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Past studies of plant disease and pest recognition used classification methods that
presented a singular recognition result to the user. Unfortunately, incorrect recognition
results may be output, which may lead to further crop damage. To address this issue,
there is a need for a system that suggest several candidate results and allow the user
to make the final decision. In this study, we propose a method for diagnosing plant
diseases and identifying pests using deep features based on transfer learning. To extract
deep features, we employ pre-trained VGG and ResNet 50 architectures based on
the ImageNet dataset, and output disease and pest images similar to a query image
via a k-nearest-neighbor algorithm. In this study, we use a total of 23,868 images of
19 types of hot-pepper diseases and pests, for which, the proposed model achieves
accuracies of 96.02 and 99.61%, respectively. We also measure the effects of fine-
tuning and distance metrics. The results show that the use of fine-tuning-based deep
features increases accuracy by approximately 0.7–7.38%, and the Bray–Curtis distance
achieves an accuracy of approximately 0.65–1.51% higher than the Euclidean distance.

Keywords: deep feature, distance metric, fine-tuning, hot pepper, k-nearest neighbors, transfer learning

INTRODUCTION

Hot peppers comprise one of the world’s most popular crops. In 2018, the Food and Agricultural
Organization reported that production of hot-pepper (item: “chiles and pepper, green”) had steadily
increased to approximately 36.8-million tons, up more than 14.4% compared with 2014 [Food
and Agriculture Organization [FAO], 2018]. Hot-pepper production is greatly affected by climate
change (Aji et al., 2020), and owing to increased importing and exporting, the influx of foreign
diseases and pests are prominent threats.

Past studies of plant disease and pest recognition used classification methods that presented
a singular recognition result to the user. Unfortunately, incorrect recognition results may be
output, which may lead to further crop damage. Therefore, there is a need for a system that
can offer multiple candidate results so that the user can intervene and weigh options. Google
(2020) presents several candidate results to an image query and allows the final selection to
be made by the user. The content-based image retrieval (CBIR) technique can also be used
for this purpose. CBIR extracts features by applying a specific content (e.g., color and edge)
descriptor to an image, and it outputs the most similar images to a query image using similarity
comparison between features. However, owing to limitations of the feature-extraction descriptor,
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the recognition accuracy of diseases and pests is low at
∼75–83% (Yin et al., 2016, 2020; Piao et al., 2017). Thus, it
is necessary to improve recognition performance using a deep-
learning algorithm.

In cases where there are insufficient data, or models
are not well-trained, transfer learning can be used (Kaya
et al., 2019; Deng et al., 2020; Zhuang et al., 2021). Many
studies on machine vision have employed transfer learning.
It has been widely applied to solve problems related to
image recognition using convolutional neural network
(CNN) models. Typically, copious data, time dimensions,
and computing resources are required to train models
with deep layers. An example is the visual geometry group
(VGG) (Simonyan and Zisserman, 2014) and ResNet (He
et al., 2016) models. These architectures have already shown
excellent image verification performance with various large
public datasets.

Transfer learning is a machine-learning methodology that
focuses on knowledge transfer between domains. It can be
quickly applied to tasks using pre-trained knowledge (Tsiakmaki
et al., 2020; Zhuang et al., 2021). Thus, the number of
cases using transfer learning to recognize diseases and pests
is increasing. Too et al. (2019) analyzed the performance of
plant-disease identification using fine-tuned VGG, Inception,
ResNet, and DenseNet models. Their research findings showed
that DenseNet achieved the best performance. Sagar and
Dheeba (2020) conducted research on the recognition of
plant diseases using the Plant Village dataset (Hughes and
Salathe, 2015). Their results showed that ResNet50 with a
skip-connection structure achieved a recognition accuracy
of 98.2%. Rangarajan and Raja (2020) conducted research
on the classification of 10 diseases related to four crops:
eggplant, hyacinth beans, lime, and ladies’ finger (okra).
They employed six pre-trained CNN architectures, including
AlexNet and VGG16. The results showed that GoogLeNet
achieved the highest verification accuracy of 97.3%. Dawei
et al. (2019) proposed a pest-diagnostic system using transfer
learning. For this, they developed a deep-learning model
capable of classifying 10 pest images and compared its
performance with human experts and traditional neural-
network-model training methods. The results of the proposed
method showed performance results similar to those of human
experts and a classification accuracy of 93.84%. Pattnaik et al.
(2020) presented a pre-trained CNN-based transfer-learning
framework for tomato-pest recognition. Their research used
859 images collected online, classified into 10 classes. They
performed transfer learning using 15 pre-trained models,
and the experimental results showed that the DenseNet169
model achieved the best performance with a classification
accuracy of 88.83%. Leonardo et al. (2019) identified fruit
flies using nine machine-learning techniques and deep features
extracted by five models, including VGG and inception, by
applying transfer learning. The method of applying deep
features extracted using the VGG16 model to a support
vector machine (SVM) achieved the best accuracy of 95.68%.
Aravind et al. (2019) applied transfer learning to disease-
image classification for grapes. They pre-trained AlexNet on

the PlantVillage dataset and trained a multiclass SVM (MSVM)
model using the deep features extracted from each AlexNet
layer as image features. The results showed that the best
performance was achieved when the features extracted from
the third rectified linear unit layer of the AlexNet model were
applied to the MSVM model. In that research, fewer than 100
images per class were used when training the deep-learning
model, but high recognition accuracy was achieved through
transfer learning.

Yin et al. (2020) proposed a disease and pest recognition
method using deep features based on transfer learning, achieving
recognition accuracies of 85.6 and 93.62% for the top-10 results
of hot-pepper diseases and pests, respectively. However, in their
study, they extracted features using pre-existing weights without
a tuning process for the pre-trained model. In this study, we
propose an improved method for diagnosing diseases and pests
using fine-tuning based on those previous studies. Furthermore,
we demonstrate the excellence of the proposed model by
measuring the following effects through various experiments:

• Performance comparison when fine-tuning the last dense
layer and the conv+dense layer in the classification model;
• Effect of fine-tuning on deep features;
• Effect of the distance metric on the proposed model;
• Performance comparison between the conventional

classification model and the proposed disease and pest
diagnosis model.

MATERIALS AND METHODS

Dataset Description
In this study, we used hot-pepper disease and pest images
provided by the National Institute of Horticultural and Herbal
Science. Figure 1A shows sample images of the diseases, and
Figure 1B displays those of pests. In the experiments, we used
23,868 cropped disease and pest images (disease: 15,435; pest:
8,433) for 19 types (disease: 9; pest: 10) (Tables 1, 2).

In this study, instead of using the original disease and pest
images, we used a cropped set containing the diseased areas.
Image cropping reduces image recognition time and improves
accuracy (Suh et al., 2003; Chen et al., 2016). The image cropping
performed in this study was manually performed by agricultural
experts to select the diseased areas as accurately as possible.
As seen in Figure 2, we created at least one cropped image of
128× 128 pixels from each original.

Pre-trained Models
In this study, different pre-trained models have been used as
a transfer learning such as VGG16, VGG19 (Simonyan and
Zisserman, 2014) and ResNet50 (He et al., 2016). The reason
for using these three pre-trained models is that they are the
top three models that showed the highest performance in
the previous study (Yin et al., 2020). A pre-trained model
is a network that was trained on a large dataset. Such
a pre-trained model, for example ImageNet, can overcome
insufficient training data, and it has high flexibility, because
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FIGURE 1 | Examples of disease/pest classes.

TABLE 1 | Summary of hot pepper disease dataset.

Diseases Original images Cropped images Training samples Testing samples

Anthracnose 283 1,152 1,037 115

Bacterial spot 161 2,015 1,814 201

Canker 144 660 594 66

Gray mold 171 2,304 2,074 230

Leaf spot 291 1,526 1,374 152

Pepmov 42 1,281 1,153 128

Powdery mildew 278 3,146 2,832 314

TSWV 106 1,037 934 103

White leaf spot 221 2,314 2,083 231

Total 1,697 15,435 13,895 1,540

a model suitable for a particular task can be created by
fine tuning it (Tan et al., 2018; Kaya et al., 2019). The pre-
trained ImageNet model classifies 1,000 classes. Therefore,

we had to modify it to our problem. In this study, pre-
trained VGG16, VGG19 and ResNet50 models were used for
transfer learning.

Frontiers in Plant Science | www.frontiersin.org 3 December 2021 | Volume 12 | Article 724487

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-724487 December 11, 2021 Time: 12:36 # 4

Gu et al. Image Classification for Crop Disease

TABLE 2 | Summary of hot pepper pest dataset.

Pests Original images Cropped images Training samples Testing samples

Aculops 139 1,140 1,026 114

Baccarum 90 684 616 68

Latus 46 720 648 72

Slug 138 1,212 1,091 121

Speculum 623 1,152 1,037 115

Spodopteralitura 167 633 570 63

Stali 58 696 627 69

Tabaci 78 540 486 54

Thrips 60 1,008 908 100

Thunberg 51 648 584 64

Total 1,450 8,433 7,593 840

FIGURE 2 | The process of image cropping.

Transfer Learning of Deep Convolutional
Neural Network
Transfer learning is a machine-learning method that focuses
on the application of knowledge acquired from solving existing
problems to solve new problems. It is extensively used for
computer vision and natural language processing applications.
It can achieve high accuracy in a relatively short time (Rawat
and Wang, 2017). In particular, transfer learning can efficiently
solve problems when only a small number of data is available,
or huge computing and time resources are needed (Tan et al.,
2018; Noor et al., 2020). ImageNet is the most extensively used
for pre-training. It consists of 21,841 classes of approximately
14-million images. Of these, a sub-dataset of 1,000 classes is
commonly used for benchmarking (Russakovsky et al., 2015).

CNN architectures trained using ImageNet include VGG,
ResNet, Inception (Szegedy et al., 2015), Xception (Chollet, 2017),
and Densenet (Huang et al., 2017). Of these, we employed VGG
and Resnet models.

Visual Geometry Group Model
The VGG network is a CNN model devised by Simonyan and
Zisserman (2014) for the 2014 ImageNet Large Scale Visual
Recognition Challenge (ILSVRC). Although the VGG model is
a bit heavy, its structure is simple (Canziani et al., 2016). The
model supports deep layers made by stacking convolutional and
pooling layers in a certain pattern. A 3 × 3 kernel is used in the
convolutional layer, and the height and width of the input and
output feature maps are set to the same by using a stride value
of one. In the pooling layer, the height and width of the feature
map are reduced by half through a 2× 2 stride-two max-pooling
operation. The architecture is shown in Figure 3 as VGG16 or
VGG19, depending on the depth of the model.

ResNet Model
The ResNet model won the 2015 ILSVRC. The most significant
difference between other model is that the number of layers in
the ResNet architecture is sharply deeper than that of existing
models. VGG has 16 or 19 layers, GoogLeNet has 22, and
ResNet has 152. The deeper the layer of the deep-learning
model is difficult to train because the larger the number of
weights. And gradient vanishing issue can also occur (Bengio
et al., 1994; Glorot and Bengio, 2010; Rawat and Wang, 2017).
ResNet addresses these issues by using a residual block. As seen
in Figure 4, the residual block makes it possible to effectively
transfer the gradient between layers using a skip connection.
This is similar to the philosophy of long short-term memory in
recurrent neural networks, used to better transfer the gradient of
the previous step through a forget gate (Staudemeyer and Morris,
2019). In this study, we employ a pre-trained ResNet50 model
using the ImageNet dataset instead of the 152-layer ResNet.

Feature Extraction and Fine-Tuning
Strategies using transfer learning are mainly divided into feature
extraction and fine-tuning (Kandel and Castelli, 2020; Luján-
García et al., 2020). Feature extraction involves extracting features
from new samples using a representation of the pre-trained
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FIGURE 3 | The architecture of the pre-trained VGG16 (Ullah et al., 2020).

FIGURE 4 | Skip connection.

network. Using the extracted features, a classification model can
be obtained that fits the problem by training a new classifier from
scratch. The CNN model comprises consecutive convolution
and pooling layers and performs classification through fully
connected layers. Feature extraction regards the output value of a
specific layer of the pre-trained model as a feature, and the feature
extracted from the deep-learning model is called a deep feature.

Fine-tuning refers to the method of transforming an
architecture for a new purpose based on a pre-trained model
and updating training from the pre-trained weights. This method
adjusts some of the representations of the reuse model to be closer
to the given problem. The process of fine-tuning is as follows:

(1) Add architecture (layer or network) to the pre-trained base
network;

(2) Freeze the base network;
(3) Train the newly added layer or network;
(4) Unfreeze some layers in the base network;
(5) Train the unfrozen and newly added layers with new data.

In this study, we adopt a more concise method. See section
“Layer Freezing and Fine-Tuning.”

k-Nearest-Neighbor Algorithm
The k-nearest-neighbor (kNN) algorithm is a supervised learning
method that classifies unlabeled observations based on the most-
similar labeled examples in the attribute space (Zhang, 2016).

FIGURE 5 | Illustration of how k-nearest neighbors’ algorithm works.

During classification, this algorithm refers to the information of
k instances around a given point and makes the final decision
via majority voting. For example, as shown in Figure 5, there
are six instances of two classes (A and B) in the vector space.
Here, we intend to classify the class of N when a given point
is input into the vector space. The kNN algorithm calculates
the distance between the input data and all other data without
creating a separate model. Next, the class of the input data is
determined by referring to the information of k instances around
them. For instance, when k is set to one in Figure 3, the input
data are classified as Class A, because the distance between the
input data, N, and point A is the shortest. When k is set to three,
it is ultimately classified as Class B, because it refers to points A,
D, and E. As such, classification performance varies, depending
on the value of k. Thus, choosing the right value of k is crucial
(Koklu and Ozkan, 2020).

Apart from the value of k, a critical distance function calculates
the similarity between vectors. This function has the advantage
of effectively handling high-dimensional data and reducing
computation time. Thus, the use of a suitable distance function
can improve model performance. The most commonly used
distance function is the Euclidean distance, shown in Equation 1.

DL2(x, y) =

√∑n

i=1
(xi − yi)

2. (1)
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DEEP-LEARNING METHODOLOGIES

Data Preprocessing and Augmentation
The hot-pepper disease and pest images used in this study were
cropped images of 128× 128 pixels. To use the pre-trained model
on the ImageNet dataset, we performed pre-processing on the
disease and pest images the same as we did for training the
ImageNet dataset. First, we resized the disease and pest images
to 224 × 224 pixels. As in the study by Simonyan and Zisserman
(2014), we normalized the images by calculating the average value
of each channel of the dataset. Then, we subtracted the average
value calculated for each input image. The average value was a
1D array containing the average values of RGB pixels of the entire
ImageNet image: 103.939, 116.779, and 123.68, respectively.

Layer Freezing and Fine-Tuning
Layer freezing prevents the layer weight from being modified.
This technique is often used with transfer learning and fine-
tuning, where the base model or lower layer trained on another
dataset is frozen. Training can then be accelerated by using
an appropriate freezing technique (Brock et al., 2017). In this
study, we froze most layers of the VGG and ResNet models and
performed fine-tuning on the last convolution layer.

To fine-tune the pre-trained VGG16, VGG19 and Resnet50
models, we removed the existing fully connected layer. Then
added a dense layer (VGG model: 512 nodes, Resnet50: 2,048
nodes) and a new softmax layer that fit our data classes (i.e.,
diseases: 9; pests: 10). It was set equal to the number of values
from the last convolutional layer. Thus, the newly added dense
layer’s node was 512, and 2,048 for Resnet50. We performed fine-
tuning in two different ways: (i) only fine-tune the newly added
dense and softmax layer, (ii) fine-tune the last convolution layer,
dense and softmax layer. And the rest of the layers were frozen.

The batch size was set to 256, and a categorical cross-entropy
loss function was used. Stochastic gradient descent was used as
an optimizer, and a learning rate of 0.001 was used in this study.
The epoch was set to 500, and early stopping was added to avoid
over-fitting problems. The early stopping was set to terminate the
training when the validation accuracy did no longer improve over
the next 20 times.

In this study, fine-tuned models were used as a feature
extractor. Remove the softmax layer from fine-tuned model and
use the value from the newly added dense layer as deep feature.
Because the architecture of the VGG and the Resnet model
are different, the dimension of deep feature is also different.
Deep features extracted from VGG16 and VGG19 models have
a dimension of 512, and 2,048 dimensions from Resnet50.

Proposed Method
The proposed architecture comprising training and diagnosis
processes is shown in Figure 6. The training process mainly
consisted of image cropping, fine-tuning the pre-trained model,
deep feature extraction, and kNN-algorithm training. In this
study, we extracted deep features of cropped images using the
fine-tuned pre-trained model, and we represented the extracted
deep features in the vector space by using kNN algorithm.

In the diagnosis process, we extracted deep features by given
cropped images into the fine-tuned model generated during the
training process. The extracted deep features were input into the
trained kNN model, which output the k vectors most similar to
itself in the vector space. Here, each vector refers to a cropped
image. Five similar images were output for each query image by
setting the value of k to five.

We used the Bray–Curtis distance (Bray and Curtis, 1957)
as the crucial kNN distance metric to improve the diagnostic
accuracy of the proposed model. The Bray–Curtis distance
provides a normalization method commonly used in the fields
of ecology and environmental science. The distance between
Vectors A and B can be calculated using Equation 2, referring to a
vector of length N. The Bray-Curtis distance has a value ranging
from zero to one. As it approaches zero, it indicates that they are
closer together.

Bray Curtis distance(A, B) =

∑N
i = 1 |Ai − Bi|∑N

i = 1 Ai +
∑N

i = 1 Bi
. (2)

EXPERIMENTAL RESULTS

Tools and Setup
Experimental work was performed using Python v.3.6 on a
Windows desktop with two Nvidia GeForce RTX 2080 Ti
graphical processing units. We divided the dataset into a training
set and a test set to fine-tune the pre-trained models. The training
and test sets were randomly chosen from each category, with 90%
and 10% ratios, respectively.

Measurement Criteria
In this study, we applied two indices (i.e., precision and
accuracy) to measure the performance of classification method
and proposed method, as shown in Equations 3, 4. Equation
3 measured the performance of the classification model, and
Equation 4 measured the performance of the proposed diagnostic
model:

precision =
1
N

∑N

i = 1

True positive
True positive + False positive

(3)

accuracy =
1
N

∑N

i = 1

∣∣{relevant images
}⋂
{retrived images}

∣∣∣∣{retrieved images}
∣∣

(4)
Equation 4 provides an index for measuring the performance

of the proposed diagnostic method. Here, among the output
results, the relevant images were determined as those having the
same class as the query. Five retrieved images became the output
images. N refers to the number of images included in each disease
and pest class in the test image set, and i refers to the index
number of each query image. Thus, the accuracy index represents
the proportion of images having the same class as a query image
among similar images.
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FIGURE 6 | The architecture of the proposed diagnostic model.

Result and Discussion
We investigated the following effects through experimentation:

• Performance comparison when fine-tuning the last dense
layer and the conv+dense layer in the classification model;
• Effect of fine-tuning on deep features;
• Effect of the distance metric on the proposed model;
• Performance comparison between the conventional

classification model and the proposed disease and pest
diagnosis model.

Effect of Fine-Tuning According to a Specific Layer
During Classification
Fine-tuning plays a crucial role in improving model performance.
In this study, we compared the performance of the pre-trained
VGG16, VGG19, and ResNet50 models when fine-tuning the last
dense layer and the conv+dense layer, respectively, and the results
are shown in Figure 7.

As seen in Figure 7, for hot-pepper diseases, the precision
of fine-tuning the conv+dense layer was approximately 1.45–
6.83% higher than that of the model in which only the dense
layer was finely tuned. For hot-pepper pests, the precision of
fine-tuning the conv+dense layer was approximately 0.01–1.41%
higher than that of the model in which only the dense layer
was finely tuned. Of the three pre-trained models, the ResNet50
model achieved the highest precisions of 96.14 and 99.61% for
diseases and pests, respectively.

Effect of Fine-Tuning on Deep Feature
In the proposed diagnostic model, we used the deep features
extracted from the pre-trained models. Therefore, we measured
the effect of fine-tuning through the use of the deep features
extracted from the finely tuned VGG16, VGG19, and ResNet50
models. The results of performance comparisons are shown
in Figure 8. The results show that the accuracy of using
the deep features extracted from the finely tuned model
for hot-pepper diseases was approximately 6.1–7.38% higher
than that of using the deep feature without fine-tuning.
These results were also true for hot-pepper diseases, showing
a higher accuracy of 0.7–1.67%. Furthermore, of the three
pre-trained models, the ResNet50 model showed the highest
performance for diseases and pests with accuracies of 96.02 and
99.61%, respectively.

Effect of Distance Metric on the Proposed Method
Because the proposed diagnostic model used the kNN
algorithm, the role of the distance metric that calculated
the distance between vectors in the vector space was
crucial. In this experiment, to measure the effect of the
distance metric on the proposed method, we measured
performance using two metrics (i.e., Euclidean and Bray–
Curtis distances), and the results are shown in Figure 9. The
results show that the accuracy of the Bray-Curtis distance was
approximately 0.65–1.51% higher than that of the Euclidean
distance for hot-pepper diseases. For hot-pepper pests, the
accuracy of the Bray-Curtis distance was approximately
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FIGURE 7 | Precision comparison when fine-tuning dense layer and conv+dense layer.

FIGURE 8 | Accuracy comparison of fine-tuned and non fine-tuned models in hot pepper diseases and pests.

0.07–0.35% higher. These results demonstrated excellent
Bray–Curtis distance.

Discussion
To reduce the result of incorrect recognition of the classification
methods used in most previous studies, a method was needed
that presents several candidate results of high probability to the
user, allowing them to make the final decision. We proposed a
disease and pest diagnosis model using a transfer learning and
fine-tuning technique.

In the experiment described in section “Effect of Fine-
Tuning According to a Specific Layer During Classification,”
we compared the performance when fine-tuning specific layers
(i.e., dense layer and conv+dense layer). As seen in Figure 7,
we achieved the highest performance when fine-tuning the
conv+dense layer. Performance was improved by approximately
0.01–1.41% for pests, whereas it was improved by approximately
1.45–6.83% for diseases. Despite using the same fine-tuning
method, the reason for this difference in performance can be
attributed to the dataset. Most pest images contain pests, and
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FIGURE 9 | Accuracy comparison of distance metric.

TABLE 3 | Performance comparison of single recognition method and
proposed method.

Single recognition method Proposed method

Diseases 96.14% 96.02%

Pests 99.61% 99.71%

Average 97.88% 97.87%

they have more distinct features than do disease images. On the
other hand, disease images often have similar symptoms, despite
different disease classes. In the convolution layer, image features
were extracted through the convolutional and pooling layers.
Therefore, it showed a greater effect on images having similar
symptoms by fine-tuning the convolution layer.

We measured the effect of fine-tuning on the deep features
used in the proposed model, as shown in Figure 8. The deep
features to which fine-tuning was applied improved accuracy by
approximately 0.7–7.38%, compared with fine-tuning not being
used. This demonstrates the importance of fine-tuning.

Table 3 shows the results of comparing the performance of
the proposed model in this study with the classification model
using the fine-tuning method. The results show that the accuracy
of the classification method was 97.88%, which was 0.01% higher
than that of the proposed model. Although the performance of
the classification as was higher, an incorrect result may be output
with a probability of approximately 2.12%, because this is a single
result. However, because the accuracy of the proposed model was
the measurement of the weight of images having the same class as
the query image among a total of five candidate groups, the error
can be reduced via the final decision of the user. For example,
because the average accuracy of the proposed model was 97.87%
and assuming that 100 similar images were output, approximately
98 correct answers and two incorrect ones were presented to the

user. With the proposed method, there is, therefore, a higher
probability of reducing incorrect recognition results is provided,
owing to expert human intervention.

CONCLUSION

In this study, we proposed an improved method for diagnosing
hot-pepper diseases and pests using a fine-tuning-based transfer
learning method. To extract deep features, we employed
pre-trained VGG16, VGG19, and ResNet50 models based on
the ImageNet dataset and output disease and pest images most
similar to the query image using the kNN algorithm. We used
image data of 19 types of hot-pepper diseases and pests, and
the experimental results showed that accuracies of 96.02 and
99.61% were achieved for diseases and pests, respectively. We
also measured the effects of fine-tuning and distance metrics.
The measurement results showed that fine-tuning improved
the accuracy by approximately 0.7–7.38%, and the Bray-Curtis
distance achieved a higher accuracy of approximately 0.65–
1.51% than that of the Euclidean distance. Furthermore, when
comparing the performance between the proposed model and
the classification, they showed an accuracy performance of
97.87 and 97.88%, respectively. In summary, an expert user is
expected to derive more accurate pest recognition results from
the proposed model, which requires manual image cropping
around the disease area. In the future, we will automatic the image
cropping and measure its effectiveness by applying the proposed
model to other crops.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Frontiers in Plant Science | www.frontiersin.org 9 December 2021 | Volume 12 | Article 724487

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-724487 December 11, 2021 Time: 12:36 # 10

Gu et al. Image Classification for Crop Disease

AUTHOR CONTRIBUTIONS

HY, DJ, and YG: conceptualization. YG: methodology,
writing – review and editing. HY: methodology, investigation,
and writing – original draft. DJ: methodology, validation, and
writing – review and editing. YG and J-HP: resources and
supervision. SY: project administration. All authors contributed
to the article and approved the submitted version.

FUNDING

This work was carried out with the support of
“Cooperative Research Program for Agriculture Science
and Technology Development (Project No. PJ015638,
construction of fruit tree fire blight early diagnosis
system)” Rural Development Administration, Republic
of Korea.

REFERENCES
Aji, G. K., Hatou, K., and Morimoto, T. (2020). Modeling the dynamic response

of plant growth to root zone temperature in hydroponic chili pepper
plant using neural networks. Agriculture 10:234. doi: 10.3390/agriculture1006
0234

Aravind, K. R., Raja, P., Aniirudh, R., Mukesh, K. V., Ashiwin, R., and Vikas, G.
(2019). Grape crop disease classification using transfer learning approach. Lect.
Notes Comput. Vis. Biomech. 30, 1623–1633. doi: 10.1007/978-3-030-00665-5_
150

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166.

Bray, J. R., and Curtis, J. T. (1957). An ordination of the upland forest communities
of Southern Wisconsin. Ecol. Monogr. 27, 325–349. doi: 10.2307/194
2268

Brock, A., Lim, T., Ritchie, J. M., and Weston, N. (2017). FreezeOut: Accelerate
Training by Progressively Freezing Layers. Available online at: http://arxiv.org/
abs/1706.04983 (accessed November 25, 2021).

Canziani, A., Paszke, A., and Culurciello, E. (2016). An Analysis of Deep Neural
Network Models for Practical Applications. Available online at: http://arxiv.org/
abs/1605.07678 (accessed November 25, 2021).

Chen, J., Bai, G., Liang, S., and Li, Z. (2016). “Automatic image cropping: a
computational complexity study,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016-December, Las Vegas,
NV, 507–515. doi: 10.1109/CVPR.2016.61

Chollet, F. (2017). “Xception: Deep learning with depthwise separable
convolutions,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, (CVPR), 2017, Honolulu, HI, 1251–1258.

Dawei, W., Limiao, D., Jiangong, N., Jiyue, G., Hongfei, Z., and Zhongzhi, H.
(2019). Recognition pest by image-based transfer learning. J. Sci. Food Agric.
99, 4524–4531. doi: 10.1002/jsfa.9689

Deng, Z., Zhang, X., and Zhao, Y. (2020). Transfer learning based method for
frequency response model updating with insufficient data. Sensors (Switzerland)
20:5615. doi: 10.3390/s20195615

Food and Agriculture Organization [FAO] (2018). FAOSTAT Online Database.
Available online at: http://www.fao.org/faostat/en/#data (accessed on 24
September 2020).

Glorot, X., and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. J. Mach. Learn. Res. 9, 249–256.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) 2016-December, Las Vegas, NV, 770–778. doi: 10.
1109/CVPR.2016.90

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). “Densely
connected convolutional networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) 2017, Honolulu, HI,
2261–2269. doi: 10.1109/CVPR.2017.243

Hughes, D. P., and Salathe, M. (2015). An Open Access Repository of Images on
Plant Health to Enable the Development of Mobile Disease Diagnostics. Available
online at: http://arxiv.org/abs/1511.08060 (accessed November 25, 2021).

Kandel, I., and Castelli, M. (2020). Transfer learning with convolutional neural
networks for diabetic retinopathy image classification. a review. Appl. Sci.
10:2021. doi: 10.3390/app10062021

Kaya, A., Keceli, A. S., Catal, C., Yalic, H. Y., Temucin, H., and Tekinerdogan,
B. (2019). Analysis of transfer learning for deep neural network based plant

classification models. Comput. Electron. Agric. 158, 20–29. doi: 10.1016/j.
compag.2019.01.041

Koklu, M., and Ozkan, I. A. (2020). Multiclass classification of dry beans using
computer vision and machine learning techniques. Comput. Electron. Agric.
174:105507. doi: 10.1016/j.compag.2020.105507

Leonardo, M. M., Carvalho, T. J., Rezende, E., Zucchi, R., and Faria, F. A.
(2019). “Deep Feature-based classifiers for fruit fly identification (Diptera:
Tephritidae),” in Proceedings of the 31st SIBGRAPI Conference on Graphics,
Patterns and Images (SIBGRAPI) 2018, Parana, 41–47. doi: 10.1109/SIBGRAPI.
2018.00012

Luján-García, J. E., Yáñez-Márquez, C., Villuendas-Rey, Y., and Camacho-Nieto,
O. (2020). A transfer learning method for pneumonia classification and
visualization. Appl. Sci. 10:2908. doi: 10.3390/APP10082908

Noor, A., Zhao, Y., Koubaa, A., Wu, L., Khan, R., and Abdalla, F. Y. O.
(2020). Automated sheep facial expression classification using deep transfer
learning. Comput. Electron. Agric. 175:105528. doi: 10.1016/j.compag.2020.
105528

Pattnaik, G., Shrivastava, V. K., and Parvathi, K. (2020). Transfer learning-based
framework for classification of pest in tomato plants. Appl. Artif. Intell. 34,
981–993. doi: 10.1080/08839514.2020.1792034

Piao, Z., Ahn, H. G., Yoo, S. J., Gu, Y. H., Yin, H., Jeong, D. W., et al. (2017).
Performance analysis of combined descriptors for similar crop disease image
retrieval. Cluster Comput. 20, 3565–3577. doi: 10.1007/s10586-017-1145-4

Rangarajan, A. K., and Raja, P. (2020). Automated disease classification in
(Selected) agricultural crops using transfer learning. Automatika 61, 260–272.
doi: 10.1080/00051144.2020.1728911

Rawat, W., and Wang, Z. (2017). Deep convolutional neural networks for image
classification: a comprehensive review. Neural Comput. 29, 2352–2449. doi:
10.1162/NECO_a_00990

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115,
211–252. doi: 10.1007/s11263-015-0816-y

Sagar, A., and Dheeba, J. (2020). On using transfer learning for plant disease
detection. bioRxiv [Preprint]. doi: 10.1101/2020.05.22.110957

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv [Preprint]. arXiv:1409.1556,

Staudemeyer, R. C., and Morris, E. R. (2019). Understanding LSTM – A Tutorial
into Long Short-Term Memory Recurrent Neural Networks. Available online at:
http://arxiv.org/abs/1909.09586 (accessed November 25, 2021).

Suh, B., Ling, H., Bederson, B. B., and Jacobs, D. W. (2003). “Automatic thumbnail
cropping and its effectiveness,” in UIST Proceedings of the 16th Annual ACM
Symposium on User Interface Software and Technology, New York, NY, 95–104.
doi: 10.1145/964696.964707

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015).
“Going deeper with convolutions,” in Proceedings of the 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) 07-12-June-2015, Boston,
MA, 1–9. doi: 10.1109/CVPR.2015.7298594

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018). “A survey on
deep transfer learning,” in Artificial Neural Networks and Machine Learning –
ICANN 2018. ICANN 2018. Lecture Notes in Computer Science, Vol. 11141,
eds V. Kùrková, Y. Manolopoulos, B. Hammer, L. Iliadis, and I. Maglogiannis
(Cham: Springer), 270–279. doi: 10.1007/978-3-030-01424-7_27

Too, E. C., Yujian, L., Njuki, S., and Yingchun, L. (2019). A comparative study
of fine-tuning deep learning models for plant disease identification. Comput.
Electron. Agric. 161, 272–279. doi: 10.1016/j.compag.2018.03.032

Frontiers in Plant Science | www.frontiersin.org 10 December 2021 | Volume 12 | Article 724487

https://doi.org/10.3390/agriculture10060234
https://doi.org/10.3390/agriculture10060234
https://doi.org/10.1007/978-3-030-00665-5_150
https://doi.org/10.1007/978-3-030-00665-5_150
https://doi.org/10.2307/1942268
https://doi.org/10.2307/1942268
http://arxiv.org/abs/1706.04983
http://arxiv.org/abs/1706.04983
http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1605.07678
https://doi.org/10.1109/CVPR.2016.61
https://doi.org/10.1002/jsfa.9689
https://doi.org/10.3390/s20195615
http://www.fao.org/faostat/en/#data
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
http://arxiv.org/abs/1511.08060
https://doi.org/10.3390/app10062021
https://doi.org/10.1016/j.compag.2019.01.041
https://doi.org/10.1016/j.compag.2019.01.041
https://doi.org/10.1016/j.compag.2020.105507
https://doi.org/10.1109/SIBGRAPI.2018.00012
https://doi.org/10.1109/SIBGRAPI.2018.00012
https://doi.org/10.3390/APP10082908
https://doi.org/10.1016/j.compag.2020.105528
https://doi.org/10.1016/j.compag.2020.105528
https://doi.org/10.1080/08839514.2020.1792034
https://doi.org/10.1007/s10586-017-1145-4
https://doi.org/10.1080/00051144.2020.1728911
https://doi.org/10.1162/NECO_a_00990
https://doi.org/10.1162/NECO_a_00990
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1101/2020.05.22.110957
http://arxiv.org/abs/1909.09586
https://doi.org/10.1145/964696.964707
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.1016/j.compag.2018.03.032
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-724487 December 11, 2021 Time: 12:36 # 11

Gu et al. Image Classification for Crop Disease

Tsiakmaki, M., Kostopoulos, G., Kotsiantis, S., and Ragos, O. (2020). Transfer
learning from deep neural networks for predicting student performance. Appl.
Sci. 10:2145. doi: 10.3390/app10062145

Ullah, Z., Lodhi, B. A., and Hur, J. (2020). Detection and identification
of demagnetization and bearing faults in PMSM using transfer
learning-based VGG. Energies 13:3834. doi: 10.3390/en1315
3834

Google (2020). Vision AI. Available online at: https://cloud.google.com/vision/
(accessed October 14, 2020).

Yin, H., Gu, Y. H., Park, C. J., Park, J. H., and Yoo, S. J. (2020). Transfer learning-
based search model for hot pepper diseases and pests. Agriculture 10:439. doi:
10.3390/agriculture10100439

Yin, H., Jeong, D. W., Gu, Y. H., Yoo, S. J., and Jeon, S. B. (2016). “A
diagnosis and prescription system to automatically diagnose pests,” in
Proceedings of the 3rd International Conference on Computer Science,
Computer Engineering, and Education Technologies (CSCEET2016)
September 19-21, 2016 Lodz University of Technology, Lodz, Poland,
47.

Zhang, Z. (2016). Introduction to machine learning: K-nearest neighbors. Ann.
Transl. Med. 4:218. doi: 10.21037/atm.2016.03.37

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., et al. (2021). A comprehensive
survey on transfer learning. Proc. IEEE 109, 43–76. doi: 10.1109/JPROC.2020.
3004555

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Gu, Yin, Jin, Park and Yoo. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 11 December 2021 | Volume 12 | Article 724487

https://doi.org/10.3390/app10062145
https://doi.org/10.3390/en13153834
https://doi.org/10.3390/en13153834
https://cloud.google.com/vision/
https://doi.org/10.3390/agriculture10100439
https://doi.org/10.3390/agriculture10100439
https://doi.org/10.21037/atm.2016.03.37
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/JPROC.2020.3004555
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Image-Based Hot Pepper Disease and Pest Diagnosis Using Transfer Learning and Fine-Tuning
	Introduction
	Materials and Methods
	Dataset Description
	Pre-trained Models
	Transfer Learning of Deep Convolutional Neural Network
	Visual Geometry Group Model
	ResNet Model
	Feature Extraction and Fine-Tuning

	k-Nearest-Neighbor Algorithm

	Deep-Learning Methodologies
	Data Preprocessing and Augmentation
	Layer Freezing and Fine-Tuning
	Proposed Method

	Experimental Results
	Tools and Setup
	Measurement Criteria
	Result and Discussion
	Effect of Fine-Tuning According to a Specific Layer During Classification
	Effect of Fine-Tuning on Deep Feature
	Effect of Distance Metric on the Proposed Method
	Discussion


	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References




