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Wheat is one of the most important cereal crops worldwide. A consensus map combines

genetic information from multiple populations, providing an effective alternative to

improve the genome coverage and marker density. In this study, we constructed a

consensus map from three populations of recombinant inbred lines (RILs) of wheat using

a 90K single nucleotide polymorphism (SNP) array. Phenotypic data on plant height

(PH), spike length (SL), and thousand-kernel weight (TKW) was collected in six, four,

and four environments in the three populations, and then used for quantitative trait

locus (QTL) mapping. The mapping results obtained using the constructed consensus

map were compared with previous results obtained using individual maps and previous

studies on other populations. A simulation experiment was also conducted to assess

the performance of QTL mapping with the consensus map. The constructed consensus

map from the three populations spanned 4558.55 cM in length, with 25,667 SNPs,

having high collinearity with physical map and individual maps. Based on the consensus

map, 21, 27, and 19 stable QTLs were identified for PH, SL, and TKW, much more

than those detected with individual maps. Four PH QTLs and six SL QTLs were likely to

be novel. A putative gene called TraesCS4D02G076400 encoding gibberellin-regulated

protein was identified to be the candidate gene for one major PH QTL located on 4DS,

which may enrich genetic resources in wheat semi-dwarfing breeding. The simulation

results indicated that the length of the confidence interval and standard errors of the

QTLs detected using the consensus map were much smaller than those detected using

individual maps. The consensus map constructed in this study provides the underlying

genetic information for systematic mapping, comparison, and clustering of QTL, and

gene discovery in wheat genetic study. The QTLs detected in this study had stable effects

across environments and can be used to improve the wide adaptation of wheat cultivars

through marker-assisted breeding.
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INTRODUCTION

Wheat (Triticum aestivum L.) is one of the most important
cereal crops worldwide, providing about one-fifth of the total
calories consumed by humans. Due to limited farmland and the
rapid increase in human population, there is an urgent need
to accelerate the genetic gain on grain yield through advanced
genetic research and breeding activities in wheat. Genetic linkage
map construction and quantitative trait locus (QTL)mapping are
important areas in genetic research, as they provide fundamental
information for gene cloning, marker-assisted breeding, and
genome structure studies (Meng et al., 2015; Rasheed et al., 2016).

Linkage mapping approach based on individual populations
has become routine in wheat genetic studies to dissect the
genetic architecture of complex traits. However, a large number
of co-localized markers and low marker density due to a
limited genetic variation and a limited number of crossing-
over events are commonly seen with linkage maps constructed
in individual populations. Detected QTLs are usually specific
to designated crosses with wide confidence intervals, hindering
further genetic research on gene fine-mapping and cloning.
Furthermore, linkage mapping in single populations can only
identify QTLs with phenotypic variations from specific crosses,
and each mapping population can only represent a small number
of crossing-over events (Liu and Zeng, 2000). The narrow genetic
basis associated with individual crosses and populations reduces
both phenotypic and genotypic diversity. One way to solve these
problems is to construct a consensus map as the connection
across multiple populations.

A consensus genetic map combines genetic information
from multiple populations, and therefore provides an effective
alternative to improve genome coverage and marker density
(Maccaferri et al., 2015; Allen et al., 2017). A higher marker
density of the consensus map offers the chance to map more
QTLs to narrower intervals and to identify more closely linked
markers for the discovery of causal genes and marker-assisted
selection (MAS) in breeding. Consensus maps can also be used
to validate marker order, characterize genomic diversity, increase
the power of genome-wide association studies, and conduct QTL
meta-analysis (Cavanagh et al., 2013; Wang et al., 2014; Wingen
et al., 2017; Liu et al., 2020).

Some computer tools that can be used for consensus map
construction have been developed in the last 20 years, such
as BioMercator (Arcade et al., 2004), JoinMap (Van Ooijen,
2006), MergeMap (Wu et al., 2010), MultiPoint (Ronin et al.,
2012), and LPmerge (Endelman and Plomion, 2014). Using
these tools, consensus maps have been developed for wheat.
Somers et al. (2004) reported the first consensus map for wheat
based on SSR markers from three doubled haploid (DH) and
a recombinant inbred line (RIL) populations. Cavanagh et al.
(2013) generated a high-density consensus map from seven
populations, consisting of 7,504 single nucleotide polymorphism
(SNP) markers. Wang et al. (2014) integrated six bi-parental DH
populations to generate a consensus map using 40,267 markers.
Liu et al. (2020) developed a consensus map with a total length
of 4,080.5 cM containing 47,309 markers based on 21 individual
linkage maps and three previously reported consensus maps.

In this study, a consensus genetic map was constructed using
three bi-parental populations of RILs in wheat. QTL mapping
was then conducted for plant height (PH), spike length (SL), and
thousand-kernel weight (TKW) using the constructed consensus
map. The mapping results were compared among populations,
and with the results obtained using individual maps with the
purpose of identifying stable and common QTLs. In addition,
a simulation experiment was conducted to demonstrate the
advantages of using a consensus map in QTL mapping.

MATERIALS AND METHODS

Plant Materials and Phenotyping
Experimental Design
The three recombinant inbred line populations used in this study
were derived from crosses Doumai × Shi 4185 (denoted as DS,
275 F2 : 6 RILs), Gaocheng 8901 × Zhoumai 16 (denoted as GZ,
176 F2 : 6 RILs), and Zhou 8425B × Chinese Spring (denoted as
ZC, 245 F2 : 8 RILs), which had been previously reported by Wen
et al. (2017). Population DS and its parental lines were planted
at Shunyi (Beijing, China) and Shijiazhuang (Hebei, China)
in 2012–2013, 2013–2014, and 2014–2015 cropping seasons.
Population GZ and its parental lines were planted at Anyang
(Henan, China) and Suixi (Anhui, China) in 2012–2013 and
2013–2014 cropping seasons. Population ZC and its parental
lines were planted at Zhengzhou and Zhoukou (Henan, China)
in 2012–2013 and 2013–2014 cropping seasons. Randomized
complete block designs with three replications were used in field
trials. Each plot had three rows with 1.5m in length and 0.2m
apart between rows. About 50 seeds were sown in each row. Field
management was performed according to local practices.

Plant height was recorded as the average height based on
10 representative plants, measured from the base of the stem
to the top of the spike excluding awns at the late grain-filling
stage. SL was recorded as the average length of 20 representative
spikes in populations DS andGZ, and five representative spikes in
population ZC, measured from the base of the spike to the top of
the spike excluding awns. TKW was evaluated by weighing three
random samples of 500 kernels from each plot after harvest.

Genotyping and Marker Quality Control
Deoxyribonucleic acid was extracted from leaves of 15-day-old
seedlings according to the cetyltrimethyl ammonium bromide
(CTAB) protocol (Sharp et al., 1988). The populations were
genotyped by the 90K wheat Infinium iSelect SNP array (Wang
et al., 2014) at CapitalBio Corporation (http://www.capitalbio.
com) in Beijing, China. Quality control of the genotypic data has
been previously described in Wen et al. (2017), and described
here briefly and as follows. First, heterozygous marker types were
set as missing values. Then, markers with more than 10% of
missing values were deleted. Finally, SNPs with minor allelic
frequency lower than 0.3 were filtered out. The three individual
linkage maps based on these markers were reported byWen et al.
(2017). SNPs on the three maps were used for consensus map
construction. The R package VennDiagram (Chen and Boutros,
2011) was used to demonstrate the SNP numbers common
among the three individual maps.
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Statistical Analysis for Phenotypic Data
Analysis of variance and calculation of broad-sense heritability
(H2) from phenotypic data were performed using the AOV
function in software QTL IciMapping V4.2 (Meng et al., 2015).
Pearson correlation coefficients among traits were calculated
using mean phenotypic values across environments.

Consensus Genetic Map Construction
First, markers from the three recombinant inbred line
populations were grouped according to their chromosome
information in individual maps reported by Wen et al. (2017).
Markers that were present on the same chromosome in the three
individual maps were treated as anchors. Then, an algorithm
called combined linkage analysis (CLA, developed by the group
of the authors) was used for consensus map construction. To
assure the quality of the map, a limited number of markers
were removed manually if they caused serious inconsistency
in the marker order between the genetic and physical maps,
or excessive expansion of the constructed genetic map. The R
package LinkageMapView (Ouellette et al., 2018) was used to
visualize the constructed consensus map.

Furthermore, four steps were involved in the CLA algorithm:
step 1: derive the theoretical recombination frequencies of
pairwise markers in each mapping population; step 2: estimate
the recombination frequency between two linked markers and
sampling variance of the estimated recombination frequency
in each population. In addition to RIL populations, CLA is
applicable to many other kinds of bi-parental populations, as
described in Meng et al. (2015). For some kinds of mapping
populations such as DH and RIL, the likelihood equation
on recombination frequency has an explicit solution, so the
maximum likelihood estimate can be calculated directly. For
other kinds of mapping populations such as F2 and F3, the
maximum likelihood estimate cannot be succinctly given. In
this situation, either Newton iteration or the expectation-
maximization (EM) algorithm has to be adopted in estimating
the recombination frequency (Zhang et al., 2019). Step 3: estimate
the combined recombination frequency using the estimates and
their sampling variances from individual populations; reciprocal
of sampling variance of the estimated recombination frequency is
used as the weight of the corresponding population. Weight is set
as zero for those populations where the pair-wise recombination
frequency cannot be estimated. Step 4: construct the consensus
linkage map based on the combined estimates of recombination
frequencies between markers; a combination of the nearest-
neighbor algorithm and a two-opt algorithm in solving the
traveling salesman problem (TSP) was used in the marker
ordering (Zhang et al., 2020a).

Comparison of Marker Orders in the
Consensus Map, Physical Map, and
Individual Genetic Maps
Spearman rank correlation was used to measure the collinearity
of marker orders between the different maps, which was
calculated by the R Software. Marker order in each chromosome
in the consensus map was compared with the physical map
order of the respective chromosome. To acquire the physical
positions of the markers, sequences of SNPs were used to BLAST

(Basic Local Alignment Search Tool) against the wheat genome
IWGSC RefSeq v2.0 (https://urgi.versailles.inra.fr/download/
iwgsc/IWGSC_RefSeq_Assemblies/v2.0/, International Wheat
Genome Sequencing Consortium). The E-value threshold in
BLAST was set at 10−10. The markers were filtered out if their
alignment lengths were lower than 80% of the query sequence
length or the identities were lower than 0.85. If a marker was
assigned to multiple chromosomes by BLAST, the position on the
same chromosome as the consensus map was used in collinearity
analysis. Marker order comparison was also conducted between
the consensus map and individual maps, as well as among the
three individual maps. For each comparison, only the common
markers on two maps were used in the calculation of collinearity.

QTL Mapping Based on the Consensus
Map
Quantitative trait locus mapping was conducted in the individual
populations using the consensus map. The inclusive composite
interval mapping (ICIM) implemented in the BIP function in
QTL IciMapping V4.2 (Meng et al., 2015) was applied on the
mean phenotypic values across blocks in each environment and
best linear unbiased estimation (BLUE) values across multiple
environments. Scanning step was set at 0.2 cM. Probabilities of
adding and removing variables in stepwise regression were set
at 0.001 and 0.002, respectively. Threshold logarithm of odd
(LOD) score was set at 2.5, same as the QTL mapping studies on
individual maps from the three populations (Gao et al., 2015; Li
et al., 2018).

Quantitative trait loci and quantitative trait locus clusters were
named with chromosomal locations, considering all populations
together. QTLs detected in the same population were considered
to be common if the distance between QTL positions was
<20 cM in different environments. QTLs detected in different
populations were considered to be common if the genetic and
physical positions were close enough. In other words, distance
in the linkage map was <20 cM in terms of QTL positions,
and distance in the physical map was <25Mb in terms of
the minimum physical distances between flanking makers. In
individual populations, QTLs are considered to be stable if they
are identified in at least half of tested environments. Stable QTLs
for different traits were classified into the same cluster if the
minimum distance between the QTL confidence intervals was
<15 cM. The shiny Circos tool (Yu et al., 2018) was used to
visualize QTL positions on the consensus map. Stable QTLs
detected with the consensus map in this study were compared
with those detected by ICIM using individual maps (Gao et al.,
2015; Li et al., 2018), according to physical and genetic positions
of the flanking markers.

Genetic Models Used in Simulation
A simulation study was conducted to compare the QTL mapping
results from the individual and consensus maps. We assumed
that a chromosome has a length of 100 cM and contains 101
evenly distributed markers. Considering that the consensus map
always has more markers than each individual map, we assume
that the consensus map contained all the 101 markers, but that
the individual map only contained half of them, i.e., 51 evenly
distributed markers with marker density at 2 cM. Three QTL
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TABLE 1 | Mean performance and heritability of plant height (PH), spike length (SL), and thousand-kernel weight (TKW) in the three RIL populations, Doumai × Shi 4185

(DS), Gaocheng 8901 × Zhoumai 16 (GZ), and Zhou 8425B × Chinese Spring (ZC), across multiple environments.

Population Trait Parenta RIL populationb H2_by_meanc H2_by_plotd

P1 P2 Mean SD Range

DS PH 73.51 73.54 83.89 7.56 64.99–105.09 0.97 0.69

SL 9.29 8.30 8.77 0.97 6.17–12.10 0.95 0.62

TKW 50.30 35.35 43.56 4.95 30.52–60.10 0.96 0.75

GZ PH 94.38 67.77 90.67 15.82 44.23–118.25 0.99 0.91

SL 8.74 8.97 8.59 0.87 6.60–11.24 0.96 0.72

TKW 43.83 48.17 46.52 3.81 33.46–55.55 0.91 0.59

ZC PH 67.12 115.08 101.07 14.02 60.58–125.87 0.95 0.83

SL 11.50 8.31 10.14 1.15 6.89–13.83 0.91 0.72

TKW 52.63 29.10 37.12 4.16 26.52–48.83 0.94 0.81

aBest linear unbiased estimation (BLUE) values across multiple environments. In population DS, P1 and P2 refer to Doumai and Shi 4185, respectively. In population GZ, P1 and P2

refer to Gaocheng 8901 and Zhoumai 16, respectively. In population ZC, P1 and P2 refer to Zhou 8425B and Chinese Spring, respectively.
bValues were based on BLUE across multiple environments.
cHeritability in broad sense based on replicated means.
dHeritability in broad sense based on plot level.

SD, standard deviation.

distribution models were simulated (Supplementary Table 1). In
model I, a QTL was located at 34.5 cM on the chromosome with
an additive effect of 1. In model II, two QTLs were linked in the
coupling phase, both with an additive effect of 1. In model III,
two QTLs were linked in the repulsion phase with additive effects
of −1 and 1, respectively. The broad sense heritability (H2) was
set at three levels, i.e., 0.05, 0.1, and 0.2 for model I, and 0.1, 0.2,
and 0.4 for models II and III. One thousand RIL populations,
each with a size of 200, were simulated for each model, and
each heritability level by the BIP simulation functionality was
implemented in QTL Ici Mapping V4.2 (Meng et al., 2015). The
consensus map with 101 markers and the predefined QTLs were
used to generate the simulated populations. Both the consensus
and individual maps were used in QTL mapping. For QTL
mapping using individual maps, genotypic data of the 51markers
were used. ForQTLmapping using the consensusmap, genotypic
data of the 51 markers were the same as those in individual maps,
but the other 50 markers only present in the consensus map were
set as missing values. For the ICIM QTL mapping method on
simulated populations, the scanning step was set at 0.1 cM and
the threshold LOD score was set at 2.5. Probabilities for entering
and removing variables in the stepwise regression were set at
0.001 and 0.002, respectively. QTL detection power was estimated
according to a support interval of 5 cM centered at the position of
true QTL. If multiple peaks occurred within the support interval,
only the highest one was counted. QTLs identified out of the
support interval were regarded as false positives (Li et al., 2012).
The other parameters were set as default values.

RESULTS

General Information on Both Genotypic
and Phenotypic Data
There were 10,986 markers on the linkage map constructed in
population DS, 11,819 markers in population GZ, and 14,862
markers in population ZC. Populations DS and GZ shared 4,208

common markers; DS and ZC shared 4,420 common markers;
GZ and ZC shared 5,183 commonmarkers; the three populations
had 1,880 markers in common (Supplementary Figure 1). A
total of 25,736 unique markers on the three individual maps were
used for consensus map construction.

Phenotypic means and heritability of the three traits
are shown in Table 1 for the three RIL populations across
a number of environments. Frequency distributions in
different populations and environments are shown in
Supplementary Figure 2 for PH, Supplementary Figure 3

for SL and Supplementary Figure 4 for TKW. For PH, Doumai
was taller than Shi 4185 in four environments, but shorter in
the other two environments in population DS; Gaocheng8901

was always taller than Zhoumai 16 in population GZ; Chinese

Spring was always taller than Zhou 8425B in population ZC
(Supplementary Figure 2). For SL, Doumai was longer than Shi

4185 in four environments, almost equal in one environment,
and shorter in the other one environment; Zhoumai16 was

longer than Gaocheng 8901 in three environments, and

shorter in the other environment; Chinese Spring was always
longer than Zhou 8425B (Supplementary Figure 3). For
TKW, Doumai was always higher than Shi 4185; Zhoumai
16 was always higher than Gaocheng 8901; Zhou 8425B was
always higher than Chinese Spring (Supplementary Figure 4).
The three traits were continuously distributed in the three
populations, similar to and typical in most QTL mapping
studies. Much wider ranges were observed in the progenies
in comparison with their parents, except for TKW in two
environments in population ZC (Supplementary Figures 2–4).
Heritability in the broad sense, based on the replicated means,
was quite high for the three traits, ranging from 0.91 to 0.99
(Table 1), while heritability based on the plot level ranged
from 0.59 to 0.91. Correlation coefficients between traits in
the three populations are given in Supplementary Table 2. At
a significance level of 0.01, PH was positively correlated with
TKW in all three populations. SL showed a positive correlation
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FIGURE 1 | Consensus genetic map constructed from the three recombinant inbred line (RIL) populations, Doumai × Shi 4185 (DS), Gaocheng 8901 × Zhoumai 16

(GZ), and Zhou 8425B × Chinese Spring (ZC).
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TABLE 2 | Characteristics of the consensus genetic map constructed from the three RIL populations, DS, GZ, and ZC.

Chromosome Length (cM) Marker number Bin number Average BD (cM)a Max BD (cM)b Coefficientc Consistent proportion (%)d

1A 192.09 1280 240 0.80 9.22 0.99 50.55

1B 182.47 2014 257 0.71 5.72 0.95 51.07

1D 192.98 700 82 2.35 19.42 0.96 57.93

2A 278.86 1685 268 1.04 10.08 0.99 51.99

2B 290.78 2431 324 0.90 14.73 0.87 45.67

2D 208.48 625 108 1.93 13.68 0.99 71.76

3A 246.30 1381 195 1.26 16.68 0.98 55.72

3B 191.12 1974 219 0.87 9.66 0.94 43.30

3D 213.91 294 60 3.57 23.97 0.74 46.04

4A 225.78 1304 193 1.17 12.36 0.98 47.22

4B 228.26 713 201 1.14 8.88 0.98 58.53

4D 168.06 106 53 3.17 17.71 0.95 75.68

5A 250.07 1238 255 0.98 18.50 0.96 62.41

5B 279.03 2475 330 0.85 8.33 0.95 46.34

5D 176.72 298 67 2.64 17.76 0.96 68.11

6A 214.24 1696 289 0.74 7.26 0.96 36.30

6B 213.08 1571 252 0.85 6.04 0.96 53.88

6D 168.33 350 73 2.31 25.08 0.96 54.44

7A 215.12 1701 213 1.01 8.00 0.99 62.07

7B 196.83 1577 236 0.83 7.77 0.98 45.75

7D 226.05 254 64 3.53 28.84 0.99 73.71

Genome

A 1622.47 10285 1653 0.98 18.50 0.98 52.32

B 1581.57 12755 1819 0.87 14.73 0.98 49.22

D 1354.52 2627 507 2.67 28.84 0.94 63.95

Homeologous groups

1 567.54 3994 579 0.98 19.42 0.97 53.19

2 778.12 4741 700 1.11 14.73 0.95 56.47

3 651.33 3649 474 1.37 23.97 0.89 48.35

4 622.10 2123 447 1.39 17.71 0.97 60.48

5 705.82 4011 652 1.08 18.50 0.95 58.95

6 595.64 3617 614 0.97 25.08 0.96 48.21

7 637.99 3532 513 1.24 28.84 0.99 60.51

Total 4558.55 25667 3979 1.15 28.84 0.95 55.17

aAverage distance between two adjacent bins.
bMaximum distance between two adjacent bins.
cSpearman rank correlation coefficient between the consensus map and IWGSC RefSeq v2.0.
dThe proportion of SNPs arranged in the order same with those on the corresponding chromosomes of the physical map.

with both PH and TKW in population DS. Other correlations
were non-significant.

Characteristics of the Constructed
Consensus Map
Of the 25,736 unique SNPs on the three individual linkage
maps, 25,667 were assigned to the consensus map, resulting
in 21 linkage groups corresponding to the 21 chromosomes
in hexaploid wheat (Figure 1). General information on the
consensus map is provided in Table 2, and positions of all
the markers on both the genetic and physical maps are
given in Supplementary Table 3. The consensus map spanned
4,558.55 cM in length, and the number of unique map positions

(denoted as bins) was equal to 3,979. Lengths of the A, B, and D
genomes were 1,622.47, 1,581.57, and 1,354.52 cM, respectively
(Table 2). Chromosome 4D was the shortest, with a length of
168.06 cM, and had the least number of markers (i.e., 106) and
the least number of bins (i.e., 53). Chromosome 2B was the
longest with a length of 290.78 cM, and had the second largest
number of markers (i.e. 2,431) and the second largest number
of bins (i.e., 324). There were 18 gaps longer than 15 cM on
the consensus map, 16 of which were located in the D genome
(Supplementary Table 3). Average distance between adjacent
bins was equal to 1.15 cM.

The single nucleotide polymorphism markers (SNPs) number
was similar in the A and B genomes, i.e., 10,285 and 12,755 SNPs,

Frontiers in Plant Science | www.frontiersin.org 6 August 2021 | Volume 12 | Article 727077

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Qu et al. Consensus Map Construction in Wheat

FIGURE 2 | Collinearity of marker orders between the consensus and physical maps. The dotted lines indicate the centromeres of chromosomes.

but the number was much lower in the D genome, i.e., 2,627
SNPs (Table 2). In comparison with the A and B genomes, the
D genome was shorter and contained much fewer markers and
bins, and more gaps, indicating that fewer crossing-over events
happened on the D genome, which was also observed in the
three individual maps. Although the marker number and bin
number in the D genome were significantly lower than those in
the A and B genomes, results from BLAST indicated that the
constructed consensus map still had nearly complete coverage for
chromosomes in the D genome.

Marker orders on the consensus map and physical map had
high collinearity, with an average Spearman rank correlation
coefficient of 0.95 across the 21 chromosomes (Table 2, Figure 2).
Rank correlation coefficients were higher than 0.94 for all the
chromosomes except 2B and 3D. The lower coefficient observed
on 3D may be partly due to the much-reduced bin number
when many markers were clustered in bins. Collinearity analysis
between the consensus and physical maps also revealed that
markers in large physical region around the centromeres of
chromosomes tended to be clustered in a short genetic interval
on consensus genetic map (Figure 2), indicating a much stronger
recombination suppression occurred around the centromere
than did that the distal regions.

Comparison of the Consensus Map With
the Three Individual Maps
Wen et al. (2017) reported three linkage maps from
three populations constructed with QTL IciMapping V4.0

(Meng et al., 2015), JoinMap 4.0 (Stam, 1993), and MapDisto 1.7
(Lorieux, 2012). Two of them had 21 linkage groups, and one had
31 linkage groups. The consensus map constructed in this study
had 21 linkage groups, corresponding to the 21 chromosomes in
hexaploid wheat. The marker and bin numbers on the consensus
map were 1.73 and 1.15 times higher than the largest marker
and bin numbers on the three individual maps. The length of
the consensus map was 1.44 times longer than that of the longest
individual map. Longer chromosomes on the individual maps
also tended to be longer on the consensus map. For example, the
two longest chromosomes on the consensus map, i.e., 2B and

5B, ranked first and third in mapping length in each of the three
individual maps.

There were 616 markers with inconsistent chromosomes

on the individual maps, but the inconsistent chromosomes
for each marker were finalized to one unique chromosome

on the consensus map (Supplementary Table 4). Among these

markers, 540 were mapped to single chromosomes that they
were located on the individual maps. For example, marker
wsnp_Ex_c200_391015 was located on chromosomes 7A and
1A on individual maps of populations GZ and ZC, respectively,
which was finalized on chromosome 1A on the consensus map.
Forty-nine markers were mapped to one of the homeologous
chromosomes. For example, marker Tdurum_contig28665_150
was located on chromosomes 1D, 1D, and 2A in populations
DS, GZ, and ZC, respectively, and was finalized on chromosome
1A, a homeologous chromosome of 1D. Twenty-seven markers
were mapped to neither the same chromosome nor homeologous
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FIGURE 3 | Schematic representation of stable quantitative trait loci (QTLs) for plant height (PH), spike length (SL), and thousand-kernel weight (TKW) detected in

three RIL populations, DS, GZ, and ZC from the consensus map.

chromosomes. For example, marker tplb0024a09_2369 was
located on chromosomes 7D and 4A in populations DS and
ZC, respectively, and was finalized on chromosome 2B on the
consensus map (Supplementary Table 4).

The markers showed high collinearity across chromosomes
between the consensus and individual maps, and the average
Spearman rank correlation coefficient was similar to those
between the individual maps (Supplementary Table 5). Fewer
inconsistencies in orders between the consensus and individual
maps were observed for closely linked markers.

QTLs for PH Detected From the Consensus
Map and Comparison With Those From
Individual Maps
Using the consensus map, a total of 40 QTLs were detected for
PH (Supplementary Table 6), among which 10, 8, and 8 were

stable in populations DS, GZ, and ZC, respectively (Figure 3,
Table 3). Five QTLs were identified in two populations, i.e., qPH-
2B-2, qPH-4B-1, qPH-4D-1, qPH-4D-2, and qPH-5A-2. qPH-2B-2
were repeatedly detected in populations DS and ZC with LOD
scores in the range of 3.62 to 22.98, explaining 1.63–8.05% of the
phenotypic variance (PVE). qPH-5A-2 was repeatedly detected
in populations DS and GZ, with LOD scores ranging from 3.90
to 15.44, and PVE values ranging from 2.58 to 9.63%. qPH-
4B-1, qPH-4D-1, and qPH-4D-2 were repeatedly identified in
populations GZ and ZC, taking the top three ranks in both
populations by average LOD score, PVE value, and additive effect
across environments. qPH-4B-1 was mapped on chromosome 4B
at the interval of 34.98–49.79 Mb on physical map with LOD
scores ranging from 6.31 to 43.49, and PVE values ranging from
8.14 to 30.85%. qPH-4D-1 was mapped on chromosome 4D at
the interval of 14.14–17.01Mb with LOD scores ranging from
6.54 and 17.10, and PVE values ranging from 8.06 to 16.48%.
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TABLE 3 | Stable quantitative trait loci (QTLs) identified for PH in the three RIL populations, DS, GZ, and ZC using the consensus map.

QTL Pop Environments Position (cM) LOD PVE (%) Add

qPH-1B-2 DS E2/E3/E4/E5/B 95.60–100.20 3.26–38.07 1.18–15.43 1.37 to 5.42

qPH-2A-2 DS E1/E3/E4/E6/B 192.00–195.20 2.79–11.05 1.01–5.32 −2.28 to −1.15

qPH-2B-2 DS E1/E2/E4/E5/B 224.40–239.60 3.62–22.98 1.63–8.05 −3.92 to −1.26

ZC E11/E13/E14/B 225.80–227.80 3.89–5.52 2.33–4.30 −3.20 to −2.31

qPH-2D-1 ZC E13/E14/B 113.80–114.40 2.89–3.73 1.49–3.08 2.01 to 2.77

qPH-2D-3 DS E1/E2/E3/E4/B 190.20–193.60 2.58–17.02 0.75–7.21 1.21 to 3.22

qPH-3A-1 GZ E7/E8/E9/E10/B 34.20–36.80 2.85–4.00 3.48–5.41 2.74 to 4.47

qPH-3A-2 DS E1/E2/E3/E5/B 130.40–148.60 16.23–43.54 6.67–28.31 −5.25 to −3.25

qPH-3B-2 GZ E7/E10/B 190.60–190.60 2.85–3.33 3.53–4.06 3.08 to 3.77

qPH-4A-2 ZC E11/E13/E14/B 114.60–132.80 3.27–4.43 1.33–4.47 2.36 to 2.60

qPH-4B-1 GZ E7/E8/E9/E10/B 75.00–75.00 6.31–9.52 8.14–10.82 −5.72 to −3.92

ZC E11/E12/E13/E14/B 74.20–74.40 16.87–43.49 17.92–30.85 5.37 to 11.02

qPH-4B-2 DS E2/E3/E4/E5/E6/B 100.40–102.40 3.12–5.91 1.64–2.54 −1.89 to −1.34

qPH-4D-1 GZ E7/E8/E9/E10/B 33.20–36.00 6.68–8.86 8.06–13.62 4.71 to 6.87

ZC E11/E12/E13/E14/B 33.40–34.60 6.54–17.10 8.64–16.48 3.90 to 5.83

qPH-4D-2 GZ E7/E8/E9/E10/B 73.20–73.80 6.20–7.83 8.39–10.90 4.57 to 5.58

ZC E11/E12/E13/E14/B 70.80–70.80 4.09–15.72 5.03–12.03 3.00 to 5.54

qPH-5A-1 ZC E11/E12/B 76.40–86.20 2.60–3.72 2.07–4.60 1.87 to 2.84

qPH-5A-2 DS E1/E2/E3/E4/E5 120.60–125.40 8.34–15.44 2.58–9.63 2.24 to 3.26

GZ E7/E8/E9/E10/B 113.20–135.60 3.90–5.52 4.79–6.87 −4.89 to −3.09

qPH-5B GZ E7/E8/E9/E10/B 234.80–237.40 3.60–4.46 4.09–5.54 2.91 to 4.36

qPH-6A-1 GZ E7/E9/B 154.40–157.00 2.81–3.88 3.36–4.04 −3.35 to −3.03

qPH-6A-2 DS E1/E3/B 192.60–192.60 4.10–9.47 1.45–4.48 −2.09 to −1.26

qPH-6D-1 DS E1/E2/E4/E6/B 71.40–76.20 3.21–6.98 1.33–2.46 1.30 to 2.00

qPH-6D-2 ZC E11/E13/E14/B 84.60–84.60 2.75–5.70 1.89–3.38 1.94 to 2.88

qPH-7A DS E1/E2/E3/E5/B 142.40–145.00 4.84–6.74 1.12–3.11 1.44 to 1.89

Pop, population; LOD, logarithm of odd; PVE, percentage of phenotypic variance explained; Add, additive effect; E1, 2012–2013 Beijing; E2, 2012–2013 Shijiazhuang; E3, 2013–2014

Beijing; E4, 2013–2014 Shijiazhuang; E5, 2014–2015 Beijing; E6, 2014–2015 Shijiazhuang; E7, 2012–2013 Anyang; E8, 2012–2013 Suixi; E9, 2013–2014 Anyang; E10, 2013–2014

Suixi; E11, Zhoukou2013; E12, Zhengzhou2013; E13, Zhoukou2014; E14, Zhengzhou2014; B, best linear unbiased estimation.

qPH-4D-2 was mapped on chromosome 4D at the interval of
32.97–65.01Mb having LOD scores ranging from 4.09 to 15.72
and PVE values ranging from 5.03 to 12.03%. When the length
of the confidence interval was set at 25Mb, qPH-4B-1 and qPH-
4D-1 were, respectively, coincident with dwarfing genes Rht-B1

located at 33.61Mb on 4B and Rht-D1 located at 19.19Mb on 4D
(IWGSC RefSeq v2.0).

Quantitative trait locus mapping using the individual maps

identified a total of 19 stable QTLs in the three populations,
nine in population DS, and five each in populations GZ

and ZC (Gao et al., 2015; Li et al., 2018). Sixteen of them

were detected using the consensus map; Fifteen of which
were stable across environments (Supplementary Table 7,

Supplementary Figure 5). qPH-2B-2 and qPH-5A-2 were

detected only in one population with the individual maps,
but in two populations with the consensus map (Table 3,

Supplementary Table 7), indicating the reliability of the two
QTLs. With the consensus map, eight other stable QTLs were
identified for PH, i.e., qPH-2D-1, qPH-2D-3, qPH-3B-2, qPH-
4D-2, qPH-6A-1, qPH-6A-2, qPH-6D-2, and qPH-7A, three in

population DS, two each in populations GZ and ZC, and one in
populations GZ and ZC.

QTLs for SL Detected From the Consensus
Map and Comparison With Those From the
Individual Maps
Using the consensus map, a total of 54 QTLs were detected for SL
(Supplementary Table 6), among which 15, 6, and 11 were stable
in populations DS, GZ, and ZC, respectively (Figure 3, Table 4).
qSL-2D-1 was repeatedly identified in populations GZ and ZC
with LOD scores ranging from 2.67 to 20.91, and PVE values
ranging from 2.85 to 31.06%. qSL-2D-2 was repeatedly detected
in populations DS and GZ with LOD scores ranging from 3.20
to 6.40, and PVE values ranging from 1.60 to 6.68%. qSL-5A-2
was repeatedly identified in populations DS and GZ with LOD
scores ranging from 3.31 to 13.93, and PVE values ranging from
1.87 to 7.13%. qSL-6B-4 was repeatedly detected in the three
populations and mapped at chromosome 6B in the interval of
705.19–707.59 Mb on physical map, accounting for 3.36–21.30%
of the phenotypic variance.
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TABLE 4 | Stable QTLs identified for SL in the three RIL populations, DS, GZ, and ZC using the consensus map.

QTL Pop Environment Position (cM) LOD PVE (%) Add

qSL-1A-1 DS E1/E2/E4/E6/B 53.60–75.80 2.96–6.05 1.47–4.43 −0.22 to −0.14

qSL-1B-1 ZC E13/E14 2.60–3.80 4.53–6.20 4.13–5.67 −0.35 to −0.28

qSL-1B-2 ZC E11/B 16.20–16.20 3.33–3.37 2.90–3.88 −0.22 to −0.29

qSL-2A-1 ZC E11/E13/E14/B 210.80–228.60 2.66–6.55 2.34–5.72 −0.33 to −0.20

qSL-2D-1 GZ E7/E8/E9/E10/B 32.00–43.20 11.74–20.91 9.84–31.06 0.36 to 0.59

ZC E11/E12/E13/E14/B 29.20–41.60 2.67–10.18 2.85–8.91 −0.41 to −0.24

qSL-2D-2 DS E3/E5/B 50.60–55.00 3.20–5.97 1.60–3.75 −0.18 to −0.14

GZ E9/E10/B 55.80–57.00 3.97–6.40 2.82–6.68 0.21 to 0.27

qSL-2D-3 DS E1/E2/E3/E4/E5/B 168.80–192.20 3.35–13.66 2.40–6.17 0.17 to 0.29

qSL-3A-4 DS E2/E5/B 130.40–139.40 3.71–6.00 1.62–2.45 −0.15 to −0.15

qSL-3A-5 ZC E12/E14/B 221.00–238.00 2.76–3.80 2.51–3.06 −0.22 to −0.22

qSL-3B-2 GZ E7/E10 23.60–24.80 3.47–3.80 3.55–4.88 −0.23 to −0.20

qSL-3B-5 DS E2/E4/E6/B 147.60–148.00 4.07–7.80 1.69–5.75 0.16 to 0.26

qSL-3D-2 DS E1/E2/E5/B 85.20–87.00 4.05–6.81 2.50–2.72 −0.20 to −0.16

qSL-4A-1 ZC E11/E12/E13/E14/B 73.00–83.20 3.07–12.13 3.27–11.74 −0.45 to −0.26

qSL-4A-2 GZ E8/E9/E10/B 85.00–103.60 4.20–6.29 2.78–7.71 −0.26 to −0.22

qSL-4A-3 ZC E11/E12/E13/E14/B 178.20–187.00 6.25–12.99 6.42–11.77 0.34 to 0.47

qSL-4A-4 DS E1/E2/E5/B 203.40–215.20 5.00–5.90 2.01–3.34 0.14 to 0.23

qSL-4B-1 DS E1/E2/B 21.00–21.40 4.50–7.41 1.77–3.25 0.14 to 0.23

qSL-4B-2 DS E1/E2/E3/E4/E5/E6/B 75.00–80.00 4.90–31.94 3.60–16.99 0.21 to 0.45

qSL-4D DS E1/E2/E5/B 56.20–66.60 3.54–16.74 1.55–7.79 0.12 to 0.33

qSL-5A-1 ZC E13/E14 89.80–93.60 2.92–3.83 2.60–3.13 0.21 to 0.24

qSL-5A-2 DS E1/E2/E5/E6/B 124.20–124.60 4.28–13.93 1.87–7.13 0.15 to 0.34

GZ E7/E8 122.60–123.40 3.31–4.39 3.67–5.45 −0.21 to −0.20

qSL-5A-3 ZC E11/E13/E14/B 190.20–191.00 6.80–11.15 6.25–9.96 0.33 to 0.43

qSL-5A-4 DS E1/E3/E4 241.60–245.20 2.57–3.86 1.58–3.47 −0.17 to −0.15

qSL-6A-1 DS E2/E3/E5/E6/B 165.80–177.60 4.37–9.06 2.27–4.17 0.17 to 0.21

qSL-6B-4 DS E2/E3/E5/E6/B 180.80–198.60 8.93–35.46 4.00–21.30 −0.50 to −0.23

GZ E7/E9/E10/B 194.20–195.40 4.56–20.58 4.86–10.96 −0.43 to −0.23

ZC E13/E14 178.60–180.40 3.74–3.79 3.36–3.36 −0.26 to −0.25

qSL-7A-2 ZC E13/E14 137.20–137.20 4.51–5.95 3.77–5.50 −0.30 to −0.27

qSL-7A-3 DS E2/E5/B 152.00–152.20 4.15–17.49 1.62–8.52 0.13 to 0.32

Pop, population; LOD, logarithm of odd; PVE, percentage of phenotypic variance explained; Add, additive effect; E1, 2012–2013 Beijing; E2, 2012–2013 Shijiazhuang; E3, 2013–2014

Beijing; E4, 2013–2014 Shijiazhuang; E5, 2014–2015 Beijing; E6, 2014–2015 Shijiazhuang; E7, 2012–2013 Anyang; E8, 2012–2013 Suixi; E9, 2013–2014 Anyang; E10, 2013–2014

Suixi; E11, Zhoukou2013; E12, Zhengzhou2013; E13, Zhoukou2014; E14, Zhengzhou2014; B, best linear unbiased estimation.

In previous studies, QTL mapping using individual maps
identified six, six, and nine stable QTLs in populations DS,
GZ, and ZC, respectively (Gao et al., 2015; Li et al., 2018). This
study detected all of them except QSL.caas-5AL in population
ZC (Supplementary Table 7, Supplementary Figure 6).
However, according to the linkage map constructed by
Wen et al. (2017) for population ZC and the BLAST result,
QSL.caas-5AL and QSL.caas-5AL.1 tended to be the same.
For the remaining 20 QTLs, 19 with stable effects were
detected using the consensus map. qSL-2D-1, qSL-2D-
2, and qSL-5A-2 were detected only in one population
using the individual maps, but all of them were detected
in two populations using the consensus map (Table 4,
Supplementary Table 7). With the consensus map, 10 other
stable QTLs were identified for SL, i.e., qSL-3A-4, qSL-3A-5,
qSL-3B-5, qSL-4A-4, qSL-4B-1, qSL-4B-2, qSL-4D, qSL-5A-1,

qSL-5A-4, and qSL-7A-3, eight for population DS and two for
population ZC.

QTLs for TKW Detected From the
Consensus Map and Comparison With
Those From the Individual Maps
Using the consensus map, a total of 53 QTLs were detected for
TKW (Supplementary Table 6), among which nine, three, and
eight were stable in populations DS, GZ, and ZC, respectively
(Figure 3, Table 5). qTKW-4B-2 was repeatedly identified in
populations DS and GZ with LOD scores ranging from 3.08
to 49.22, explaining 7.57–36.51% of the phenotypic variance.
qTKW-4B-2 had the largest LOD score, PVE and additive
effect across environments in population DS. This QTL was
co-localized with qPH-4B-1, corresponding to the dwarfing
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TABLE 5 | Stable QTLs identified for TKW in the three RIL populations, DS, GZ, and ZC using the consensus map.

QTL Pop Environment Position (cM) LOD PVE (%) Add

qTKW-1B-2 DS E1/E2/E3/E6/B 44.40–45.00 4.70–45.92 2.37–22.43 0.93 to 3.72

qTKW-2A-2 DS E2/E3/E4 125.00–125.00 2.57–7.27 1.32–5.90 0.70 to 1.15

qTKW-2B-2 DS E4/E5/B 138.80–141.40 2.92–6.43 1.25–3.81 0.73 to 1.32

qTKW-2D-2 ZC E11/E12/E13/E14/B 131.40–132.60 3.91–14.69 4.94–12.32 −1.64 to −1.00

qTKW-3A-2 GZ E9/B 148.40–148.60 4.05–5.80 6.56–11.45 1.00 to 1.26

qTKW-3D ZC E11/E12/B 101.40–101.80 3.79–6.44 4.85–6.86 1.00 to 1.18

qTKW-4A-1 ZC E11/E12/B 167.20–167.20 3.94–5.54 4.08–6.72 −1.17 to −0.91

qTKW-4A-2 DS E1/E2/E6/B 200.00–213.40 2.51–4.57 0.89–3.47 −0.87 to −0.73

qTKW-4B-2 DS E1/E2/E3/E4/E5/E6/B 75.00–76.00 13.28–49.22 8.81–36.51 1.60 to 3.78

GZ E7/E10/B 61.20–75.00 3.08–4.61 7.57–10.68 −1.43 to −1.09

qTKW-5A-1 ZC E13/E14 65.40–84.60 3.92–4.67 3.02–3.53 −0.91 to −0.82

qTKW-5A-3 DS E1/E2/E5/E6/B 116.40–124.40 3.83–7.46 2.53–5.05 1.03 to 1.27

qTKW-5A-4 GZ E7/E8/E9/E10/B 106.20–112.00 2.69–4.68 6.36–8.64 −1.28 to −0.94

qTKW-5D-1 DS E1/E2/E3/E4/E5/E6/B 49.20–54.80 6.23–11.44 2.38–7.58 1.12 to 1.66

qTKW-6A-3 ZC E11/E12/E13/E14/B 98.60–102.20 5.67–16.80 7.37–14.28 −1.84 to −1.23

qTKW-6B-3 ZC E11/E12/B 90.40–93.20 3.66–4.91 3.85–5.09 −1.01 to −0.82

qTKW-6B-5 DS E1/E3/E5/E6/B 197.40–198.60 3.62–6.22 1.21–3.36 −1.17 to −0.86

qTKW-7A-1 ZC E11/E12/E13/E14/B 140.40–141.20 2.72–4.77 2.04–5.71 −1.09 to −0.67

qTKW-7B-3 ZC E13/E14 146.20–146.20 4.26–5.27 3.22–4.03 −0.98 to −0.85

qTKW-7B-4 DS E1/E4/E5 168.80–171.40 5.79–18.41 3.10–12.11 1.06 to 2.36

Pop, population; LOD, logarithm of odd; PVE, percentage of phenotypic variance explained; Add, additive effect; E1, 2012–2013 Beijing; E2, 2012–2013 Shijiazhuang; E3, 2013–2014

Beijing; E4, 2013–2014 Shijiazhuang; E5, 2014–2015 Beijing; E6, 2014–2015 Shijiazhuang; E7, 2012–2013 Anyang; E8, 2012–2013 Suixi; E9, 2013–2014 Anyang; E10, 2013–2014

Suixi; E11, Zhoukou2013; E12, Zhengzhou2013; E13, Zhoukou2014; E14, Zhengzhou2014; B, best linear unbiased estimation.

gene Rht-B1. All stable QTLs detected with the individual
maps were also stable when detected with the consensus map
(Supplementary Table 7, Supplementary Figure 7). There were
other three stable TKW QTLs identified using the consensus
map, i.e., qTKW-1B-2, qTKW-2D-2, and qTKW-6B-3. qTKW-
1B-2 was mapped on chromosome 1B at the interval of 588.36–
591.14Mb on the physical map, with LOD scores ranging from
4.70 to 45.92, and PVE values ranging from 2.37 to 22.43% in
population DS. qTKW-2D-2 was mapped on chromosome 2D at
the interval of 523.15–555.13Mb with LOD scores ranging from
3.91 to 14.69, and PVE values ranging from 4.94 to 12.32% in
population ZC. qTKW-6B-3 was mapped on chromosome 6B
at the interval of 157.21–162.58Mb with LOD scores varying
from 3.66 to 4.91, and PVE values varying from 3.85 to 5.09%
in population ZC.

QTL Clusters for the Three Traits
As far as the stable QTLs across environments were concerned,
11 QTL clusters were identified and distributed on nine
chromosomes (Supplementary Table 8), six of which affected
two traits (i.e., qClu-2D, qClu-4A-1, qClu-4A-2, qClu-4D, qClu-
6A, and qClu-6B), and five affected all the three traits (i.e.,
qClu-3A-1, qClu-4B, qClu-5A-1, qClu-5A-2, and qClu-7A). Eight
clusters affected traits PH and SL. Among them, three clusters
contained both PH and SL QTLs in population DS; one
cluster contained both PH and SL QTLs in population ZC,
and one cluster contained the closely linked PH and SL QTLs
in populations DS and GZ. Each of the five clusters either

increased or decreased both traits simultaneously. Genomic
regions containing the stable QTLs for the three traits were
located on chromosomes 3A, 4B, 5A, and 7A. The cluster on 4B
was close to the Green Revolution gene Rht-B1. In cluster qClu-
5A-1, QTLs affecting the three traits were consistently identified
in populations DS and GZ, either increasing or decreasing the
three traits simultaneously.

Potential Applications of the Detected
QTLs in Wheat Breeding
To explore the potential applications of the detected QTLs in
wheat breeding, QTL genotypes and genotypic values of each RIL
in the three populations were predicted on the three traits with
stable QTLs identified using BLUE values across environments
(Supplementary Tables 9–11). For convenience, for the two
alleles at each QTL, one is called positive and the other one
is called negative. Parental sources of the two alleles can be
determined from the sign of the estimated additive effect of the
QTL. Due to the varied objectives on different traits in breeding,
it should be noted that the positive allele is not always favored
and that the negative allele is not always un-favored. For PH,
nine, eight, and eight stable QTLs were used for prediction in
populations DS, GZ, and ZC, respectively. The 10 highest RILs
possessed at least eight, seven, and seven positive alleles in the
three populations, respectively, whereas the 10 lowest RILs had
no more than two positive alleles (Supplementary Table 9). For
SL, 14, 7, and 4 stable QTLs were used for prediction. The 10
highest RILs possessed at least nine, seven, and four positive
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alleles in the three populations, whereas the 10 lowest RILs had
no more than four positive alleles in population DS, no positive
allele in population GZ, and no more than 1 positive allele
in population ZC (Supplementary Table 10). For TKW, seven,
three, and six stable QTLs were used for prediction. The 10
highest RILs possessed at least six, three, and five positive alleles
in the three populations, whereas the 10 lowest RILs had no more
than 1 positive allele (Supplementary Table 11). RILs with the
highest predicted genotypic values always had all the positive
alleles for PH and TKW in the three mapping populations, and
had all the positive alleles for SL in populations GZ and ZC.
RILs with the lowest predicted genotypic values always had all
the negative alleles for PH and SL in populations GZ and ZC,
and had all the negative alleles for TKW in all the three mapping
populations. For PH, all the 10 lowest RILs in population GZ
and the 9 lowest RILs in population ZC contained the negative
alleles at qPH-4B-1 and qPH-4D-1, corresponding to genes Rht-
B1 and Rht-D1. For SL, qSL-6B-4 was repeatedly identified in
populations DS and GZ. Eighteen out of the 20 highest RILs in
population DS and 36 highest RILs in population GZ possessed
the positive allele at qSL-6B-4, while 17 out of the 20 lowest
RILs in population DS and 38 lowest RILs in population GZ
possessed the negative allele at qSL-6B-4. For TKW, qTKW-4B-
2 was consistently identified in populations DS and GZ. The
12.36% highest RILs in population DS and the 31.25% highest
RILs in population GZ carried the positive allele at qTKW-
4B-2, while the 17.45% lowest RILs in population DS and the
21.02% lowest RILs in population GZ carried the negative allele at
qTKW-4B-2. Mean observed and predicted values of RILs having
the positive allele at qTKW-4B-2 were equal to 45.13 and 45.24
in population DS, and 47.11 and 47.95 in population GZ. In
contrast, the observed means of RILs having the negative allele
were equal to 42.68 and 40.4 in population DS, and 45.59 and
45.65 in population GZ.

Recombinant inbred lines with the predicted genotypic values
on PH, SL, and TKW can serve for the choice of target genotypes
meeting different breeding objectives, such as wheat cultivars
with medium plant height, large spike length, and medium to
high kernel weight. Given one target genotype, the predicted
allelic combination of RILs can serve for the prediction of cross
performance and the selection of suitable parental lines through
simulation or other genomic prediction approaches (Yao et al.,
2018).

QTL Mapping in Simulated Populations
In 1,000 simulated populations, the estimated QTL positions and
effects using the individual and consensus maps are shown in
Table 6. With the increase in heritability, QTL detection powers
were increased and the false discovery rate (FDR) was decreased
in the three models using either the individual or consensus
maps. Approximately unbiased estimation of QTL positions and
effects was obtained for each defined model and heritability level.
The confidence intervals of QTLs detected from the consensus
map were much narrower, and the associated standard errors
were much smaller than those from individual maps. Detection
power was much lower for QTLs in linkage models II and III than
that in the unlinked model I at the same heritability levels for

both the individual and consensus maps. FDR was much higher
in models II and III than in model I, indicating the complexity
and difficulty in dissecting linked QTLs in genetic studies.

DISCUSSION

Computer Tools in Consensus Map
Construction
Two strategies have been adopted for consensus map
construction in previous studies (Endelman and Plomion,
2014). The first one is based on the raw data of multiple mapping
populations, and has been implemented in software MultiPoint
(Ronin et al., 2012) and JoinMap (Van Ooijen, 2006). The second
one is based on individual linkage maps previously constructed,
and has been implemented in software BioMercator (Arcade
et al., 2004), MergeMap (Wu et al., 2010), LPmerge (Endelman
and Plomion, 2014), and QTL IciMapping (Meng et al., 2015).
The first strategy is usually time-consuming when dealing
with a large number of markers (Wu et al., 2010), which has
drastically restricted the use of a large number of markers in
the consensus map. The second strategy highly depends on the
quality of individual maps and sometimes may result in maps
with unreasonable length (Cavanagh et al., 2013; Wang et al.,
2014; Wingen et al., 2017).

With the development of high-throughput sequencing
technology, markers that can be used in genotyping mapping
populations are growing rapidly. A large amount of markers
brings a great challenge to consensus map construction,
especially when raw genotypic data are used. The two raw data-
based software packages mentioned above cannot deal with such
a large number of markers used in this study. For example,
both packages cannot generate a consensus map for chromosome
5B, which harbored 929, 1,406, and 1,508 SNPs in populations
DS, GZ, and ZC, respectively. Map-based method only utilizes
marker distances between adjacent markers, which may result
in an inaccurate estimation of recombination frequency between
markers especially when the order of markers changes on
the consensus map. The CLA algorithm is a raw data-based
method used in this study to deal with a large amount of
markers. The combined recombination frequency between any
pair of markers was calculated from the estimates in individual
mapping populations. The estimated recombination frequencies
are recorded in computer memory. Therefore, time can be greatly
saved in computing.

Quality of the Consensus Map
The great number of markers and bins contained in the
consensus map provided higher saturation of markers and better
genome coverage, and expanded the length of the map. Previous
studies have shown that increased recombination events andmap
resolution with an increased number of markers and density
could contribute to longer map length (Ferreira et al., 2006;
Wingen et al., 2017). The longer map length may also suffer
from chromosomal structure differences in different mapping
populations and the ordering algorithm used. Compared with
the A and B genomes, the D genome had fewer unique markers,
larger gaps, and shorter map length, which have been previously
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TABLE 6 | Quantitative trait locus mapping results from 1,000 simulations using the individual and consensus maps in the three genetic models.

Model H2a Map QTL Pos. ± SE (cM)b Add ± SEc CIL ± SEd LOD ± SEe Power (%) FDR (%)f

I 0.05 Ind. QTL1 34.32 ± 1.34 1.33 ± 0.22 3.55 ± 0.76 4.03 ± 1.41 31.5 44.44

Cons. QTL1 34.42 ± 1.36 1.32 ± 0.19 1.89 ± 0.35 3.97 ± 1.17 33.6 43.72

0.1 Ind. QTL1 34.42 ± 1.21 1.08 ± 0.21 3.30 ± 0.85 5.41 ± 2.10 71.1 25.16

Cons. QTL1 34.55 ± 1.27 1.09 ± 0.25 1.83 ± 0.41 5.62 ± 2.96 69.9 27.71

0.2 Ind. QTL1 34.40 ± 0.94 1.01 ± 0.16 2.85 ± 0.74 10.03 ± 3.02 89.3 12.45

Cons. QTL1 34.46 ± 1.12 1.01 ± 0.16 1.70 ± 0.41 10.07 ± 2.96 90.2 11.57

II 0.1 Ind. QTL1 26.62 ± 1.37 2.03 ± 0.35 3.18 ± 1.05 5.61 ± 1.92 31.0 31.26

QTL2 34.08 ± 1.32 1.99 ± 0.32 3.27 ± 0.97 5.27 ± 1.58 36.3

Cons. QTL1 26.64 ± 1.29 2.07 ± 0.67 1.85 ± 0.37 6.00 ± 4.80 28.3 34.9

QTL2 34.18 ± 1.37 1.98 ± 0.33 1.82 ± 0.42 5.33 ± 1.68 34.2

0.2 Ind. QTL1 26.80 ± 1.21 1.88 ± 0.30 2.84 ± 0.83 9.93 ± 2.92 40.5 24.91

QTL2 33.78 ± 1.11 1.84 ± 0.28 2.83 ± 1.02 9.54 ± 2.53 39.1

Cons. QTL1 26.80 ± 1.21 1.87 ± 0.27 1.71 ± 0.42 9.96 ± 2.68 38.1 27.06

QTL2 33.91 ± 1.20 1.83 ± 0.27 1.73 ± 0.46 9.52 ± 2.52 37.1

0.4 Ind. QTL1 26.62 ± 1.09 1.33 ± 0.40 2.68 ± 0.84 13.06 ± 6.24 57.1 17.34

QTL2 34.09 ± 1.03 1.39 ± 0.40 2.64 ± 0.86 13.99 ± 6.51 63.0

Cons. QTL1 26.66 ± 1.130 1.36 ± 0.39 1.63 ± 0.40 13.67 ± 6.29 55.1 19.02

QTL2 34.18 ± 1.180 1.39 ± 0.43 1.66 ± 0.39 14.19 ± 7.01 59.0

III 0.1 Ind. QTL1 26.11 ± 1.10 −1.04 ± 0.32 2.78 ± 0.95 9.51 ± 5.34 7.4 34.91

QTL2 34.72 ± 1.11 1.04 ± 0.28 2.92 ± 0.87 9.26 ± 4.13 7.7

Cons. QTL1 26.25 ± 1.04 −1.08 ± 0.35 1.68 ± 0.39 10.40 ± 6.04 7.3 40.93

QTL2 34.82 ± 1.18 1.07 ± 0.31 1.71 ± 0.35 10.03 ± 4.85 8.0

0.2 Ind. QTL1 26.19 ± 0.75 −0.98 ± 0.21 2.43 ± 0.63 16.07 ± 5.59 26.3 15.18

QTL2 34.58 ± 0.77 0.99 ± 0.19 2.37 ± 0.67 16.24 ± 5.18 25.1

Cons. QTL1 26.08 ± 0.75 −0.98 ± 0.2 1.54 ± 0.38 16.12 ± 5.36 27.3 16.05

QTL2 34.58 ± 0.94 0.96 ± 0.18 1.51 ± 0.39 15.80 ± 5.17 27.1

0.4 Ind. QTL1 26.33 ± 0.57 −0.95 ± 0.12 1.76 ± 0.49 30.92 ± 6.38 74.8 4.16

QTL2 34.57 ± 0.59 0.94 ± 0.13 1.76 ± 0.51 30.80 ± 6.44 74.9

Cons. QTL1 26.19 ± 0.66 −0.94 ± 0.13 1.25 ± 0.36 30.67 ± 6.83 77.2 5.23

QTL2 34.51 ± 0.82 0.94 ± 0.13 1.27 ± 0.35 30.65 ± 6.51 76.9

aHeritability in broad sense.
bPosition in cM and the associated standard error.
cAdditive effect and the associated standard error.
dConfidence interval length and the associated standard error.
eLOD scores and the associated standard error.
fFalse discovery rate.

Ind., individual map; Cons., consensus map.

reported in both consensus and individual maps in wheat (Wang
et al., 2014; Li et al., 2015; Guan et al., 2018).

Collinearity was high between the genetic and physical
positions. Marker order on the consensus and physical maps was
highly correlated at the genome-wide level, but lower collinearity
was sometimes observed in some chromosomal regions, which
was also reported previously (Wingen et al., 2017). Of the 19,320
SNPs on the consensus map that had physical positions, on
average there were 55.17% SNPs arranged in the same order as
those on the corresponding chromosomes of the physical maps,
ranging from 36.3 on chromosome 6A to 75.68% on chromosome
4D (Table 2). A higher proportion of the completely consistent
marker order was found in the D genome (63.95%) than
those in the A genome (52.32%) and the B genome (49.22%),
which may be explained by the lower recombination on the

D genome. The lower recombination events on the D genome
contributed to lower sequence variability and had a weaker
influence on the decay of syntenic block size. Some chromosomal
structural variations were observed on the consensus map, such
as intra-chromosomal translocation and inversion. For example,
inversion happened around 22–25Mb on chromosome 1A, and
translocation occurred between regions around 88–93 and 106–
109Mb on chromosome 2A. The collinearity between marker
orders in genetic and physical maps is often disturbed by the
macrostructural variations in wheat, especially for consensus
maps that are constructed from multiple populations. Local
disorder of markers could also be caused by the variation of gene
order in parents and genotyping errors.

The distribution of meiotic recombination events showed that
recombination happened much more frequently in the distal
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chromosomal regions, and that recombination tended to be
suppressed near the centromeres, which was consistent with
previous studies [Sourdille et al., 2004; International Wheat
Genome Sequencing Consortium (IWGSC), 2018]. Collinearity
analysis also showed that some markers might have conservative
orders across populations, since their relative orders were
consistent on the physical and genetic maps. Comparative
analysis among the consensus, physical, and individual maps
indicated the reliability of the consensus map constructed with
the CLA algorithm.

Comparison of the Detected QTLs With
Studies on Other Mapping Populations
In this study, eight stable PH QTLs were detected with the
consensus map but not with the individual maps (Table 7).
Guan et al. (2018) reported a PH QTL on chromosome 4D
at the physical interval of 37.05–62.94Mb, and Ren et al.
(2021) reported a PH QTL on the same chromosome at the
physical interval of 47.44–67.64Mb. qPH-4D-2 (chr4D:32.97–
65.01Mb) was overlapped with the loci reported by Guan et al.
(2018) and Ren et al. (2021). qPH-6A-1 was located within the
physical region as reported by Zanke et al. (2014). qPH-6A-2 was
mapped on chromosome 6A at the interval of 610.97–613.55Mb.
Similarly, Pang et al. (2020) detected a PH QTL on chromosome
6A at the interval of 609.3–609.9Mb (IWGSC RefSeq v1.0). qPH-
6D-2 was located at the same marker interval of a PH QTL
that was first reported and validated to be stable in two wheat
populations by Wang et al. (2020). To the best knowledge of the
authors, stable QTLs qPH-2D-1, qPH-2D-3, qPH-3B-2, and qPH-
7A identified in this study were likely to be novel for PH. The
increased marker density in the consensus map contributed to
the detection of these novel QTLs.

For spike length, 10 QTLs were detected with the consensus
map but not with the individual maps (Table 7). Among them,
a stable QTL in population DS, i.e., qSL-4B-2 explaining 3.60–
16.99% of the phenotypic variance, was close to the Green
Revolution gene Rht-B1. A number of previous studies have
revealed that Rht-B1 has a pleiotropic effect on PH, SL, and TKW
(Schulthess et al., 2017; Sun et al., 2017; Li et al., 2018). QTL
cluster qClu-4B in which qSL-4B-2 was located affected all three
traits (Supplementary Table 8). However, no stable PH QTL in
qClu-4B was detected in population DS, indicating that qSL-4B-2
may not be the same as Rht-B1. One SL QTL, i.e., QSl.sdau-4B,
different from but close to Rht-B1, was precisely mapped and
verified by Deng et al. (2011), which did not affect PH either.
SL-4B-2 was located in a similar position as QSl.sdau-4B, and
was also in a similar physical position of qSL4B.1 (chr4B: 36.7–
37.8Mb) reported by Pang et al. (2020). For the remaining nine
QTLs, qSL-3B-5 was mapped on chromosome 3B at the interval
of 761.9–774.47Mb, which was in the similar physical interval
(chr3B: 771.94–788.06Mb) as reported by Hu et al. (2020); qSL-
4A-4 and qSL-5A-4 were close to those reported in Pang et al.
(2020). Six SL QTLs were likely to be novel because of increased
power when using the consensus map in QTL mapping, i.e.,
qSL-3A-4, qSL-3A-5, qSL-4B-1, qSL-4D, qSL-5A-1, and qSL-7A-3.

Compared with the individual maps, three other TKW QTLs
were stably identified using the consensus map (Table 7), i.e.,
qTKW-1B-2, qTKW-2D-2, and qTKW-6B-3, which were in
similar positions as those reported by Gerard et al. (2019), Zhang
et al. (2020c), and Cook et al. (2021), respectively.

For the three traits, a total of 21 QTLs were identified
using the consensus map but not the individual maps. Among
them, 11 QTLs are consistent with those from previous studies
on other mapping populations, and 10 QTLs are likely to be
novel. Most of the 11 QTLs were first reported in recent years
using high-density linkage maps, indicating that the increase in
marker density improved the power of QTL detection. For the
novel QTLs, six of them that control PH or SL were included
in the cluster that harbored closely linked PH and SL QTLs
(Supplementary Table 8). The PH of the wheat plant is equal
to SL plus the lengths of all internodes above the ground.
Theoretically, loci associated with SL may affect PH as well,
which has been validated by some studies (Buerstmayr et al.,
2011; Lv et al., 2014; Xu et al., 2014; Jahani et al., 2019; Chen
et al., 2020). Furthermore, four novel SL QTLs were close to PH
QTLs that have been reported using individual maps or other
independent studies, indicating the reliability of the novel QTLs
on SL or PH. Gene TaERF8 was identified to be associated with
PH and yield in wheat, and has been cloned from the wheat
cultivar Chinese Spring (Zhang et al., 2020b), one parental line
of population ZC. TaERF8-2D (chr2D: 368.21Mb) was located
in the flanking marker interval of qPH-2D-1, which was stably
detected in population ZC in the three tested environments
and in population DS in two tested environments. TaERF8-
2D may be a candidate gene for qPH-2D-1. Annotations of
gene functions were also performed for these novel QTLs based
on the wheat reference sequence annotation database (IWGSC
Annotation v1.1) as listed in Supplementary Table 12. The
annotation information will facilitate the future fine mapping,
map-based cloning, and functional analysis of the novel QTLs
identified in this study.

Relationship Between QTLs for
Phenotypically Correlated Traits PH and SL
Plant height is an important agronomic trait highly related to
lodging resistance and harvest index in wheat. SL is highly related
to grain yield by affecting kernel number and spike morphology
(Donmez et al., 2001). Plants with suitable PH and larger spike
are desirable in wheat breeding. Nine of the 21 stable PH
QTLs were close to the stable SL QTLs (Supplementary Table 8),
contributing to the genetic correlation between the two traits.
PH and SL were positively correlated by phenotypic analysis in
population DS, but the correlation was non-significant in the
other two populations. In this study, closely linked PH and SL
QTLs identified in the same population always had genetic effects
at the same directions on both traits. Similar instances have been
reported in previous studies (Buerstmayr et al., 2011; Lv et al.,
2014; Xu et al., 2014; Jahani et al., 2019; Chen et al., 2020).
Considering that some QTLs for SL may also affect PH, we
speculated that the closely linked PH and SLQTLs aremore likely
to be the same genetic loci and have the same effect directions.
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TABLE 7 | Quantitative trait loci for PH, SL, and TKW detected with the consensus map but not by the individual maps in the three RIL populations, DS, GZ, and ZC.

Trait QTL Pop Environment Physical interval (Mb)a Neighboring loci in previous studies

PH qPH-2D-1 ZC E13/E14/B 344.29–426.06 TaERF8-2D, Zhang et al., 2020b

qPH-2D-3 DS E1/E2/E3/E4/B 617.78–631.92

qPH-3B-2 GZ E7/E10/B 842.16–844.72

qPH-4D-2 GZ E7/E8/E9/E10/B 32.97–65.01 QPh.cau-4D.2, Guan et al., 2018

ZC E11/E12/E13/E14/B QPh.sau-4D, Ren et al., 2021

qPH-6A-1 GZ E7/E9/B 600.13–600.63
Zanke et al., 2014

qPH-6A-2 DS E1/E3/B 610.97–613.55 qPH6A.4, Pang et al., 2020

qPH-6D-2 ZC E11/E13/E14/B 337.17–361.16 QPh.sicau-6D, Wang et al., 2020

qPH-7A DS E1/E2/E3/E5/B 611.92–621.35

SL qSL-3A-4 DS E2/E5/B 656.58–663.11

qSL-3A-5 ZC E12/E14/B 722.85–748.34

qSL-3B-5 DS E2/E4/E6/B 761.90–774.47 QSL-3B.2, Hu et al., 2020

qSL-4A-4 DS E1/E2/E5/B 719.47–750.82 qSL4A.3, Pang et al., 2020

qSL-4B-1 DS E1/E2/B 6.94–10.81

qSL-4B-2 DS E1/E2/E3/E4/E5/E6/B 34.98–49.80 QSl.sdau-4B, Deng et al., 2011 qSL4B.1, Pang et al., 2020

qSL-4D DS E1/E2/E5/B 65.53–121.40

qSL-5A-1 ZC E13/E14 437.35–445.46

qSL-5A-4 DS E1/E3/E4 671.95–681.28 qSL5A.2, Pang et al., 2020

qSL-7A-3 DS E2/E5/B 647.11–648.26

TKW qTKW-1B-2 DS E1/E2/E3/E6/B 588.36–591.14 BS00039740_51, Gerard et al., 2019

qTKW-2D-2 ZC E11/E12/E13/E14/B 523.15–555.13 AX-109775854, Zhang et al., 2020c

qTKW-6B-3 ZC E11/E12/B 157.21–162.58 IWB61228-6B, Cook et al., 2021

aPhysical positions for the flanking markers of QTLs based on IWGSC_RefSeq v2.0.

E1, 2012–2013 Beijing; E2, 2012–2013 Shijiazhuang; E3, 2013–2014 Beijing; E4, 2013–2014 Shijiazhuang; E5, 2014–2015 Beijing; E6, 2014–2015 Shijiazhuang; E7, 2012–2013

Anyang; E8, 2012–2013 Suixi; E9, 2013–2014 Anyang; E10, 2013–2014 Suixi; E11, Zhoukou2013; E12, Zhengzhou 2013; E13, Zhoukou 2014; E14, Zhengzhou 2014; B, best linear

unbiased estimation.

However, whether the closely linked QTLs on PH and SL belong
to the same chromosomal loci with pleiotropic effects or different
closely-linked loci needs further investigation and is beyond the
scope of this study.

Further Analysis for a Major PH QTL
Located on Chromosome 4DS
For plant height, only one QTL was detected on chromosome
4DS using the individual maps in populations GZ and
ZC, but two stable QTLs, i.e., qPH-4D-1 and qPH-4D-2,
were identified using the consensus map in the same two
populations, which were linked in the coupling phase (Table 3,
Supplementary Table 7). The BLAST results indicated that qPH-
4D-1 was co-localized with the dwarfing gene Rht-D1. qPH-4D-2
explained 8.39–10.9 and 5.03–12.03% of the phenotypic variance
across environments in populations GZ and ZC, respectively.
The alleles decreasing PH were from parents Zhoumai16 in
population GZ and Zhou 8425B in population ZC.

Guan et al. (2018) reported two QTLs that were also
linked in the coupling phase and located in similar positions
as qPH-4D-1 and qPH-4D-2. qPH-4D-2 was detected in four
environments and with BLUE values across eight environments
in Guan et al. (2018). In addition, qPH-4D-2 was closely
linked with marker wsnp_Ex_c683_1341113, which was also
observed in Guan et al. (2018). As reported by Ren et al.
(2021), qPH-4D-2 was detected in the similar position between

SNPs AX-89692818 and AX-109606880 across environments.
Therefore, it is highly possible that qPH-4D-2 is a novel semi-
dwarfing gene. The common marker wsnp_Ex_c683_1341113
was located at about 54.4Mb on chromosome 4D (IWGSC
RefSeq v1.0; IWGSC, 2018). A high confidence putative gene,
TraesCS4D02G076400 (50,888,586–50,889,461 bp), is located
around the marker and in the confidence interval of qPH-4D-
2, with the annotation of encoding gibberellin regulated protein
(IWGSC RefSeq v1.1 annotation; IWGSC, 2018). Gibberellin
is an essential endogenous regulator in plant growth. The
well-known dwarfing genes Rht-B1b and Rht-D1b regulate
DELLA proteins in gibberellin signaling to reduce the response
to gibberellin (Peng et al., 1999). The gibberellin-sensitive
gene Rht8 was also widely used in regulating PH in wheat
(Gasperini et al., 2012). Gene TraesCS4D02G076400 in wheat was
annotated to gene GAST1 (UniProtKB/TrEMBL; Acc:C8C4P9),
first reported in tomato to encode the gibberellins-stimulated
transcript (Shi et al., 1992).GAST1 belongs to the gibberellic acid-
stimulated Arabidopsis (GASA) family, which plays important
roles in plant growth and development, such as stem growth,
plant height, and grain length, width, and weight (de la
Fuente et al., 2006; Nahirñak et al., 2012a,b; Shi et al., 2020).
Furthermore, qPH-4D-2 was detected in two populations in
this study, one from the cross between Zhou 8425B and
Chinese Spring. TraesCS4D02G076400 had high RNA expression
levels in Chinese Spring in different tissues and development
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stages (expVIP, http://www.wheat-expression.com/). Therefore,
TraesCS4D02G076400 is likely to be the candidate gene for qPH-
4D-2. PH is a crucial trait for morphogenesis and grain yield in
wheat. The newly discovered PH QTL on chromosome 4DS in
this study may enrich the genetic resources in breeding for semi-
dwarfing wheat. Reasons that qPH-4D-2 was not identified by
the individual could be the short distance between the QTL and
Rht-D1, and the lower marker density around the two QTLs in
individual mapping populations.

Advantages of Using Consensus Map in
QTL Mapping
Due to the limited number of crossing-overs and limited genetic
variation in individual populations, linkage maps constructed
from individual mapping populations usually have a large
number of co-localized markers and low marker density. A
consensus map combines the genetic information included in
multiple populations and provides a better genomic coverage
with higher marker density (Maccaferri et al., 2015; Allen et al.,
2017). A consensus map of higher density offers the chance
to map QTLs to narrower chromosomal intervals, which will
facilitate the discovery of causal genes and the identification of
closely linked markers for MAS. Simulation results conducted in
this study confirmed that the use of a consensus map with higher
marker density reduced the confidence interval of detected QTLs.

Even for the same trait, QTLs detected in different populations
using their own genetic maps sometimes are hardly compared
and synthesized, because of the unshared markers and variations
in the genetic background (Sukumaran et al., 2015). Comparisons
on QTL positions estimated from different populations are
usually conducted by anchoring the linked markers to the
genome assembly. However, genome sequences usually have
wide variations between parental varieties, and the anchor
information to the genome sequence may not be completely
accurate. A consensus map provides the direct comparison for
QTLs detected from different populations, which is important,
particularly in species lacking a completely sequenced reference
genome. In this study, we demonstrated that QTL mapping
using a consensus map can better identify common and stable
QTLs across populations and environments. For example, Rht-
B1 and Rht-D1, which had been cloned, were the two genes
reducing plant height in wheat (Peng et al., 1999). Each
of them was located almost in the same position in two
populations on the consensus map. qPH-5A-2, qSL-2D-2, qSL-
5A-2, and qTKW-4B-2 were detected in populations DS and
GZ; qPH-2B-2 was detected in populations DS and ZC; qPH-
4B-1, qPH-4D-1, qPH-4D-2, and qSL-2D-1 were identified in
populations GZ and ZC; qSL-6B-4 was detected in all the
three populations. The common QTLs identified in multiple
populations reflected the stable genetic effects of QTLs in
different genetic backgrounds, which might be more valuable
in breeding.

The genetic relationship among PH and SL QTLs as observed
in this study, showed that QTL mapping using the consensus
map can also facilitate the comparison across the correlated traits,
and therefore provide the opportunity to understand the genetic
correlation between phenotypically correlated traits and identify
the QTL-rich genomic regions. Moreover, the consensus map

also provides the chance to detect common QTLs with smaller
effects occurring in different populations.

Further studies may still be needed to determine the key
factors affecting the accuracy of consensus map construction
and subsequent QTL mapping, such as proportion of common
markers shared by multiple mapping populations, inconsistency
degree of marker orders in individual populations, population-
specific recombination frequencies, and the optimum algorithm
used to construct the consensus map. In addition to bi-parental
populations, as have been used in this study, multi-parental
populations have been developed in recent years in crops together
with suitable genetic analysis methods (Gardner et al., 2016;
Zhang et al., 2017, 2019; Shi et al., 2019; Qu et al., 2020). In
theory, a consensus map can also be constructed by combining
a number of bi-parental and multi-parental populations, when
common markers are shared by these populations.

In conclusion, the consensus map constructed for this study
allows for systematic QTL mapping studies, and comparison
and clustering of mapping results in wheat genetic studies.
The QTL mapping based on the consensus map resulted in
higher accuracy, narrower confidence interval, and a larger
QTL number. The stable QTLs across tested environments and
mapping populations, and the predicted QTL genotypes and
genotypic values can be used to select wheat cultivars with
suitable PH, large SL, and medium to high kernel weight. SNPs
closely linked with these stable QTLs can be used to select suitable
genetic materials and make suitable crosses in wheat breeding
programs. SNPs closely linked to traits can also be converted
into Kompetitive allele-specific PCR (KASP)markers (Kaur et al.,

2021) and then used for large-scale genotyping to screen desirable

individuals in segregating breeding populations.
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