted GY in six developmental stages.
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FIGURE 8 | Statistical distributions of (A) R2, (B) RMSE, (C) RRMSE, and (D) MAE of the ENR model that uses both multispectral and thermal features from different
stages as inputs.

that directly used multistage features as inputs (Figures 8, 9),
which again demonstrates the stability of the EWF method.
A paired t-test was utilized to assess whether the EWF
models performed statistically high in terms of the R2-values
compared with the other models (Figure 10). The results showed
significantly high R2-values for the EWF model in all the growth
stage combinations.

DISCUSSION

The UAV-based phenotyping is an emerging technique in
practical crop breeding. Previous studies have shown that the
UAV-based features and the machine learning model can be used
together to predict crop yields in breeding work with a large
number of crop genotypes (Osval et al., 2017; Fei et al., 2021).
In this study, ENR is a relatively new machine learning algorithm
being used for yield prediction. ENR combines the properties of
ridge regression and LASSO (Ogutu et al., 2012), both of which
have been successfully applied to crop yield prediction (Kang
et al., 2021; Shafiee et al., 2021). The incorporation of multiple VIs
adds collinearity to the models, and the ENR is robust to severe
multicollinearity among the input features (Ogutu et al., 2012).

Another reason for using ENR was the simplicity of the linear
model compared to other machine learning algorithms such as
RF or ANNs, which makes the model run less time-consuming
and more efficient to train.

Several VIs such as normalized difference vegetation index
(NDVI) and green normalized difference vegetation index
(GNDVI) have been evaluated to monitor crop health under
stress and predict the GY. Most of the multispectral VIs that
have been reported were species-specific and easily saturated
(Hatfield and Prueger, 2013). Therefore, it is challenging to
predict important crop traits using a single VI (Wang et al., 2016).
The successful use of multiple VIs to improve the prediction
accuracy of important traits in crops has been reported in many
studies (Wang et al., 2016; Jin et al., 2020). In this study, 21
multispectral VIs and 1 temperature index (i.e., NRCT) were
measured in multiple growth stages to validate the UAV data
and ENR and check their accuracy for GY prediction. For
accurate yield predictions and to avoid model overfitting, the
machine learning algorithms may benefit from using a feature
selection algorithm to reduce the dimensionality of the data to an
appropriate level (Yoosefzadeh-Najafabadi et al., 2021). The GRA
is a widely accepted approach in feature selection (Deris et al.,
2013; Lu et al., 2019; Yao et al., 2019; Miswan et al., 2021). The
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FIGURE 9 | Statistical distributions of (A) R2, (B) RMSE, (C) RRMSE, and (D) MAE of the entropy weight fusion (EWF) method for GY prediction in the test phases.

FIGURE 10 | Results from paired t-test between model R2 obtained from the EWF method and the individual stages. ∗∗∗ significant at P ≤ 0.001; JS, jointing stage;
BS, booting stage; HS, heading stage; FS, flowering stage; GFS, grain filling stage; MS, maturity stage.

results in this study show that GRA can reduce the dimensionality
of the input features to some extent.

The model performed poorly when using multispectral VIs to
predict yield. This could be due to the saturation issue associated
with the visible-near-infrared (Vis-NIR) sensor for dense

vegetation such as wheat, soybean, and rice (Thenkabail et al.,
2000; Tilly et al., 2015). The fusion of multispectral and thermal
features includes canopy spectral and temperature information
outperformed for yield prediction, which was consistent with
previous reports (Maimaitijiang et al., 2017, 2020). Temperature
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is closely related to plant physiological processes such as
transpiration, leaf water potential, and photosynthesis (Sagan
et al., 2019). Generally, high canopy temperature is negatively
correlated with crop yield (Tattaris et al., 2016; Sagan et al.,
2019). Previously, the UAV-based thermal IR data has been
successfully applied to plant trait evaluation (Gonzalez-Dugo
et al., 2013; Ludovisi et al., 2017; Liu et al., 2018; Raeva et al.,
2019; Crusiol et al., 2020). Previous studies have also shown that
combining thermal data with multispectral data outperformed as
compared to the fusion of spectral and structural information
from RGB and multispectral images for the prediction of LAI,
biomass, chlorophyll, and nitrogen in soybean (Maimaitijiang
et al., 2017).

The spatial heterogeneity of the ground changes among the
developmental stages of the crop could lead to a significant
difference in the prediction accuracy across the growth stages
(Juliane et al., 2014). The results of yield prediction based on
the individual growth stages are similar to previous reports,
i.e., wheat yield prediction accuracy was higher at grain filling
stages under different growth environments (Hernandez et al.,
2015; Hassan et al., 2019a). During the grain filling stage, the
starch, protein, and organic matter produced by photosynthesis
are transported to the grain (Guan et al., 2017), and this stage
is closely linked to the thousand-grain weight. Therefore, the
accuracy of yield estimation was highest at the grain filling stage.
In addition, the reduction in the greenness and chlorophyll level
after the grain filling stages due to the decrease in the degree of
dry matter accumulation in the leaves of plants could influence
the detection accuracy of VIs based on the red and near-IR
light (Yue et al., 2017). This reduces the model performance
in the late developmental stage, which causes a decrease in
yield prediction accuracy at maturity. In addition, crop canopy
information at varying growth stages is associated with different
yield elements, and a combination of remote sensing data
from multiple growth stages can effectively improve the yield
prediction accuracy.

Another main objective of this study was to use an appropriate
method to acquire the prediction values from a combination of
temporal remote sensing data across the growth cycle. Although
previous studies used temporal VIs for yield prediction, most of
them used a single VI (Wang et al., 2014; Zhou et al., 2017),
which can be influenced by different degrees of saturability
or soil background (Wang et al., 2016). We first directly
used the multispectral and thermal features from multiple
stages as inputs to ENR, and this method was able to obtain
higher yield prediction accuracy than individual stages, but the
accuracy parameters fluctuated more compared to EMF and were
slightly lower than the prediction accuracy of the EMF method
for some combinations. This may be due to the redundant
information generated by the accumulation of features from
multiple growth stages. In addition, the excessive dimensionality
of input features also poses the risk of overfitting the machine
learning model (Feng et al., 2017; Coolen et al., 2020). Among
the combinations of EMF, the prediction accuracy of C2
was comparable to a combination with the highest prediction
accuracy of C4. The data required for C2 can be obtained
at the flowering stage, which is appropriate for application in

practical management. The results of this study suggest that the
fusion of multispectral and thermal features within an entropy
weight ensemble framework can provide accurate wheat yield
predictions. However, more comprehensive studies, such as
studies of different crop varieties in different environments, are
needed to determine the most accurate and efficient multistage
data for combination.

CONCLUSION

A rapid and nondestructive method for an accurate GY
prediction of wheat is desired in breeding programs. In this
study, an ensemble framework was developed to increase the
GY prediction accuracy by integrating the predicted values from
multiple stages using the UAV-based multispectral and thermal
IR imagery. The test results showed that the prediction accuracy
of the grain filling stage was the highest among the six growth
stages. The ensemble method outperformed the individual stage-
based GY prediction in terms of accuracy. Combining the
features of the first four growth stages allows for early and
accurate yield prediction to aid in decision-making. This study
offers a new method for GY prediction through UAV-based
remote sensing, and it can help in large breeding activities.
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