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Yield prediction for crops is essential information for food security. A high-throughput
phenotyping platform (HTPP) generates the data of the complete life cycle of a plant.
However, the data are rarely used for yield prediction because of the lack of quality image
analysis methods, yield data associated with HTPP, and the time-series analysis method
for yield prediction. To overcome limitations, this study employed multiple deep learning
(DL) networks to extract high-quality HTTP data, establish an association between
HTTP data and the yield performance of crops, and select essential time intervals
using machine learning (ML). The images of Arabidopsis were taken 12 times under
environmentally controlled HTPP over 23 days after sowing (DAS). First, the features
from images were extracted using DL network U-Net with SE-ResXt101 encoder and
divided into early (15–21 DAS) and late (∼21–23 DAS) pre-flowering developmental
stages using the physiological characteristics of the Arabidopsis plant. Second, the late
pre-flowering stage at 23 DAS can be predicted using the ML algorithm XGBoost, based
only on a portion of the early pre-flowering stage (17–21 DAS). This was confirmed
using an additional biological experiment (P < 0.01). Finally, the projected area (PA)
was estimated into fresh weight (FW), and the correlation coefficient between FW and
predicted FW was calculated as 0.85. This was the first study that analyzed time-
series data to predict the FW of related but different developmental stages and predict
the PA. The results of this study were informative and enabled the understanding of
the FW of Arabidopsis or yield of leafy plants and total biomass consumed in vertical
farming. Moreover, this study highlighted the reduction of time-series data for examining
interesting traits and future application of time-series analysis in various HTPPs.

Keywords: time series analysis, phenomics, high-throughput phenotyping (HTP), deep learning (DL), growth
modeling, plant biomass, Arabidopsis thaliana

INTRODUCTION

Food insecurity has threatened the survival of many people because of the desertification of
arable land, global climate changes, population increase (Godfray et al., 2010), and spread of
infectious disease worldwide (Laborde et al., 2020). To combat food insecurity, agricultural
production approaches have not been revamped, wherein “digital agriculture” was proposed
to overcome these challenges (Redmond Ramin et al., 2018b). Multiple studies examined this
concept about agricultural production (Waltz, 2017). Regardless of the food production method
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for growing field crops in indoor conditions, multiple challenges
limit the implementation of this idea for the current agricultural
production. The successful transformation requires digital plant
phenotyping data and analysis tools (Granier and Vile, 2014).
Determining plant performance in various situations requires
various quantitative data to compare and make a decision
(Großkinsky et al., 2015). Therefore, a description of the
performance of a plant at a given time is important for the
transformation of digital agriculture (Chawade et al., 2019).

Plant phenotype includes multiple aspects of plant science
and its definitions vary in different plant science-related fields
(Tardieu et al., 2017). Automated high-throughput phenotyping
platform (HTPP) generates high-quality data (Lee et al., 2018)
from multiple sensors (Fahlgren et al., 2015) and yields the
complete life cycle of a plant (van Es et al., 2019). Moreover,
rich phenotype data, based on time series generated from a
single plant captured by HTPP, can provide insights into traits of
interest. HTPP-generated data are used to investigate the salinity
stress response in multiple rice cultivars and these data revealed
that candidate genes can be resistant to salt-related stress (Al-
Tamimi et al., 2016). However, many studies use only a small
fraction of phenotype data for a fixed time point (Al-Tamimi
et al., 2016; Chen et al., 2018) to associate phenotype data with
interesting traits. This is primarily attributed to multiple plant
scientists selecting measurement time that discriminates with
notable traits in plant-related populations. Moreover, time-series
analysis methods based on statistical models do not provide
satisfying results (Boken, 2000). Recently, yield prediction for
crop plants using machine learning (ML) algorithms from
satellite or drone images provided high accuracies (Khaki et al.,
2020). In these studies, the frequency of image acquisition
is broad (days) and small changes over narrow (hours) time
intervals are difficult to identify. Moreover, for determining
phenotype changes over the plant life cycle, the examination of
both narrow and broad time intervals is important (Tardieu et al.,
2017). Novel time points with ML tools are essential because
examining interesting traits from prior knowledge provides
limited information on traits. The analysis and prediction of
leaf area using time-series data at specific growth stages can
establish prediction models for the growth pattern of a plant
and essential time points. This study employed extreme gradient
boost (XGBoost) for multiple time steps of forecast models.
XGBoost, known as multiple additive regression trees, adds
multiple decision trees to achieve the best outcome. XGBoost
was used to analyze various classification and regression data
not provided (Ji et al., 2019). It used multiple steps to make
ensemble models for multiple time-step forecasts (Galicia et al.,
2019). The additional benefits of using the ensemble models
were the robustness and simplicity of modeling while forecasting
(Dineva et al., 2020).

Machine learning-based analysis improved the extraction of
projected area (PA) related to multiple agronomical traits. Many
studies on the growth pattern of a plant are destructive, i.e.,
they harvest the plant to measure its weight. This method is
labor-intensive, producing only a few time point measurements.
HTPP gathers images related to plant weight in the PA with a
high-frequency rate within a day. Moreover, the PA extracted

from HTPP in this study showed a high correlation between
images and biomass or photosynthetic capacity (Salas Fernandez
et al., 2017). Similarly, multiple agricultural traits are directly or
indirectly associated with PA (Yang et al., 2013; Araus and Cairns,
2014). Accurately extracting PA from the image of a plant is
difficult because multiple size leaf areas are connected with thin
branches in an overlapping manner (Lee et al., 2018). Previously,
studies separated the plant area from background images, and
the reported evaluation matrix shows that the accuracies of
the segmentation of plants heavily depend on a specific dataset
(Jiang and Li, 2020). ML algorithms, such as random forest (Lee
et al., 2018), increase accuracy over conventional image regency
approaches. Deep learning (DL) algorithms, such as U-Net,
provide additional enhancement of semantic segmentation for
biomedical (Ronneberger et al., 2015) and plant images (Chang
et al., 2020). The U-Net architecture is composed of encoder and
decoder architecture (Figure 1E). The first half of the architecture
contained the encoder or backbone and extracts features from an
image with multiple levels. The second half of the architecture,
the decoder, uses features from the previous step. For separating
object and background information, advanced encoders gather
additional features from images and achieve higher accuracies
(Hoeser and Kuenzer, 2020; Zhang et al., 2020). Hence, for
segmenting, there is room for improvement because U-Net
performs well in different soil conditions.

In this study, we examined the reduced time intervals for
predicting PA and estimate FW at different growth stages. This
study follows four steps. First, we applied the combination of DL
for plant image semantic segmentation for better PA and features
for plant shape. Second, ML-based prediction models used the
extracted plant features to predict the PA at the early and late pre-
flowering stages with biological replication. Third, we established
a relationship between FW using PA in a pre-flowering stage.
Finally, we compared the predicted FW with PAs from various
training models and harvested FW at 23 days after sowing (DAS).

MATERIALS AND METHODS

Arabidopsis developmental stages were defined as growth stages
with early vegetative stage, early pre-flowering, and late pre-
flowering stages from the phenological development of a plant
(Boyes et al., 2001). The images of plants were acquired at all
growth stages. However, the early pre-flowering stage was used
for the late pre-flowering stage growth pattern (Figure 2A). We
repeated experiment II to validate the outcome of experiment I at
23 DAS. We estimated fresh weight (FW) from PA with harvested
plants at the early pre-flowering stage and compared the
predicted FW with training models and measured FW at 23 DAS.

Plant Materials and High-Throughput
Phenotyping Setup
Arabidopsis thaliana was planted in the soil mixture and then
moved to the HTPP with environmentally controlled conditions.
The platform was programmed to obtain images with a 4K-RGB
camera (Logitech, California, United States) every hour between
08:00 am and 7:00 pm during the photoperiod. A motorized
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FIGURE 1 | Overview of Arabidopsis image analysis pipeline. There are three steps for image analysis. The first step is the preprocessing of raw images by (A) the
acquisition of the raw image, (B) detecting reference point (red dot), (C) correcting images with the red dot, (D) cropping into single plant images, and rescaling. The
second step is to train the (E) U-Net with various encoders and selecting encoders for the best result using the U-Net structure, (F) including encoder section,
training network with various encoders, such as SE-RENext101, (G) comparing results from various encoders. The last step is the post-processing of images and
exporting data using (H) error detection with a conditional random feature, (I) extract PA, and convex hull area, (J) perimeter.
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FIGURE 2 | Definition of early vegetative, early, and late pre-flowering stages were used in the study to visualize corresponding projected area (PA) of all and selected
samples of Arabidopsis. (A) Visualized plant images at three growth stages: early vegetative [8–15 days after sowing (DAS)], early pre-flowering stage (15–21 DAS),
and late pre-flowering stage (21–23 DAS). (B) The visualized growth pattern of all samples. Dashed blue lines indicate the average PA in each DAS. The orange solid
line indicates PA at early vegetative, early, and late pre-flowering stages, respectively. (C) The visualized growth pattern of selected individual Arabidopsis samples of
ID 98 (dot), ID 100 (dash with lines), and ID103 (dash). The actual measurement time point is displayed with solid lines in each sample.
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irrigation dipper was connected to each tray and filled with
water every 4 days over 4 weeks. Light-emitting diodes provided
(Lumens, Seoul, South Korea) 16 h of lighting at 230 µmol/m2/s.
A more detailed description is available in the study by Chang
et al. (2020).

Image Analysis Method and Evaluation
of Semantic Segmentation
The image analysis pipeline was modified from the work of
Chang et al. (2020) and comprised three parts. The first part
was the pre-processing image step that detected edges of the
tray (Figure 1B), corrected errors (Figure 1C), cropped, and
saved individual plant images (Figure 1D). The second part
was the segmentation process that tested U-Net (Figure 1E)
with various encoders (Figure 1F) and selected a well-performed
encoder (Figure 1G). The last part involved post-processing,
which removed additional errors (Figure 1H) and extracted
features from images (Figures 1I,J). This study tested multiple
encoders using U-Net for more quality data from plant images.

Pre-processing of images was required for U-Net
implementation. Firstly, we corrected image distortion of
captured raw RGB tray images using four red markers in pre-
processing; a tray image included 32- or 50-cell individual plants.
Then, the corrected tray image was cropped for separating
individual plants using the detected red marker coordinates
(Chang et al., 2020 #74). The cropped images were properly
scaled and padded for the U-net network size (512 × 512
dimensions). Secondly, the cropped, scaled, and padded RGB
color image and mask image pairs were needed to train a
semantic segmentation network; the mask image consisted of a
black background and a white foreground (i.e., plant region). We
selected an encoder such as Densenet, then performed training
steps. Lastly, the cropped, scaled, and padded RGB color image
inputs to the trained network, then only plant area was separated
from backgrounds such as soil as an output (i.e., a mask image).
Finally, the fully connected conditional random fields were
applied to the segmented results for post-processing.

Cropped images were generated for image analysis, and 446
images were randomly selected to represent data for comparing
different backbone approaches and source code available at
Github (Yakubovskiy, 2019). Selected backbones are listed in
Supplementary Table 2. To evaluate each backbone (encoder),
data were randomly divided into two: 90 and 10% for training
and data validation, respectively. Image augmentation such as
flip, padding, blur, and sharpen using Python (Python software
foundation, Beaverton, OR, United States) was performed to
reinforce smaller training data (Buslaev et al., 2020). For each
backbone, a total of 500 epochs of training was performed
(Yakubovskiy, 2019). The trained model was evaluated using the
validation dataset at the end of each epoch because an epoch has
as many steps as training data.

Each model of the backbone was trained using binary dice
and focal loss functions (Eqs 5, 7; we used beta value in Eq. 5).
The dice and focal loss exhibited good performance for class
imbalance problems (Milletari et al., 2016; Lin et al., 2017; Salehi
et al., 2017; Zhu et al., 2019) [the class meant the foreground
(plant part) and the background]. At the earlier stages of growth,

the sizes of the plants were small. Therefore, the foreground
class was much smaller, causing a class imbalance problem.
To overcome this, we used a combination of loss functions
during training.

The evaluation of the semantic segmentation used various
methods such as the intersection-over-union (IoU) method (Yu
et al., 2018). Eq. 1 shows that the IoU used calculates overlapped
PA percentage using the intersection of the PA between the
predicted (denoted by A) and ground-truth areas (denoted by B)
over union PA between the predicted and ground-truth areas.

IoU =
Area(A ∩ B)

Area(A ∪ B)
(1)

F1-scores were used for evaluating semantic segmentation in
agriculture (Bargoti and Underwood, 2017) and can be calculated
from Eqs 2–4. From the precision calculation, a true positive (TP)
result indicated that the output correctly predicted the pixels in
PA, while a false positive (FP) result indicated that the output
falsely predicted the pixels in non-PA. A TP and a false negative
(FN) result indicated that the output failed to predict pixels in
PA. Various backbones with U-Net could correctly determine PA
if the IoU score was >0.5. A higher number indicated a more
accurate prediction from the model. To compare the results, IoU
and F1 scores were measured and calculated average values were
used.

Precision (P) =
TP

TP + FP
(2)

Recall (R) =
TP

TP + FN
(3)

Fβ score =
(
1 + β2)

·
P · R

(β2 · P) + R
, β = 1 (4)

Dice loss = 1−Fβ score, β = 1 (5)

pt =

{
p if y = 1

1− p otherwise
(6)

Focal loss
(
pt
)
= −αt · (1−pt)

γ
· log (pt), α = 0.25, γ = 2 (7)

y ∈ {±1} means ground-truth class and p ∈ (0,1) is the estimated
probability of the model for the class with label y = 1.

Loss function = Dice loss + Focal loss (8)

Time-Series Data Definition and
Projected Area Prediction Models
Construction
This study measured a PA at the complete growth cycle of 232
plant samples. Experiments I and II measured 122 and 110
samples, respectively. The growth cycle range is 10–23 DAS with
165 time steps that include 12-time steps per day. The time data
format was in a sequential order ranging from 1 to 165 because
multiple time points were not present with the DAS format.
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To express specific time points with DAS, the measured hours
divided by 24 h were added after DAS. If images were taken 17 h
at 23 DAS, the time point expressed as 23 DAS was (17/24 h).
The training set was composed of a convex hull and compactness
from extracted individual plant images.

Based on the phenological development of a plant, Boyes
et al. (2001) defined Arabidopsis growth stages using the early
vegetative stage, early and late pre-flowering stages with the
Biologische Bundesanstalt, Bundessortenamt und CHemische
Industrie (BBCH) scale. The growth stages of the early and late
pre-flowering stages corresponded to 1.04 and 1.1 (Figure 2A)
where the decimal point indicated the number of rosette leaves.
The early vegetative stage was before 1.04. In our study, rosette
leaves were manually counted for early and late flowering stages.
The developmental stages and corresponding lengths of the early
and late pre-flowering stages ranged from 15 to 21 and 21 to
24 DASs, respectively, and 60 to 140 and 141 to 165 time steps,
respectively (Table 1), because inflorescence emerged at late 23
DAS in a partial plant population.

The early pre-flowering stage was then divided into six
training data sets, in those with endpoints at 20 and 21 DAS,
respectively. The first four training sets were based on the training
window: 15, 16, 17, and 18 DAS, with corresponding time lengths
of 80, 68, 56, and 44 time steps, respectively (Table 1). Each of the
training sets contained an ID, date, day, month, and experiment
number. Figure 2C (orange solid line at ID 100) shows the plot of
the measurement of PA of plants in the controlled environment
in the daylight period only.

The last two training sets (5 and 6) were based on the training
windows starting with 16 and 17 DASs with the corresponding
time steps of 55 and 43, respectively. A summary of the reference
time points for each set is listed in Table 1, where the entire
experiment was termed experiment I. To verify the repeatability,
an additional entire experiment, which was termed experiment
II, was repeated.

To examine the influence of various time lengths on the
performance of the forecast model, a direct forecasting package

TABLE 1 | Summary of reference points of each dataset with two-time scales
used in the study.

Training set Reference timepoints

DAS with (Time steps)

Training period Testing period

Start End Start End

Training 1 15 (60) 21 (140) 21 (141) 23 (165)

Training 2 16 (72) 21 (140) 21 (141) 23 (165)

Training 3 17 (84) 21 (140) 21 (141) 23 (165)

Training 4 18 (96) 21 (140) 21 (141) 23 (165)

Training 5 16 (72) 20 (127) 20 (128) 23 (165)

Training 6 17 (84) 20 (127) 20 (128) 23 (165)

The time scale was recorded with the day format as days after sowing (DAS)
with time steps. Moreover, the corresponding time steps are mention in the
parenthesis next to the day format.

called “forecastML” (Vienna, Austria) was utilized (Redell, 2020).
The R forecast library required static (location) and non-static
data (date and month). The period was set to 48 h. The
overall scheme of the data structure is available (Supplementary
Figure 3A). Individual model for each sample ID was constructed
and evaluated as training 1 to 4 dataset (Supplementary
Figure 3B) with multiple n-step ahead forecasting in training
data hours, as shown in Figure 3A. The R code utilized in the
analysis is available in the Supplementary Material. The mean
absolute error (MAE) calculated the average errors using the sum
of magnitude (absolute values) divided by the total samples (n), as
shown in Eq. 9. The root means square error (RMSE) calculated
average errors by identifying the total squared errors between the
observed and the predicted values over n. The square root of
mean squared errors was calculated using Eq. 10. The MAE and
RMSE were the most used metrics for measuring the accuracy of
time-series data (Cort and Kenji, 2005; Chai and Draxler, 2014).

MAE =
1
n

n∑
j = 1

|yj−ŷj| (9)

RMSE =

√√√√ 1
n

n∑
j = 1

(yj−ŷj)2 (10)

For all training datasets, horizons for the combined forecasting at
1, 6, 12, 24, 36, 42, and 48 h were selected.

Trained Model Testing With Late
Pre-flowering Stage Data
Individual PA forecasting models were constructed and tested
for the late growth stage of the Arabidopsis plant. Four training
models for various time intervals were then tested using testing
sets ranging from 21 to 23 DAS (141–165 time steps), while two
training models were tested with testing sets with a range of 20–
23 DAS (133 to 165 time steps). Table 1 lists the reference time
points for each set.

Statistical Analysis
Statistical tests were performed using R (R Core Team, 2019).
Three analyses were performed to verify that the forecast
values from the ensemble model provided accurate output.
The late growth time steps at 165 (23 DAS with 16 h) were
selected for statistical analysis because inflorescence emerged
at 23 DAS. First, an ANOVA test was used to determine if
one or more datasets were different. The observed outputs
were compared with the predicted values for six datasets. Non-
significant datasets (P < 0.01) were selected and the homogeneity
of variance for these sets was compared using Tukey’s honestly
significant difference at a family-wise confidence level of 95%.
The correlations between observed and predicted values were
tested using Spearman’s rank coefficient (R).

Measurement and Estimated Fresh
Weight
Previous studies indicated that strong relationships between
FW and PA exist in Arabidopsis (Fahlgren et al., 2015).
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FIGURE 3 | Predicted PA and error calculation at 1-, 24-, and 36-h forecast window sing ML algorithms (XGBoost). (A) Comparing PA prediction with 17–21 DAS of
ID 98. (B) Comparing evaluation matrices of mean absolute errors (MAE), root mean square error (RMSE) of three selected samples, namely, ID 98,100, and 103.
Global MAE and RMSE are defined as average MAEs and RMSE of all forecast time steps.

Moreover, it was infeasible to harvest all representative plant
images of 220,000 (165 time steps × 115 plants × 12
times per day). Therefore, plants were randomly selected
and harvested among 112 plants from HTPP at 14, 17,
and 20 DAS, respectively. Furthermore, 30 of 110 plants
were randomly selected in experiment II at early 23 DAS
because inflorescence emerged. Each plant was harvested
and measured using the precision scientific balance (Ohaus,
New Jersey, United States).

The following steps were required for establishing a
relationship between FW and PA. First, a regression model was
established to verify the relationship between FW and PA at
the early pre-flowering stage using the data at 14, 17, and 20
DAS, respectively. Second, the regression model for the early
pre-flowering stage was used to verify the predictability estimate
of FW from PA in experiment II at 23 DAS. Third, FW was
estimated from PA training models. Finally, the measured and
predicted FW at 23 DAS were compared.

RESULTS

Evaluation of Semantic Segmentation
The image analysis pipeline “U-Net” used for DL algorithms
yielded good results (Chang et al., 2020). However, minor errors
were evident when the network distinguished moss from plant
areas. Thus, this study incorporated a more flexible U-Net
network with various backbones (encoders) from other published
networks to improve the segmentation task (Jiang and Li, 2020).
IoU scores predicted PA over true PA values and a score of 1
indicated a perfect match between the predicted and true values.
F1 score calculated model accuracy by combining precision
and recall output. Similarly, a score of 1 indicated the highest
value for the evaluation. Results from the evaluation matrix
showed a high association between the evaluation and validation
data (Table 2), indicating that the up-to-date backbones such
as the SE-ResNext101 exhibited a reduced error rate than
VGG16. Furthermore, the residual module-based network such
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TABLE 2 | Summary of an evaluation matrix for semantic segmentation of U-Net
using various deep learning backbones (encoder).

Backbones Model evaluation matrix Validation matrix

IoU F1-score IoU F1-score

VGG16 0.9384 0.9682 0.9272 0.9626

VGG19 0.9464 0.9724 0.9301 0.9637

SEResNet152 0.9665 0.9824 0.9323 0.9639

SEResNeXt101 0.9684 0.9839 0.9324 0.9648

SENet154 0.9697 0.9846 0.9314 0.9643

ResNet154 0.9565 0.9777 0.9259 0.9613

ResNeXt101 0.9623 0.9808 0.9281 0.9614

MoblieNetV2 0.9518 0.9749 0.9250 0.9608

InceptionResNetV2 0.9640 0.9817 0.9308 0.9637

DenseNet201 0.9609 0.9801 0.9310 0.9642

Two evaluation scores are shown in the table. Intersection-over-union (IoU)
evaluation matrix and F1-score were calculated.

as ResNet154 provided a high-confidence F1-score of 0.9613. The
distribution evaluation matrix was then visualized to determine
whether the network architecture influenced that of the output.
The results (Supplementary Figure 1) indicated that squeeze
and excitation (SE) architecture provided the most accurate PA
among all backbones. The total loss of each backbone showed the
same result from the F1 score (Supplementary Figure 1C). These
results indicated that U-Net with SE backbones could be used for
segmentation in various crops.

Growth Pattern Analysis
The dynamic growth patterns were observed in Arabidopsis
day and night (Wiese et al., 2007; van Es et al., 2019) and
demonstrated that daylight growth was responsible for 70%
of growth activities (Wiese et al., 2007). The overall growth
pattern of the selected plant showed a somewhat linear trend
for multiple growth stages (Figure 2B) and agreed well with
previous studies on Arabidopsis (van Es et al., 2019). Three
of 122 plant samples were selected and the dynamic growth
pattern of the individual plants was compared (Figure 2C).
Individual samples had distinct patterns from (orange solid line)
one another and although the unmeasured night period varied,
ID 98 had the fastest-growing rate ahead of ID100 and 102.
However, its absolute growth rate (AGR) was the slowest at 20
DAS (Supplementary Table 2). Furthermore, the AGR of sample
ID 100 grew fastest in selected samples of ID 98, 100, and 102;
however, ID 102 was the fastest in afternoon time points. These
results reveal that a dynamic growth habit can be observed within
a 6-h time window. Consequently, the n-step forecast time was
determined using multiples of 6 h and translated into 0.5 days
because a 12-h-window was measured for a day.

Prediction of the Projected Area With
Training Models
High-confidence data were obtained using the 165 time steps
collected and an up-to-date DL network-based image analysis.
The definition of Boyes et al. (2001) was adapted (Figure 2A)
for defining the developmental stages of Arabidopsis. Results

showed that the early vegetative stage had slight sample variations
from the pre-flowering stage of the plant developmental phase
(Boyes et al., 2001; Figure 2B). Thus, the period from the early
pre-flowering stage was tested, and the prediction models were
validated in the late pre-flowering stage. Time-series analysis
required the predefined time steps for training and testing
purposes. Algorithms only used information within the training
window to build a model and predict future values in the pre-
determined forecast window. Later, predicted values from the
trained model were compared with measured PA with U-Net
within testing data. Forecasting terminologies were used in the
time series analysis because not all data have true values in future
events such as weather forecasts. This study determined the
training and testing windows for the plant developmental stages
until flowering bud emerged at late 23 DAS. The forecasting
window at 24 h indicated 2 days after 12 h defined 1 day in the
dataset. Various forecasting windows were tested with baseline
studies to compare predicted and true values at the end of the late
pre-flowering stage.

Verifying the essential time for the prediction model, the total
time data was divided into six training sets following the start and
end dates of the training data. Training sets 1–4 and training sets
5 and 6 were selected based on the end date of 21 and 20 DAS,
respectively. Similarly, they were selected from the start point
from 15 to 18 and 16 to 17 DAS, respectively (Table 1).

The initial analysis was performed with time points ranging
from 15 to 21 DAS. Forecasting multiple windows and combining
models provided more reliable results; however, the selection of
time steps depends on the dataset (Galicia et al., 2019). The errors
of different combinations of time steps were calculated using
multiple-error evaluation matrices. The forecast value showed a
similar trend among the different forecast windows at 1, 6, 12, 24,
36, 42, and 48 h, respectively (Supplementary Figure 2), because
growth variation was observed at least 6 h (Supplementary
Table 2). PA prediction deviated with increased time intervals for
forecast and forecasting window at 24 h provided an additional
reliable prediction value than the 36 h window (Figure 3A).
The result indicated that the optimal forecasting window ranged
between 24 and 36 h (Figure 3A). The data structure of the study
was performed for 12 h a day for measuring daylight growth,
which corresponded to 36 h for 3 days. To summarize, forecast
windows at 1, 6, 12, 24, 36, 42, and 48 h corresponded to 0.04, 0.5,
1, 2, 3, 3.5, and 4 days, respectively.

Time-series analysis used various result-testing tools such as
MAE and RMSE. MAE is one of the most commonly used
matrices for measuring the performance of forecast models.
A smaller MAE indicated that the predicted values were closer
to actual values (Tay and Cao, 2001). The effectiveness of
time-series analysis with the ML model was checked using
RMSE (Chen et al., 2006). Two absolute error evaluation
matrices provided appropriate information because no negative
values exist in the dataset. Selected subsamples from training
models were compared with check time window selection and
forecast evaluation within testing data. The MAE of each plant
sample showed little differences in multiple forecast windows
(Figure 3B) and the overall error rate called the global MAE
was 0.25 (Supplementary Figure 5A). Moreover, the RMSE
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of selected samples showed little differences (Figure 3B). All
samples of MAEs were calculated using a forecasting window
that ranged from 0.5 to 2 and a global MAE given as 0.7
(Supplementary Figure 4B). The result indicated that it served
as a baseline MAE for other datasets.

A total of six training sets were generated from the endpoints
of 20 and 21 DAS (Table 1 and Supplementary Figure 5F). The
training period of the training sets 5 and 6 started at 16 DAS
(Supplementary Figure 5F). The MAE ranged from 0.5 to 1.7
with the mean of global MAE as 0.7 (Supplementary Figure 4).
The prediction errors decreased slightly compared with the
baseline training sets 1–4. Furthermore, the training sets 3 and 4
with training windows that started at 17 and 18 DAS, respectively,
were compared to check their error rate decreased with a narrow
time. The results from training sets 3 and 4 indicated a similar
error rate with training sets 5 and 6 (Supplementary Figures 5B–
D). The mean of MAE training sets 3 and 4 was 0.6 and
0.7, respectively (Supplementary Figures 5C,D), suggesting that
limited intermediated time points for time-series analysis can be
feasible for predicting late-stage growth patterns.

The endpoint of the training set 5 and 6 was shifted to the
forecasting window at 20 DAS. Training set 5 started a time
window at 16 DAS and the MAEs of 1, 6, 12, and 24 h n-step
forecast showed similar ranges (0.5–1.5) compared with the
training sets 1–4. In the same training set, MAE increase by >2
or more at 36 and 42 h of the forecast period. Finally, the training
set 6 with a start date at 17 DAS exhibited increased MAEs over 3
at 36 and 42-h forecast.

Overall, MAEs were increased after 36 h (3 days) of
forecasting windows among different training sets (Figure 3B
and Supplementary Figure 5F). This result indicated that models
would predict reliable PAs at the endpoint of late time point in the
testing time steps (Supplementary Table 3).

Testing Trained Models With Late
Pre-flowering Stage Data
This study forecasts the late pre-flowering stage using correlated
features from the early pre-flowering. The growth forecast models
for each training set (Table 1) were constructed and tested
(Supplementary Figure 6 and Supplementary Table 3). The
test time included the late growth stage of the Arabidopsis
plant, including 23 DAS at which the emergence of inflorescence
occurs in certain plants. To forecast the target days at 23
DAS, the training sets 5 and 6 were forecasted 42 h or longer.
The forecasting plot of training sets 5 and 6 demonstrated
that prediction at least 42 h ahead of time was feasible
(Supplementary Figures 6E,F). Sample ID 98 was selected and
all the predicted values of the six training sets were compared
to evaluate prediction efficiencies (Figure 4A). Training sets 1–
4 showed a stable trend in the whole growth period but training
sets 5 and 6 demonstrated decreased accuracies after the end of
22 DAS. The prediction of the training sets 1–4 demonstrated
close to actual values in the late growth stage at 23 DAS at 5:00
pm (Figure 4B). Moreover, the global error rate showed a similar
trend in training sets 1–4 but different in training sets 5 and 6
(Figure 4C), although the error rates were similar between sets

1–4 and training sets 5 and 6 before 36 h of forecast window
(Figure 4A). The result indicated that training sets 1–4 forecast
the growth pattern of the late pre-flowering stage at 23 DAS.
The training set 3 that included only 5 days of data showed
similar MAEs compared with the 7-day data in the training set
1. An essential time window of fewer than 5 days of data (17–
21 DAS) was generated, which included the transitional window
from early to late pre-flowering stages in Arabidopsis. The same
time window was tested in the replication at experiment II.

In experiment II, the overall growth pattern was similar
(Figure 5A) to experiment I (Figure 2B). HTTP stopped in the
early hours of 23 DAS (23.37) because inflorescence was observed
in the portion population (n = 110) and the 30 randomly selected
plants for FW. Growth prediction models were constructed from
17 to 21 DAS (training set 3) and at 23 DAS, the t-test results
of the observed and predicted values using the training dataset 3
were not different (P > 0.01). The Spearman’s rank coefficient
(R) of PA and the predicted PA of experiments I and II were
calculated and compared. The coefficient (R) of experiment I
was 0.868 (Supplementary Figure 7A) and that of experiment
II was 0.872 (Supplementary Figure 7B). The coefficient of
each experiment was similar (P > 0.01), thereby confirming
the experimental reproducibility. Furthermore, an additional
statistical test is provided in Section “Statistical Analysis of
Validation Sets.”

Statistical Analysis of Validation Sets
The low MAEs (Supplementary Figure 5) is a good indication
of high accuracy-ML models and provide statistically inseparable
results with limited time points. To confirm the effectiveness of
limited time for forecasting late growth stages, certain statistical
methods were tested. One time point was selected in the late
growth stage for statistical analysis. The selected time point was
23 DAS at 17 h (23.71) because this time point corresponds
to the flower bud formation. The ANOVA test indicated that
at least one training set was significantly different (P < 0.01).
T-test of the observed and predicted values using training sets
1–4 were not significantly different (P > 0.01), while training sets
5 and 6 were observed to be significantly different (P < 0.01).
Tukey’s honestly significant difference (HSD) test confirmed that
all datasets of training sets 1–4 were not significantly different
(P > 0.01) at 95% of family confidence level (Supplementary
Figure 8). The result revealed that the time window ranges from
15 to 21 DAS were not different from the time-reduced windows
from 17 to 21 DAS. In the experiment, I, the prediction of PA
in the training 3 models was not significantly different from the
actual PAs (P> 0.01) at 95% of family confidence level (Figure 5B
and Supplementary Figure 9). Both experimental results confirm
that 17–21 DASs was the essential time window for predicting
at 23 DAS PAs. Furthermore, the selection of time intervals for
HTPP was feasible because using a partial time interval was as
effective as was using a whole interval in the early pre-flowering
stage. This procedure might be applicable in detecting subtle
differences in traits of interest where traits have expressed only a
part of the life cycle of a plant. Moreover, focusing on a restricted
time window of digital phenotyping data could alleviate the
heavy burden of big-scale research projects because they require
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FIGURE 4 | Predicted total leaf area and error range from 21 to 23 DAS in selected and total samples. Time points format as format images were taken at DAS
(DAS.hours). MAE was calculated using multiple time windows with various forecast time points. (A) Predicted values with multiple time windows of the dataset
(Figure 3) at 21–23 DAS (validation time points) of sample ID 98. (B) Correlation plot of all samples at 23.71. Clustering and grouping with R library for arranged
samples. (C) Predicted PAs with training sets 1–4 at the selected testing window are given as 22.26, 22.71, and 23.71. The result is shown in a boxplot of actual
and predicted PAs from each testing model. We compared with post hoc statistical test (Tukey’s HSD) and the significant result is showed with an asterisk.
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FIGURE 5 | Summary of a biological replication study at experiment II. (A) The visualized growth pattern of all samples of biological replication experiment including
three growth stages. (B) Predicted PAs with training sets 3 and 4 with testing window at 23 DAS. The result is shown in a boxplot of actual and predicted PAs from
each testing model. We then compared with post hoc statistical test (Tukey’s HSD) and the significant result is shown with an asterisk.

considerable resources to obtain new information during the
entire life cycle of a plant.

Estimated Fresh Weight Using the
Projected Area
Fresh weight provided important information of interesting
traits; however, the measuring data required the destruction
of samples, and obtaining the corresponding time-series
data was difficult.

Multiple steps were required to predict FW using PA. The
initial step was to establish a relationship between FW and PA in a
target plant species. First, time-series data required corresponded
to FW at each time point, and the estimated FW was obtained
from the regression model between FW and PA in Arabidopsis.
Previously, studies demonstrated a highly correlated relationship
between FW and PA (Walter et al., 2007; Faragó et al., 2018), and

the results of our study suggest the same relationship between FW
and PA in the range of 14–20 DAS (Figure 6A). Moreover, the
correlation coefficient between FW and PA was 0.99 (Figure 6A).
The next step was testing the established relationship in different
growth stages. The regression model from the early pre-flowering
stage for FW (R = 0.9683) was constructed and was used to
estimate the FW of the late pre-flowering stage. Results indicated
(Supplementary Figure 10) a high correlation coefficient value
(R = 0.9382) compared with the measurement during harvest at
23 DAS. Moreover, the estimated FW from PA not only provided
accurate values in the same growth stage but can also be applied
to different growth stages. The last step was to compare with
measured FW and predicted PA from the training models. PAs
were predicted with the training model 3 (Figure 5B) and then
FW was estimated using the regression from the previous step.
Finally, the predicted FW was compared with the measurement

Frontiers in Plant Science | www.frontiersin.org 11 November 2021 | Volume 12 | Article 721512

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-721512 November 5, 2021 Time: 15:21 # 12

Chang et al. Forecast Biomass With HTP in a Vertical Farming

FIGURE 6 | Estimating fresh weight (FW) from the PA and predict FW with
three training sets. Panel (A): Harvest and weight 110 plants within the
pre-flowering stage (15, 18, and 20 DAS), and we compared measured FW
and PA from the image analysis. The correlation between FW and PA was
tested using Spearman’s rank correlation coefficient (R). The coefficient’s (R)
confidence level at 95% was shaded in gray. (A) Comparison of PA and FW in
the range of 14–21 DAS (R = 0.9904). (B) Randomly select 30 samples at
experiment II and predicted PAs with training 3 model and then converted into
estimated FW. Compared estimated FW and measured FW at 23 DAS
(R = 0.9042).

during harvest at 23 DAS, and a high correlation coefficient
(R = 0.8512) was observed (Figure 6B).

In summary, the new strategy showed that limited growth
period ranges were required to predict the growth pattern

of different developmental stages. The predicted PAs were
confirmed in an independent study and the PAs were converted
into highly accurate FW values.

DISCUSSION

Transforming into digital agriculture requires various digital
(Redmond Ramin et al., 2018b; Weersink et al., 2018; Klerkx
et al., 2019) and image data, which are essential data. The
primary reason why digital agriculture is essential is to detect
the health and performance of plants in real-time in various
environments. RGB images provide quantitative data in plant
breeding and production (Araus and Cairns, 2014). The early
image analysis from the legacy method or early application of ML
(Pan and He, 2008) yielded partial success and not many plant
scientists benefited from the quantitative data from the extract
from RGB images. Many studies of plant segmentation were
published and the result was difficult since the environmental
conditions (lights, view of camera, soil conditions) were not
identical in each experiment (Jiang and Li, 2020). ML- and
DL-based image pipeline showed superb qualities over outdated
legacy methods. The image analysis pipeline from ML showed
promising results in its application to semantic segmentation
in the rosette plant species named Youngia denticulata (Lee
et al., 2018). U-Net was applied to separate irradiated and
wild-type Arabidopsis plants (Chang et al., 2020). Additionally,
botanists showed interest to apply up-to-date DL in HTPP
data analysis (Jiang and Li, 2020). The encoder and decoder
portions of U-Net (Figure 1E) showed several performances in
various environments (Zhang et al., 2020). The encoder provides
valuable information on whether various encoders at U-Net yield
different results for interesting traits (PA) in agriculture (Jiang
and Li, 2020). We demonstrated a more flexible way of applying
networks to images for plant phenotyping (Figure 2). The SE
network architecture demonstrated the highest confidence level
among various backbones (Supplementary Figure 1). VGG-16, a
simple network, provides high accuracy for the IoU score at 0.94,
indicating a 94% of the images were correctly predicted with the
combination of simple networks. Thus, applying and using image
processing with DL still held certain challenges because of the lack
of significant computing resources such as graphical process units
or tensor process units. In a limited resource-research scheme,
it should be beneficial to apply a simple network and gradually
move to more complex network schemes. Importantly, it would
be interesting to examine a specific encoder that could provide
superior performance to detect the organs of plants such as
flowers or other targets for interesting traits.

Arabidopsis thaliana was selected because it is a model plant
for scientists and is rich in several noteworthy information.
Moreover, the growth pattern of the gene function (van Es et al.,
2019) and stress responses (Dhondt et al., 2014) was analyzed
using time series.

To incorporate time-series analysis in an Arabidopsis research,
many challenges in extracting and analyzing data from OMICS,
including phenomics data associated with developmental stages
were experienced. Previously, studies suggested that the growth
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pattern of long time steps provides valuable information on
interesting traits (Dhondt et al., 2014); however, an additional
investigation was not reported. Using complete time-series data is
beneficial because dynamic growth habits were observed between
15 and 23 DAS (Figure 2C). Time-series data divided into
developmental stages defined with the BBCH scale provided
a more descriptive explanation (Boyes et al., 2001) and useful
defined-data structure for analysis. To explain the end of the
analysis, training and testing windows needed to be associated
with developmental stages. Time-series analysis with XGBoost
demonstrated better performance over other algorithms (Ji
et al., 2019); however, this method was rarely used in biomass
prediction or studying interesting traits. We applied multiple
time steps with XGBoost and multiple correlated features
to predict PA and the result was highly confident. A new
analysis method that restricted time-series data within predefined
developmental stages is helpful because relevant data on the
relationship between or among different growth stages were
accessible. Working with interesting traits with a full life cycle in a
plant is time-consuming; therefore, it is possible to narrow down
specific developmental stages using our method. Furthermore,
our method can be used to reduce time intervals within the
developmental stages. The method can be applied to predict traits
of interest using HTPP data. Abiotic stress-related screening
requires multiple resources because plants require testing over
a long period. Arabidopsis plant showed stress effect after being
exposed to the salt solution for 8 days (Geng et al., 2013). In the
drought stress study, Arabidopsis demonstrated wilt symptoms
after we stopped watering for 20 days. The total observation
period of abiotic stress was ∼33 or 50% of the whole life cycle.
A new method is beneficial to researchers who require to screen
a larger number of samples using the HTTP because reduced
time windows for a population provide extra time for screening
another population.

The FW of a plant is an important selection criterion for
bioenergy conversion using plants and other target materials.
Since plant weight is obtained only after the growing plant is
harvested or growth is completely stopped, understanding plant
characteristics in a non-destructive method is a fundamentally
essential research field in recent biology. Previous studies
have demonstrated a positive correlation between FW and PA
(Walter et al., 2007; Araus and Cairns, 2014; Faragó et al.,
2018). Predicting FW from PA is plausible if there is a high
correlation between two factors. A high correlation was found
in our experiment and the estimated FW from PA using a
different developmental stage was accurate (R = 0.93). The
results indicated that the estimated FW in individual plants was
possible from PA using time-series data and can be applied to
predict FW or biomass in crops. FW of vegetable crops has
essential information for the grower since FW of vegetables
is a good indicator of yield at harvest. Vegetable crops are
grown in vertical farming or controlled environment agriculture
(CEA) and are important in food production and distribution,
particularly during a virus outbreak where food movement is
limited. Vertical farming produces more food in urban settings
compared with field production (Benke and Tomkins, 2017). The
estimation of FW using the visible spectrum is beneficial and

should be incorporated into vertical farming. Though phenotype
information, such as the leaf area index, has been used for
plant status (Wang et al., 2017) in CEA, the estimated FW
provides better plant status information and serves as a good yield
indicator (Marondedze et al., 2018). In a plant factory setting,
accurate yield prediction was performed with early time-series
phenotyping data in lettuce (Nagano et al., 2019). We tested
a model plant in the CEA for growth forecast with a limited
time window and it yielded an accurate result (Figure 6B).
A forecast of lettuce FW is possible but accurately predicting
individual FW of lettuce is challenging because vertical farming
production plants are tightly placed because the indoor farming
space is limited (Redmond Ramin et al., 2018a). Advanced DL
network using various encoders with U-Net provides more FW
or PA-related features. Furthermore, more sophisticated DL for
time-series analysis was promising in other fields, e.g., advanced
DL-based network, long-short-time-memory (LSTM), or gate
recurrent unit (GRU) outperformed the recurrent neural network
(Khaki et al., 2020). A novel DL called temporal attention-
based network (TCAN) can replace LSTM and GRU in certain
tasks (Hoeser and Kuenzer, 2020; Jiang and Li, 2020; Yan et al.,
2020). DL can achieve a performance level hitherto unachieved in
conventional and ML algorithms. Gathering and analyzing using
a long chain of time-series data enhances accuracy and increases
the prediction window of FW with up-to-date DL.

In conventional agricultural research to date, the observation
and selection of crops are possible only at a set time with
the naked eye of breeders. Time-series data analysis from
HTPP could provide valuable information. We applied up-
to-date DL for semantic segmentation from HTPP data and
analyzed selected pre-flowering developmental stages to forecast
the growth pattern of the next growth stage in Arabidopsis.
High-confidence F1-score (97%) was achieved using U-Net with
SE-ResXt101 for semantic segmentation. This study reported that
a part (17–21 DAS) of the developmental stages (P < 0.01)
is sufficient for predicting the growth pattern of different
developmental stages at 23 DAS. The result was confirmed with
an independent study (P < 0.01). Moreover, FW prediction
(P < 0.01) with HTPP time-series data is validated. The proposed
method could be applied to forecast the growth or yield of leafy
plants such as lettuce.
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