AUTHOR=Guo Yao , Yin Wen , Fan Hong , Fan Zhilong , Hu Falong , Yu Aizhong , Zhao Cai , Chai Qiang , Aziiba Emmanuel Asibi , Zhang Xijun
TITLE=Photosynthetic Physiological Characteristics of Water and Nitrogen Coupling for Enhanced High-Density Tolerance and Increased Yield of Maize in Arid Irrigation Regions
JOURNAL=Frontiers in Plant Science
VOLUME=12
YEAR=2021
URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2021.726568
DOI=10.3389/fpls.2021.726568
ISSN=1664-462X
ABSTRACT=
To some extent, the photosynthetic traits of developing leaves of maize are regulated systemically by water and nitrogen. However, it remains unclear whether photosynthesis is systematically regulated via water and nitrogen when maize crops are grown under close (high density) planting conditions. To address this, a field experiment that had a split-split plot arrangement of treatments was designed. Two irrigation levels on local traditional irrigation level (high, I2, 4,050 m3 ha−1) and reduced by 20% (low, I1, 3,240 m3 ha−1) formed the main plots; two levels of nitrogen fertilizer at a local traditional nitrogen level (high, N2, 360 kg ha−1) and reduced by 25% (low, N1, 270 kg ha−1) formed the split plots; three planting densities of low (D1, 7.5 plants m−2), medium (D2, 9.75 plants m−2), and high (D3, 12 plants m−2) formed the split-split plots. The grain yield, gas exchange, and chlorophyll a fluorescence of the closely planted maize crops were assessed. The results showed that water–nitrogen coupling regulated their net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), quantum yield of non-regulated non-photochemical energy loss [Y(NO)], actual photochemical efficiency of PSII [Y(II)], and quantum yield of regulated non-photochemical energy loss [Y(NPQ)]. When maize plants were grown at low irrigation with traditional nitrogen and at a medium density (i.e., I1N2D2), they had Pn, Gs, and Tr higher than those of grown under traditional treatment conditions (i.e., I2N2D1). Moreover, the increased photosynthesis in the leaves of maize in the I1N2D2 treatment was mainly caused by decreased Y(NO), and increased Y(II) and Y(NPQ). The coupling of 20%-reduced irrigation with the traditional nitrogen application boosted the grain yield of medium density-planted maize, whose Pn, Gs, Tr, Y(II), and Y(NPQ) were enhanced, and its Y(NO) was reduced. Redundancy analysis revealed that both Y(II) and SPAD were the most important physiological factors affecting maize yield performance, followed by Y(NPQ) and NPQ. Using the 20% reduction in irrigation and traditional nitrogen application at a medium density of planting (I1N2D2) could thus be considered as feasible management practices, which could provide technical guidance for further exploring high yields of closely planted maize plants in arid irrigation regions.