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Genomic selection andmarker-assisted recurrent selection have been applied to improve

quantitative traits in many cross-pollinated crops. However, such selection is not feasible

in self-pollinated crops owing to laborious crossing procedures. In this study, we

developed a simulation-based selection strategy that makes use of a trait prediction

model based on genomic information to predict the phenotype of the progeny for all

possible crossing combinations. These predictions are then used to select the best cross

combinations for the selection of the given trait. In our simulated experiment, using a

biparental initial population with a heritability set to 0.3, 0.6, or 1.0 and the number

of quantitative trait loci set to 30 or 100, the genetic gain of the proposed strategy

was higher or equal to that of conventional recurrent selection method in the early

selection cycles, although the number of cross combinations of the proposed strategy

was considerably reduced in each cycle. Moreover, this strategy was demonstrated to

increase or decrease seed protein content in soybean recombinant inbred lines using

SNP markers. Information on 29 genomic regions associated with seed protein content

was used to construct the prediction model and conduct simulation. After two selection

cycles, the selected progeny had significantly higher or lower seed protein contents than

those from the initial population. These results suggest that our strategy is effective

in obtaining superior progeny over a short period with minimal crossing and has the

potential to efficiently improve the target quantitative traits in self-pollinated crops.

Keywords: seed protein content, soybean, quantitative trait, genomic selection, genomic prediction, segregation

simulation, marker-assisted recurrent selection

INTRODUCTION

Plant breeding has played a crucial role in the development of human societies.
The demands of the increasing world population could be met by improving yield
and nutrient content in self-pollinating crops such as rice, wheat, and soybean,
which account for a large part of the human food supply (FAO, 2015), through
breeding better varieties (Tester and Langridge, 2010). Conventional breeding
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programs for self-pollinated crops typically use the bulk
population method, where a segregating population is generated
and repeatedly selfed over several generations without selection,
followed by the selection of genetically fixed plants with favorable
traits (Brown and Caligari, 2008). Important agronomic traits
such as yield and nutrient content are known to be controlled
by multiple genes, which are defined as quantitative trait loci
(QTLs). Efficient selection of plants withmultiple favorable QTLs
from a segregating population can be challenging and requires
a large population size. Such plants can be obtained from a
typical breeding population through repeated selection, followed
by crossing between selected individuals known as a recurrent
selection strategy (John, 1987). However, this selection strategy
is not very efficient in improving target quantitative traits due
to the low selection accuracy based on the phenotype of a
single plant (Bos and Caligari, 2008). Molecular markers can
help to improve the selection of a target trait (Bernardo, 2008),
and they are used for the introgression of specific favorable
alleles, such as in marker-assisted gene pyramiding, marker-
assisted recurrent selection (MARS), and genomic selection (GS)
(Lande and Thompson, 1990; Meuwissen et al., 2001; Bernardo,
2008). MARS allows the accumulation of a relatively large
number of medium-effect QTLs by using a subset of markers
that are significantly associated with target traits, whereas GS
increases the total additive genetic effect, including small-effect
QTLs, using genome-wide markers. These approaches aim to
increase the frequency of multiple favored QTLs in a population
(Bernardo, 2008).

Several empirical studies in cross-pollinated crops have shown
that MARS and GS can improve quantitative target traits
over conventional phenotypic selection (Eathington et al., 2007;
Massman et al., 2013; Beyene et al., 2015, 2016; Yabe et al.,
2018). However, GS and MARS are not easy in self-pollinated
crops of barley and soybean, as it is difficult to obtain a
sufficient number of F1 hybrid seeds for use in the subsequent
generation (Bernardo, 2010). For example, in soybean, only
two or three F1 hybrid seeds are obtained per hand-crossing
event. To better apply GS and MARS to self-pollinated crops,
Bernardo (2010) proposed that selection and crossing should be
performed primarily on the F2 generation, which is by selfing
of a few F1 seeds. It was determined that genetic improvement
is only slightly lower using this method than that using the F1
generation (Bernardo, 2010). However, this method requires the
production of F1 hybrid seeds from multiple cross combinations
between selected plants, which is not easily implemented in
most self-pollinated crops, where crossing by hand is laborious.
For instance, in soybean, the floral organs are very small and
emasculation must be conducted prior to flowering. Moreover,

Abbreviations: GS, genomic selection; GV, genetic value; LASSO, least absolute

shrinkage and selection operator; MARS, marker-assisted recurrent selection; ME-

MIM, multi-environment multiple interval mapping; MGV, maximum genetic

value; NICS, experimental field name; P1, conventional recurrent selection strategy

with single cross; P5 and P10, conventional recurrent selection strategy with

multiple crosses; QTL, quantitative trait loci; RIL, recombinant inbred line; S1,

proposed selection strategy with single cross; S5 and S10, proposed selection

strategy with multiple crosses; SNP, single nucleotide polymorphism; VBAY,

variational method for Bayesian hierarchical regression.

since abscission occurs in 20–80% of the flowers and pods
at any stage of soybean seed development (Candwell, 1973),
repeated hand crossing is necessary to obtain hybrid seeds in
each cross combination. Thus, to apply GS and MARS to many
self-pollinated crops, a strategy for reducing the labor of hand
crossing is needed.

Here, we describe the identification of the best cross
combinations; thus, enabling us to improve a target trait with
minimal hand crossing. The usefulness criterion (U = µ +

iσgh) and superior progeny values (s = µ + iσg), where µ

is the expected cross mean trait value, i is the standardized
selection intensity, σg is the genetic standard deviation of the
cross, and h is the square root of trait heritability, have been
proposed as a selection criteria for cross combinations (Schnell
and Utz, 1975; Zhong and Jannink, 2007). However, it is
difficult to estimate the progeny variance (σ 2

g ) for each cross
combination prior to crossing. Lehermeier et al. (2017) proposed
an analytical approach based on the whole-genome regression
model given in the training population to predict the progeny
variance of each cross combination. Separately, Iwata et al. (2013)
proposed a method for predicting trait variance in the progeny
population immediately after training the population by using
simulated progeny genotypes and a whole-genome regression
model. Similarly, Mohsen et al. (2015) developed the computing
package PopVar, which can predict progeny variance in each
cross combination. PopVar is assumed to predict the superior
progeny values for each cross when the progeny genotypes are
fixed, such as in recombinant inbred lines (RILs). The method
proposed by Iwata et al. (2013) would be useful for GS andMARS,
as selection and crossing are repeated in each cycle. We sought
to develop an efficient selection strategy that can quickly produce
superior progeny with a minimal crossing in self-pollinated crops
by combining the concepts proposed by Bernardo (2010) and
Iwata et al. (2013). The efficiency of our strategy was evaluated
based on simulated and empirical experiments leveraging a
soybean breeding population.

MATERIALS AND METHODS

Experimental Design for the Simulation
Study
The plant species was assumed to be diploid with 20 pairs of
chromosomes (n= 20), each with a length of 150 cm. A trait was
considered to be controlled by 30 or 100 QTLs. The QTLs were
assumed to be randomly distributed among the 20 chromosome
pairs. The additive effect of eachQTLwas sampled independently
from a gamma distribution whose scale and shape parameters
were 1.66, and 0.4, respectively, as described by Meuwissen et al.
(2001). The genetic variance of the initial population was set
to 1.0. The heritability (h2) of the trait was assumed to be 0.3,
0.6, or 1.0. Genetic variation was explained only by an additive
effect, and no dominance or epistatic effects influenced the traits.
All QTLs were biallelic, and each genotype was defined as 1
(AA), 0 (AB), or −1 (BB). One F1 genotype, heterozygous for
all QTL alleles, was selfed to produce the initial F2 population.
Selfing was repeated by single-seed descent procedure up to the
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F8 generation, which was then used as an initial population
for the simulation study. The population size was set to 200
plants. The genetic value (GV) of each plant was calculated as
the sum of the true QTL effect multiplied by its genotype. The
environmental effect of each plant was sampled independently
from a normal distribution, and the phenotypic value for each
plant was calculated as the sum of GVs and environmental effects.
The prediction model was constructed using the following linear
regression model:

yi = µ +

m∑

j=1

βjxij + εi

where yi is the phenotypic value of plant i (i = 1, 2, . . . ., n), µ

is the overall mean, and βj and εi represent the genetic effect
coefficients of QTL j (j = 1, 2,.., m). The error deviation is
assumed to follow N(0, σ2

ε
). In addition, xij denotes the genotype

of QTL, j for line and i for individual. The least absolute shrinkage
and selection operator (LASSO) method from glmnet Version
2.0-18 (Friedman et al., 2010), in which selection of a variable and
estimation of the genetic effect coefficients are simultaneously
conducted, was used to estimate the genetic effect coefficient and
calculate the prediction value (PV) in R version 3.4.1 (R Core
Team, 2018). The penalty parameter (λL) was optimized based
on a ten-fold cross-validation method.

By using the initial population, we compared the selection
efficiency of the two major different strategies to select parents
for crossing based on prediction values of population (P) and
simulated prediction values of the progenies (S) (Figure 1). The
selection scheme (used for all strategies) was as follows: F2
progeny (treated as a single population) was generated from 10
F1 plants. All selection and crossing procedures for producing
the next generation were performed using the F2 population in
each cycle.

For selection strategy S1 (simulated prediction value; one
cross combination), the two plants with the best performance
among all possible cross combinations were selected on the
basis of the simulated PV of their progeny and crossed. For
selection strategy S10 (simulated prediction value; 10 cross
combinations), the top 10 cross combinations were selected
and crossed. For selection strategy P1 (prediction value; one
cross combination), the top one and two plants from the initial
population were selected on the basis of their own PV and crossed
to generate progeny in each cycle. For selection strategy P10
(prediction value: 10 cross combinations), the top 10 plants from
the initial population were selected on the basis of their own
PVs and crossed using a single-round robin design, in which
crossing was conducted for 10 cross combinations as a chain,
for example, plant1 × plant2, plant2 × plant3,. . . , plant10 ×

plant1, to generate progeny in each cycle. Selection strategy P10
is a substitute for that proposed by Bernardo (2010) where all
possible cross of selected plants was assumed.

In the present study, two more intermediate conditions
were examined, which are P5 (prediction value; five cross
combinations) and S5 (simulated prediction value; five cross
combinations). To adjust the 10 F1 genotypes generated in each
selection strategy, 10 F1 genotypes were generated from the

selected cross combination in S1 and P1, two from each of the
five cross combinations in S5 and P5, and one from the 10 cross
combinations in S10 and P10. An equal number of F2 genotypes
were generated by selfing each F1 plant. The population size of
the F2 plants was fixed at 200.

In S1, S5, and S10, F2 genotypes were simulated for all possible
cross combinations, and the PV of each F2 plant was then
calculated using its simulated genotype and the predictionmodel.
Cross combinations were ranked according to the mean PVs
of the top 10 F2 plants in each population. Only one top cross
combination was selected in strategy S1, whereas the top five and
10 cross combinations were selected to generate the next progeny
in strategies S5 and S10, respectively. Unlike strategies S1, S5, and
S10, each plant within a population was ranked according to its
own PV in the same manner as strategies P1, P5, and P10.

The selections were continued up to the fifth cycle, updating
the prediction model at odd numbered cycles. In even numbered
cycles the prediction model built in the previous cycle was
used. In the present study, 50 simulations were performed
independently, and the mean and variance of the simulation
replications were reported. Improvement of genetic gain was
evaluated using maximum GV (MGV), which was calculated
for plants in each F2 population in every cycle. A matched
paired t-test using the MGVs of each F2 population from 50
simulation replications was used to examine the significance of
the difference in the improvement of GVs between strategies. The
P-value was adjusted using the Bonferroni method (Bonferroni,
1936). In the t-test, populations derived from identical initial
populations in each replication were consideredmatch-pairs. The
changing patterns of genetic variation during selection cycles
were evaluated based on the proportion of fixed favorable and
unfavorable QTL alleles and that of unfixed QTL alleles within
populations. Selection accuracy was evaluated using Pearson’s
correlation coefficient between PVs and GVs in each cycle.
In some simulation replications, the QTL genotypes in the
population were completely fixed in a particular cycle. In this
case, the data of the last cycle were continuously used until
the end of the selection period. All the simulation scripts were
written and run in R version 3.4.1 (R Core Team, 2018) using the
Breeding Scheme Language package (Yabe et al., 2017).

Plant Materials and Growth Conditions
Seeds were obtained from the National Agriculture and Food
Research Organization (NARO) at Genebank, Japan. A cross
between two the varieties of soybean (Glycine max), “Enrei” (JP
28862) as the female parent and “Hyuga” (JP 29640) as the male
parent, was performed to produce the F2 population. Selfing
was repeated by a single-seed descent procedure up to the F8
generation, generating a population consisting of 194 lines, which
were genotyped. RILs from F8 and later generations were grown
at four separate locations; the details of the growing conditions
are summarized in Supplementary Table 1.

Crosses and Development of Lines for the
Validation of Selection Effect
Breeding lines were developed using two-cycle crosses. First the
RILs were crossed and then their progenies were crossed. In
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FIGURE 1 | Comparison of the selection strategies based on simulation experiment. (A) and (B) are the proposed strategies (S1, S10); genotypes of the initial

population were used to simulate the distribution of prediction values (PVs) in the F2 progeny (blue enlarged frame) for all possible cross combinations. Cross

combinations are ranked according to the mean PV of the top 10 progeny, and crosses of only the top combination (A, S1) or top 10 combinations (B, S10) were

conducted in each cycle. (C) P1: Top 1 and 2 plants were selected on the basis of their own PV and crossed in each cycle. (D) P10: Top 10 plants were selected on

the basis of their own PV and crossed in a single-round robin design in each cycle.

the first cycle, crosses between selected RILs were performed
following proposed strategy S1, and several F1 seeds (defined
as the first F1) were obtained in 2014. The first F1 plants were

grown in a greenhouse in 2014 and F2 seeds (defined as the first
F2) were sown on June 19, 2015. In the second cycle, crosses
between selected first F2 plants were performed, and several F1
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seeds (defined as the second F1) were collected. The second
F1 plants were grown in a greenhouse in 2015 and F2 seeds
(defined as the second F2) were sown on June 20, 2016, and
F3 seeds (defined as the second F3) were obtained through self-
pollination. The second F3 generation was used for validation,
and these seeds were sown on July 4, 2017. These validation lines,
parental cultivars, and selected RILs were grown in a randomized
complete block design with eight replications, all under the same
growth conditions (Supplementary Table 1).

Analysis of Trait Data
Seed protein content was measured for the RILs, parental
cultivars, and second F3 plants using near-infrared spectroscopy
with an Infratec 1241 Grain Analyzer (calibration model
SO138111 Soybean STM, FOSS North America, Eden Prairie,
MN, USA). Transmission spectra were recorded in the
wavelength range of 570–1,100 nm. As for validation of selection
effect on the protein content data set obtained in 2017,
statistically significant differences between blocks were analyzed
using a one-way ANOVA followed by a Tukey–Kramer post hoc
test. All statistical analyses were conducted using R version 3.4.1
(R Core Team, 2018).

SNP Marker Analysis
As described previously (Khosla et al., 1999), total genomic
DNA was extracted from young fresh leaves (3 g) taken from
the parental cultivars, RILs, first F1, first F2, second F1,
and second F2 plants using guanidine hydrochloride (Sigma-
Aldrich) and proteinase K (QIAGEN). Multiplex assays for
513 SNPs, distributed throughout the genome, were designed
(Supplementary Table 2) using Sequenom Assay Design 3.1
(Sequenom). Genotyping was conducted using the Sequenom
MassARRAY system (Oeth et al., 2009). Multiplex PCR, followed
by template-directed single-base extension at each SNP, was
conducted using the MassARRAY iPLEX Gold kit (Sequenom),
following the instructions of the manufacturer. Genotypes were
determined using MassARRAY Typer version 4.0 (Sequenom).

Linkage Map Construction and QTL
Detection
The linkage map of RILs was constructed using JoinMap v. 4.0
(Van Ooijen and Voorrips, 2001). The logarithm of the odds
threshold for the grouping of DNA markers ranged from 3.0
to 5.0. The marker order was determined using the maximum-
likelihoodmapping algorithm. The recombination frequency was
converted into the genetic distance (cM) using the Haldane
mapping function. QTL analysis was conducted using Multi-
QTL ver. 2.6 (Multi-QTL, http://www.multiqtl.com). Seven
phenotypic datasets for the RILs, taken from 2009 to 2013, were
used to perform multienvironment multiple interval mapping
(ME-MIM) to scan the entire genome (Korol et al., 1998, 2001).
Statistical significance thresholds (α = 0.05) for the identification
of putative QTLs were tested by permutation with 10,000 runs
(Churchill and Doerge, 1994), following which the parameters of
significant QTLs were reported as position, additive effects, and
percentage of variance explained.

Genome-Wide Association Analysis
A variational method for Bayesian hierarchical regression
(VBAY) model, from the PUMA package (Hoffman et al., 2013),
was used for the detection ofmarkers associated with seed protein
content. VBAY uses a Bayesian framework and, hence, reports the
posterior probability when each marker coefficient is nonzero.
This can be interpreted as the posterior probability that the
marker is significantly associated with the phenotype. A posterior
probability value of >0.5 was used as the significance threshold
for calling associations with the phenotype.

Construction of the Prediction Model
Multienvironment multiple interval mapping detects relatively
robust markers associated with a target trait, whereas VBAY
can identify weak associations at a low false-positive rate
(Logsdon et al., 2010). The representative 29 markers with
high genotyping quality, located in the genomic region detected
by either of the methods, were used as variables in the
prediction model for protein content. In addition to the
simulation experiment, LASSO, from the R package glmnet
Version 2.0-18 (Friedman et al., 2010) was used to construct
the prediction model. The penalty parameter (λL) was optimized
based on a 10-fold cross-validation method. The accuracy of
the model constructed on the basis of the selected marker
set and all available markers was compared by implementing
10-fold cross-validation.

RESULTS

Selection Efficiency
We assessed the efficiency with which genetic improvement
occurred in the two major strategies used to select parents for
crossing based on prediction values of the population (P) and
simulated prediction values of the progeny (S) (Figure 1). The
population MGVs under different conditions, number of QTLs
(n = 30 or 100) and heritability (h2 = 0.3, 0.6, or 1.0) were
compared (Figure 2; Supplementary Tables 3–5). No difference
was observed between the MGVs of S1 (simulated prediction
value; 1 cross combination) and P1 (prediction value; 1 cross
combination) whenQTL= 30 and h2 = 0.3 (Figure 2A), whereas
S1 was significantly higher than P1 when QTL= 30 and h2 = 0.6
or 1.0 (Figures 2C,E; Supplementary Tables 3, 4). MGVs for the
single cross strategies (S1 and P1) were significantly lower than
in the multiple cross strategies, i.e., S5, S10 (simulated prediction
value; five or 10 cross combinations), and P5, P10 (prediction
value; five or 10 cross combinations) during selection cycles when
QTL= 30 and h2 = 0.3 (Figure 2A; Supplementary Tables 3, 4),
while no significant difference was observed between S1 and any
of the multiple crosses strategies based on prediction values P5
or P10 when QTL = 30 and h2 = 0.6 or 1.0 (Figures 2C,E;
Supplementary Tables 3, 4), except for the difference between S1
and P10 when QTL = 30 and h2 = 1.0 in later cycles (Figure 2E;
Supplementary Tables 3, 4). Although differences between the
multiple cross strategies (S5 versus S10 and P5 versus P10) were
small when QTL= 30 or 100 and h2 = 0.3 or 0.6 (Figures 2A–D;
Supplementary Tables 4, 5), the MGVs for S5 and S10 were
significantly higher than those of P5 and P10 when QTL = 30
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FIGURE 2 | Comparison of genetic improvement during selection cycle of the different selection strategies. Y-axis indicates the maximum genetic values (MGVs).

or 100 and h2 = 1.0 (Figures 2E,F; Supplementary Tables 4, 5).
Overall, genetic improvement in all selection strategies plateaued
by the third cycle, except when QTL = 100 and h2 = 1.0
(Figure 2).

Since selection strategy S1 revealed a clear response to
the heritability as described above (Figure 2), the changing
pattern of selection accuracy and proportion of unfixed and
fixed unfavorable QTLs were compared between the two
different conditions (i.e., 30 QTLs and h2 = 0.3, or 0.6)
(Figure 3; Supplementary Tables 6, 7). The selection accuracy
of all strategies at h2 = 0.3 were less than that at h2 =

0.6 (Figures 3A,B; Supplementary Table 6). The remarkable

difference between h2 = 0.3 and 0.6 was not observed
for the proportion of unfixed and fixed unfavorable QTLs
(Figures 3C–F; Supplementary Table 7). The proportion of
unfixed QTLs in both the single cross strategies (S1 and P1)
dropped rapidly during the early cycles and remained at a low
level, while those of multiple cross strategies (i.e., S5, S10, P5,
P10) gradually decreased during the selection (Figures 3C,D;
Supplementary Table 7). In contrast, the proportion of fixed
unfavorable QTLs for both the single cross strategies (S1 and
P1) rapidly increased during the first cycle, whereas those
of multiple cross strategies gradually increased (Figures 3E,F;
Supplementary Table 7).
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FIGURE 3 | Comparison of selection accuracy, proportion of unfixed quantitative trait loci (QTLs), and fixed unfavorable QTLs during selection cycle of the different

selection strategies under the condition of 30 QTLs and h2 = 0.3 or 0.6.

Marker Selection and Prediction Model
Construction
Selection effect on seed protein content under strategy S1
was assessed and validated using a practical soybean breeding
population over two selection cycles. RILs derived from a
cross between parents differing in seed protein content were
used as the training population, and seed protein content was
evaluated across multiple environments from 2009 to 2013
(Supplementary Table 1). In total, 19 QTLs were identified
using multi-environment multiple interval mapping (ME-
MIM) (Figure 4; Supplementary Table 8). Three major QTLs
associated with seed protein content were identified near markers
Gm15_04338436S, Gm19_39293939S, and Gm20_44762804S.

These three QTLs alleles from the higher seed protein content
cultivar “Enrei” revealed an increasing genetic effect on

protein content in the seven environments. In contrast, three
QTLs (near markers Gm05_28181403S, Gm07_13926582S,

and Gm19_00077940S) with increasing genetic effect were

identified from the lower seed protein content cultivar “Hyuga.”
Previous MARS studies have shown that selection responses
increase if relaxed significance levels are used to identify the

markers associated with the target traits, and these markers are

used as variables in a multiple regression model for selection
(Hospital et al., 1997). The markers associated with protein

content were independently detected in each phenotypic data

set (Figure 4; Supplementary Table 9) using the VBAY model.
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FIGURE 4 | Genetic map locations of genetic factors controlling seed protein

content. The arrows indicate marker positions used to construct the prediction

model of protein content. The grey circle indicates the quantitative trait locus

(QTL) positions detected using multienvironment multiple interval mapping

(ME-MIM) analysis. The letters in parentheses show the name of yearly data

set for which significant association of the marker with protein content was

detected using a variational method for Bayesian hierarchical regression

(VBAY): (a) NICS1-2009, (b) NICS2-2010, (c) WARC-2011, (d) WARC-2012, (e)

NICS3-2012, (f) NICS3-2012L, and (g) NICS3-2013.

SNP makers located at Gm15_03756617S were detected in three
out of seven phenotype datasets. Four SNP makers (located
on Gm15_04338436S, Gm19_38628517S, Gm19_39293939S,
and Gm20_45559882S) were detected in two out of the seven
phenotype datasets. The remaining SNP markers were detected
in one of the seven phenotype datasets. Overall, twenty nine
markers were selected as variables for the multiple regression
model (“Arrows” in Figure 4; Supplementary Table 2). The
effectiveness of marker selection was validated by comparing the
accuracy of the prediction model given the 29 selected markers
vs. using all available 513 markers (Supplementary Table 10),
with a ten-fold cross-validation. We found that when the model
was provided with the reduced set of 29markers, a higher average
coefficient value was obtained, indicating that the selected 29
markers were sufficient in predicting protein seed content. The
prediction model generated using the 2013 dataset was selected
for the following reasons. First, we intended to validate the
selection effect in the NICS3 experimental field. The model
constructed using the phenotypic data obtained at the same
field might reduce the influence of environmental differences
on QTL effects detected using ME-MIM, and it is expected to
increase the selection accuracy. Second, among the phenotypic
datasets obtained at NICS3, the 2012 and 2012 L datasets in

FIGURE 5 | Scatter plot of the mean and variance of simulated protein

content of each F2 population for all possible cross combinations between

recombinant inbred lines (RILs). Each grey dot indicates each cross

combination. (A, C) and (B, D) indicate selection toward higher and lower

seed protein content, respectively. (A) and (B) indicate the variation of the

mean of top 5% of F2 plants (A) and bottom 5% of F2 plants (B) and variance

of F2 population for each cross combination at the first selection cycle. The

dashed lines indicate the highest (A, C) or lowest (B, D) estimated value

among RILs. Selected best cross combination toward higher [(A) RIL048 ×

RIL176] and lower [(B) RIL047 × RIL097] protein content is shown in black

dot. (C, D) indicate variation of the mean and variance at the second selection

cycle from the cross combination of (A) and (B), respectively. Greek letters

(α − δ) beside the black dots indicate identifiers for the cross combination in

the following Figures 6, 7.

2012 contained excessive missing data, whereas the 2013 data
set had no missing data (the column of “Number of Lines”
in Supplementary Table 11). Furthermore, the correlation
coefficients between the observed values at NICS3 in 2013, 2014,
and 2015 and the values estimated by the 2013 prediction model
were 0.70, 0.67, and 0.62, respectively (Supplementary Table 10;
Supplementary Figure 1), supporting the stability of the
prediction model over the years.

Simulation-Based Selection to Determine
the Best Cross Combination Between RILs
Together, the selected 29 marker genotypes of RILs and the 2013
prediction model were used to simulate protein content of the F2
progeny (first F2) for all the possible 18,721 cross combinations
between 194 RILs. The optimal cross for obtaining first F2 plants
with higher protein content was determined by using the mean
simulated values of the top 10 plants (top 5% of progeny) for
each cross combination (Figure 5A). Overall, a cross between
RIL048 and RIL176 was predicted to yield the highest seed
protein content; thus, this cross was carried out to produce first
F2 population (“black dot” in Figure 5A). For selection toward
lower protein content, the mean simulated values for the bottom
10 plants (bottom 5% of progeny) were calculated similarly,
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FIGURE 6 | Transition of predicted values based on actual genotypes against selection as the generation progressed. Selection toward high seed protein content by

using progeny of a cross combination of RIL048 × RIL176 (A, C, E) and low seed protein content by using that of RIL047 × RIL097 (B, D, F). (A, B) Upper and lower

box plots indicate simulated and predicted values of the F2 population at the first selection cycle, respectively. (C, D) Boxplots for the predicted values based on the

genotype of the second F1 plants at the second selection cycle. (E, F) Boxplots for the predicted values in the second F2 population derived from self-pollination of

selected second F1 plants. The whiskers of each boxplot indicate the maximum and minimum values. Dashed lines indicate the highest or lowest estimated value

among RILs. Greek letters (α − δ) beside the Y-axis indicate identifiers for the cross combination.

leading to the selection of RIL047 and RIL097 for crossing (“black
dot” in Figure 5B).

Comparison Between Simulated and
Predicted Values in the First F2 Population
Accuracy of the simulation data was investigated by calculating
the predicted values of the first F2 population derived from
the selected crosses. This was carried out using the practical
marker genotype data for each of the first F2 plant and the
prediction model. In the first F2 population derived from RIL048
× RIL176, the predicted values of several plants were higher
than those of line RIL011, which had the highest estimated
values of all the RILs (Figure 6A). The frequency of progeny
with simulated values exceeding the highest estimated values of
RIL011 was 43% (85/200), whereas it was 31% (25/80) when
the predicted values of practical progeny were used. The mean

predicted values of the top four F2 plants (top 5% of the
population) were 47.1%, which was similar to themean simulated
values (47.1%) of the top 5% of the population (“black dot” in
Figure 5A).

In contrast, the predicted values of several plants in
the first F2 population derived from the RIL047 × RIL097
cross were lower than those of the RIL with the lowest
estimated values (RIL047) (Figure 6B). The frequency of
the simulated progeny with simulated values lower than
those of RIL047 was 8% (16/200), whereas it was 6%
(5/84) compared with the predicted values. The mean
predicted values of the lower four F2 plants (∼lower 5%
of the population) were 38.6%, very similar to the mean
simulated values (38.6%) of the lower 5%. These results suggest
that our simulation method is quite effective in selecting
cross combinations.

Frontiers in Plant Science | www.frontiersin.org 9 September 2021 | Volume 12 | Article 729645

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Sekine et al. Simulation-Based Selection in Soybean

Simulation of the Second Cycle and
Development of Validation Lines
Progeny with higher or lower protein content than those of the
first F2 progeny were obtained by simulating the F2 population
(second F2) for all possible cross combinations within each of
the first F2 population. In this simulation, five F1 genotypes
were simulated and 50 F2 genotypes were then generated by
selfing of each F1, totaling 250 second F2 progeny per cross.
A total of 3,160 and 3,845 cross combinations between the
first F2 plants, derived from RIL048 × RIL176 and RIL047
× RIL097, respectively, were simulated (Figures 5C,D). In the
RIL048 × RIL176 second F2 population the mean simulated
values of the top 12 plants (∼top 5% of the population) were
used to select the best cross combination for obtaining progeny
with higher protein content (Figure 5C). Two individuals with
some of the highest mean simulated values were selected for
crossing. In contrast, in the RIL047 × RIL097 second F2
population the mean simulated values of the bottom 12 plants
(∼lower 5% of the population) were calculated and used to
select cross combinations (Figure 5D). Two individuals with

some of the lowest mean simulated protein content were selected

for crossing. Each of the second F1 plant obtained from each
cross combination was grown, and the PV was calculated using
practical marker genotypes from each of the second F1 plant
(Figures 6C,D). One second F1 plant from each cross, for the
highest or lowest predicted protein content, respectively, was
selected from the second F1 plants and self-pollinated. The
resulting seeds were grown as the second F2 population. Marker
genotype data obtained from the second F2 plants were used
to calculate the PVs (Figures 6E,F). The top four plants were
selected from each of the second F2 population derived from the
RIL048 × RIL176 cross, whereas the bottom four plants were
selected from each of the second F2 population derived from the
RIL047 × RIL097 cross. Each selected second F2 plant was self-
pollinated, and the second F3 seeds were used as lines to validate
the selection effect.

Evaluation of Protein Content of the
Validation Lines
Whether simulation-based selection was able to increase protein
content was determined by comparing protein content in eight
of the second F3 validation lines derived from RIL048× RIL176,
the parents of the RILs, with the estimated and observed top
RILs (the protein content of which was the highest among
the RILs in 2013–2015) (Supplementary Table 12). The mean
protein content of the validation lines was significantly higher
than that of the parental RILs (Figure 7A). For instance, the
mean protein content of parental RIL048 and RIL176 was 44.9
and 45.6%, respectively, while the mean protein content in the
validation lines developed from the second F2 population was
46.6–47.6% (“α” in Figure 7A). Similarly, the mean protein
content of the validation lines derived from the other second
F2 population was 46.5–47.2% (“β” in Figure 7A). Among the
validation lines, six out of the eight lines showed significantly
higher protein content than both parental RILs. Furthermore,
the mean protein content of all validation lines was higher

FIGURE 7 | Comparison of protein content of the validation lines with that of

parental cultivars and parental recombinant inbred lines (RILs). Selected

progeny of RIL048 × RIL176 toward higher protein content (A) and that of

RIL047 × RIL097 toward lower protein content (B). Greek letters (α − δ)

indicate identifiers for the cross combination. The same Greek letter with

different numbers indicates lines developed from the same cross combination.

Black diamonds and whiskers indicate mean protein content and standard

deviation, respectively. Black and grey asterisks indicate the mean protein

content of the validation lines were significantly higher than that of their

parental lines RIL048 and RIL176 (A) or lower than that of RIL047 and RIL097

(B) based on one-sided Student’s t-test, respectively. *, p < 0.05; **, p < 0.01.

than that of the parental cultivar ‘Enrei’ and the top RILs
(Supplementary Table 12). Similarly, protein content of the
validation lines derived from RIL047 × RIL097 (designed for
selection toward lower protein content) were compared with
those of parental RILs, estimated and observed lowest RILs (the
protein content of which was the lowest among the RILs in
2013–2015) (Supplementary Table 13). Mean protein content
in all validation lines was lower than that of the parental
RILs (Figure 7B). The mean protein content of parental RIL047
and RIL097 was 38.7 and 41.2%, respectively. In contrast, the
mean protein contents of the validation lines developed from
one second F2 population were 35.1–37.8% (“γ ” in Figure 7B).
Similarly, protein content in the validation lines derived from the
other second F2 population was 36.7–36.8% (“δ” in Figure 7B).
Among the validation lines, six out of the eight lines had
significantly lower protein content than the parental RILs.
Furthermore, the mean protein content of all validation lines was
lower than that of the parental cultivar “Hyuga” and the lowest
RILs (Supplementary Table 13). Although significant differences
from the parental RILs were not detected in some validation
lines, all validation lines were confirmed to be selected for high
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or low protein content, as expected, and are considered to be
superior progeny.

DISCUSSION

Efficiency of the Proposed Strategy
The integration of multiple favorable alleles is essential for the
improvement of quantitative traits in plant breeding. However,
efficient improvement of quantitative traits is not easy, as the
probability of obtaining progeny with multiple favorable alleles is
considerably low, particularly in self-pollinated crops. Recurrent
selection based on genomic information, such as MARS and GS,
has been shown to increase the probability of obtaining superior
progeny and efficiently improving a target quantitative trait in
cross-pollinated crops (Abdulmalik et al., 2017; Crossa et al.,
2017; Yabe et al., 2018). However, these methods are not feasible
in self-pollinated crops, as obtaining numerous F1 hybrids by
hand crossing can be quite challenging. Thus, to realistically
apply GS and MARS to self-pollinated crops, a strategy for
reducing the labor of hand crossing is needed.

To improve the target quantitative traits with minimal hand
crossing, we proposed a new strategy, S1, for the selection
of specific parental plants expected to produce F2 progeny
with the best performance from all possible cross combinations
in a breeding population based on the computationally
simulated phenotypes of the progeny. In the present study, the
selection efficiency of S1 was evaluated under several simulation
conditions. The MGVs of S1 were significantly higher than those
of the single cross strategy based on the PVs of P1 when QTL
= 30 and h2 = 0.6 or 1.0 (Figure 2; Supplementary Tables 3, 4).
Moreover, the MGVs of S1 were slightly lower than or similar
to those of P5 and P10 during the early cycles (Figure 2;
Supplementary Tables 3, 4). The number of cross combinations
of S1 to generate the population for the next cycle is one-fifth to
one-tenth of that required for P5 and P10. These results suggest
that our proposed strategy S1 reduces the number of crosses
required; thus, increasing the efficiency of short-term selection.

In contrast, the MGVs of S1 were significantly lower than
those of P5 and P10 when QTL = 30 and h2 = 0.3 (Figure 2;
Supplementary Tables 3, 4). No significant differences were
observed between S1 and P1 at early selection cycles when
QTL= 100 and h2 = 1.0 (Figure 2; Supplementary Tables 3, 5).
Higher selection accuracy was observed for S1 in the first and
second cycles when h2 = 0.6 and 1.0, compared to when h2

= 0.3 (Supplementary Table 6). Therefore, the simulated results
suggest that S1 is efficient for short-term selection when the target
trait is governed by amediumnumber of QTLs and its heritability
is high.

Drawbacks and Future Development of the
Simulation-Based Selection Strategy
The strategy S1 has limitations related to the impact of a strong
genetic bottleneck during selection. The proportion of unfixed
QTL in S1 rapidly declined during the first cycle, whereas those
strategies based on multiple crosses (S5, S10, P5, and P10)
maintained higher values (Figure 3; Supplementary Table 7).
This suggests that a strong genetic bottleneck due to the limited

number of crosses causes a rapid decline in genetic variation,
particularly in the first cycle. Genetic variation is the source of
improvement in the next generation; thus, maintaining genetic
variation with less fixation of unfavorable alleles is important
toward obtaining more genetic gains in the following cycles.
Daetwyler et al. (2015) proposed the optimal haploid value
(OHV), which calculates the potential value of a plant when the
best completely homozygous progeny (such as doubled haploids)
are generated from each plant. The genetic variance of OHV
selection was higher than that of selection based on genomic
estimated breeding value (i.e., GS), and more genetic gain was
obtained, particularly in the later cycles (Daetwyler et al., 2015).
Thus, it may be beneficial to apply S1 to obtain more genetic gain.
Alternatively, the multiple cross combination strategies, S5 and
S10, were effective in maintaining genetic variation (Figure 3;
Supplementary Table 7) to obtain more genetic gain (Figure 2;
Supplementary Table 3). Previously, several selection strategies
assumingmultiple cross combinations, such as genotype building
selection (GB, Kemper et al., 2012) and optimal population
value (OPV, Goiffon et al., 2017) have been proposed to
select a set of plants that are more likely to produce superior
progeny when crossed with each other. These are superior to
GS in maintaining high genetic variance over selection cycles
(Goiffon et al., 2017). Although the difficulty in producing
the next generation in multiple cross combinations remains
a major issue in many self-pollinated crops, these selection
methods would improve genetic gain more in the later
selection cycles.

Prospects for Further Improvement of
Seed Protein Content in Soybean
We chose seed protein content as the quantitative trait
manipulated in this study, as this trait is agriculturally
relevant, both for livestock feed and human consumption. In
particular, in Japan, high seed protein content is important
for developing new cultivars of soybean, as this trait is
known to be positively correlated with the consistency of
tofu (Toda et al., 2003), a healthy and traditional soy-based
food. Over the past two decades, more than 160 QTLs have
been reported as associated with seed protein content in
soybean (Patil et al., 2017). The Soybean Genetics Committee
officially designated two stable seed protein content-related
QTLs on chromosome 15 and 20 as reliable for marker-
assisted selection. In the present study, a QTL on chromosome
15 with stable effects was detected in a similar genomic
region (Figure 4; Supplementary Table 9). In contrast, other
DNA markers included as variables in the prediction model
revealed low genetic effects depending on the environment
(i.e., year, location, and field type) (Supplementary Table 11).
Previous studies have shown that temperature during the
pod maturation stage influences seed protein content (Patil
et al., 2017). Environmental influence must be considered
when developing a general selection model. Recently, some
studies have proposed that the performance of plants cultivated
under various environmental conditions was predicted by the
integration of a crop model into GS utilizing environmental
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information such as temperature, photoperiod, precipitation, and
sowing date (Heslot et al., 2014; Technow et al., 2015; Onogi
et al., 2016). These integrated models are more accurate than
the models constructed using only genome-wide DNA marker
information when phenotypic datasets frommultienvironmental
conditions are available. Future integration of such models
with our proposed strategy would improve the development
of plants with stable agronomic performance across different
environmental conditions.
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