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During the first meiotic division, the segregation of homologous chromosomes depends
on the physical association of the recombined homologous DNA molecules. The
physical tension due to the sites of crossing-overs (COs) is essential for the meiotic
spindle to segregate the connected homologous chromosomes to the opposite poles
of the cell. This equilibrated partition of homologous chromosomes allows the first
meiotic reductional division. Thus, the segregation of homologous chromosomes is
dependent on their recombination. In this review, we will detail the recent advances in
the knowledge of the mechanisms of recombination and bivalent formation in plants. In
plants, the absence of meiotic checkpoints allows observation of subsequent meiotic
events in absence of meiotic recombination or defective meiotic chromosomal axis
formation such as univalent formation instead of bivalents. Recent discoveries, mainly
made in Arabidopsis, rice, and maize, have highlighted the link between the machinery
of double-strand break (DSB) formation and elements of the chromosomal axis. We will
also discuss the implications of what we know about the mechanisms regulating the
number and spacing of COs (obligate CO, CO homeostasis, and interference) in model
and crop plants.

Keywords: Meiosis, recombination, synapsis, obligate crossing-over, interference, CO homeostasis,
heterochiasmy

INTRODUCTION

Meiosis is one of the most dynamic processes for a plant genome (Ronceret and Pawlowski,
2010; Prusicki et al., 2019). To achieve a reductional division, the meiotic cell goes through one
round of DNA replication followed by two cell divisions (Mercier et al., 2015). The meiotic
divisions have evolved from the machinery toolkit used by the regular mitotic division with
additional regulatory functions allowing the reductional division (Wilkins and Holliday, 2009).
Several differences between meiosis and mitosis are discernible already at prophase I with the
introduction of meiotic-specific processes such as meiotic recombination, pairing, and synapsis of
homologs. During the whole meiotic prophase I, the nuclear chromosome content is duplicated
and each homolog is constituted by two sister chromatids. Bivalents are defined as connected
homologous chromosomes, forming a unit of four DNA molecules, essential for the equilibrated
segregation of the chromosome pool. The formation of bivalents occurs during the prophase
I of meiosis and involves the coordination between homologous recombination, pairing, and
synapsis (Mercier et al., 2015). During meiotic metaphase I, a specific bipolar conformation of the
meiotic spindle attachment to centromeres allows the segregation of these recombined bivalents.
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In plants, male and female meiosis occur in different organs.
Though most meiotic mechanisms are shared between sexes,
some differences have long been observed between male and
female meiotic recombination rates. After the two successive
meiotic divisions, haploid spores, which contain only one set of
each chromosome, are formed. These separated male or female
spores undergo the gametophytic phase giving rise to distinct
male and female gametes. Fertilization between gametes restores
the diploid state crucial for the sexual life cycle and the genome
maintenance of the species.

Understanding the formation of how new meiotic DNA
molecules are formed is of special value for breeding since it is
a fundamental basis for genetics, evolution, and genomic crop
improvement (Melamed-Bessudo et al., 2016; Lambing et al.,
2017; Blary and Jenczewski, 2019; Bolaños-Villegas and Argüello-
Miranda, 2019; Taagen et al., 2020; Kuo et al., 2021).

This review will focus on the recent advances in the
understanding of the genetic control of meiotic recombination
and bivalent formation in diploid plant species, mainly
Arabidopsis, rice, and maize. For the more complex bivalent and
multivalent formation in polyploid plants [Refer the reviews of
Cifuentes et al. (2010), Mason and Wendel (2020), and Svačina
et al. (2020)]. Several important discoveries have been made in
these last few years concerning the mechanisms of crossing-over
(CO) interference (impeding the formation of adjacent COs),
non-crossing-over (NCO) pathways, obligate CO (to maintain at
least one CO by bivalent), CO homeostasis [the buffering of CO
numbers despite the reduction in double-strand breaks (DSBs)
number], and heterochiasmy (difference in male and female CO
frequencies). For an overview of the plant meiotic genes and
mechanisms discovered before 2018, see the excellent reviews of
Luo et al. (2014), Mercier et al. (2015), and Wang and Copenhaver
(2018). An overview of the proteins regulating bivalent formation
grouped by functional modules is listed in Figure 1.

REGULATION OF THE MEIOTIC CELL
FATE AND MEIOTIC TRANSCRIPTOME

In plants, the germline fate acquisition where meiosis will occur
involves the specific transcription factor SPOROCYTELESS also
known as NOZZLE in Arabidopsis (Yang et al., 1999; Wei et al.,
2015) and rice (Ren et al., 2018). In rice, the ARGONAUTE
protein MEL1 plays an essential role in male and female meiotic
cell fate (Nonomura et al., 2007; Komiya et al., 2014; Liu and
Nonomura, 2016). The rice MEL2 is an RNA recognition motif
protein binding the 3′-UTRs and involved in the translational
regulation of key meiotic genes (Nonomura et al., 2011; Miyazaki
et al., 2015). In Arabidopsis, no MEL orthologs have been
described but AGO9 and AGO4 are involved in female gamete
specification (Olmedo-Monfil et al., 2010), while small interfering
RNA inhibits retrotranspositions in the male germline (Long
et al., 2021). Argonautes are the key players in distinct small RNAs
(sRNAs) pathways involved in transcriptome regulation (Oliver
et al., 2014). Transcriptomic analysis of different steps of germline
cells and meiocytes has revealed dramatic transcriptomic changes
during prophase I in various plant species. In maize, single-cell

RNA sequencing reveals a profound two steps reorganization
of the transcriptome at the leptotene stage when meiotic
recombination initiate (Nelms and Walbot, 2019). The sRNAs
(micro-RNA and phased secondary small interfering RNA) are
particular dynamics during prophase in rice, maize, sunflower,
soybean, and cucumber (Dukowic-Schulze et al., 2016; Flórez-
Zapata et al., 2016; Huang et al., 2020; Zhang et al., 2021) and, at
least in Arabidopsis male meiocytes, play a critical role in meiotic
recombination potentially via the AGO4 pathway (Oliver et al.,
2016, 2017; Pradillo and Santos, 2018).

Though sex-specific transcriptomes have been obtained
in various plant species (Dukowic-Schulze et al., 2020; Liu
et al., 2020; Barakate et al., 2021), a systematic comparison
between male and female meiotic transcriptomes has not
yet been performed.

In maize, hypoxia arising naturally within growing anther
tissue was reported to act as a positional cue to set male germ
cell fate (Kelliher and Walbot, 2012). The cytology of plant
female meiosis has been historically more challenging but is
now prone to analysis due to new techniques of the whole
immunolocalization of plant ovules (Escobar-Guzman et al.,
2015; Gordillo et al., 2020). In Arabidopsis, the specification of
only one germ cell line per ovule has been analyzed and involved
complex positional clues and identify RBR1 as a central hub for
female meiocyte differentiation (Zhao et al., 2017). RBR1 is also
required for the recombinase RAD51 localization to DNA lesions
(Biedermann et al., 2017). SWITCH1/AMEIOTIC is an essential
gene allowing the entry in male and female meiosis. SWI1
was recently identified as a functional Sororin-like antagonist
(Yang et al., 2019) of the WINGS APART-LIKE (WAPL) that
removes cohesin from chromosome via the prophase pathway
before the action of separase at anaphase onset (De et al.,
2014). Accordingly, SWI1/AM1 is a nuclear protein installed on
the whole chromatin from premeiotic replication and is only
maintained in centromere regions during pachytene in maize
(Pawlowski et al., 2009). However, this remaining centromeric
localization was not observed in rice (Che et al., 2011) suggesting
plant-specific variations for this regulation.

FORMATION OF THE MEIOTIC COHESIN
COMPLEX

DNA replication is followed by the appearance of meiotic-specific
components of the cohesin complex (formed by SMC1, SMC3,
SCC2, SCC3, and REC8) (Cai et al., 2003; Chelysheva et al.,
2005; Wang et al., 2020). Cohesin turnover and localization
on chromatin are mediated by WAPL (De et al., 2014), PDS5
(Pradillo et al., 2015), and CTF7 (Singh et al., 2013). REC8 is a
meiotic-specific kleisin that replaces the mitotic SCC1 subunit
in this complex. It was shown in tomato that the four subunits
of the meiotic cohesin complex are discontinuously distributed
along the chromosome length from leptotene through early
diplotene (Qiao et al., 2011). In maize, SMC3 is essential for
sister chromatid cohesion and facilitates centromere coupling
(Zhang et al., 2020d), a peculiar configuration associating
the centromeres before pairing commences along chromosome
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FIGURE 1 | List of proteins regulating bivalent formation grouped by functional modules under a different colored bubble. For simplification, the list only gives the
name of Arabidopsis proteins unless the two-letter symbol of the species is specified before the protein name (Os rice, Ta durum wheat, and Zm maize).

arms (Ronceret et al., 2009). The current working models
of chromatin organization suppose that the meiotic cohesin
complex forms a ring attaching the two replicated sister
chromatids and organizes the chromatin by forming the base
of chromatin loops (Zickler and Kleckner, 2015; Kim and Choi,
2019; Grey and de Massy, 2021). Chromosome conformation
capture (HiC) experiments have not yet been performed on plant
meiotic genomes to analyze their chromosomal loop domain
organization (Golicz et al., 2020). In Arabidopsis, ChIP-seq
experiments have shown that REC8 is associated with repetitive
centromeric and pericentromeric regions of high nucleosome
occupancy, the opposite of where meiotic DSBs and crossovers
are found at the chromosome and fine scales (Lambing et al.,
2020b). REC8 containing cohesin complex is largely protected
by the Shugoshin (SGO)-PP2A complex around centromeres
during meiosis I (Zamariola et al., 2014; Yuan et al., 2018; Zhang
et al., 2019) and by PAN during interkinesis (Cromer et al.,
2019). These protections allow the coordinated separation of
the homologous chromosomes during meiosis I and the release
of the sister chromatin only during meiosis II via a separase-
dependent proteolytic cleavage of the centromeric kleisin subunit
REC8 (Cromer et al., 2019).

FORMATION OF THE AXIAL ELEMENT
OF THE SYNAPTONEMAL COMPLEX

The synaptonemal complex (SC) is a proteinaceous ultrastructure
formed of two axial elements (AEs) and a central element.
Elements of the AEs are installed on chromatin during leptotene
before synapsis occurs. In plants, several components of the
AEs have been identified: the HORMA domain ASY1/PAIR2
(Armstrong et al., 2002; Nonomura et al., 2004a), the associated
coiled-coiled proteins ASY3/DSY2/PAIR3 (Yuan et al., 2009;
Ferdous et al., 2012; Lee et al., 2015; Osman et al., 2018) and

ASY4 (Chambon et al., 2018). The cohesin REC8 is supposed
to anchor chromatin to the AEs of the SC via PAIR3/ASY3
(Wang et al., 2011) though a direct interaction between REC8
and any AE protein is yet unknown. However, in Arabidopsis,
ASY1 and REC8 ChiP-seq strongly correlate suggesting that
both proteins associate with similar regions of the genome
at global and fine scales (Lambing et al., 2020b). In maize,
DSY2 (homolog of ASY3 and PAIR3) forms an alternative
pattern with ASY1 on AE and can interact with ZYP1 while
ASY1 cannot (Lee et al., 2015). In addition, the AAA+ ATPase
PACHYTENE CHECKPOINT 2 (PCH2)/CRC1 is essential for
the ASY1 depletion before synapsis (Lambing et al., 2015). Its
interacting partner P31comet participates in ASY1 import in the
nucleus and the removal of non-phosphorylated ASY1 from the
chromosomal axis (Balboni et al., 2020). In rice, CRC1/PCH2
can directly interact with ZEP1/ZYP1 while P31 cannot (Ji et al.,
2016). In addition, the role of some SC proteins in the initiation
of meiotic recombination such as DSY2/ASY3 in maize (Lee
et al., 2015), CRC1/PCH2 (Miao et al., 2013) and P31 in rice (Ji
et al., 2016) pinpoints to the essential role of AE elements on the
initiation of meiotic recombination.

FORMATION OF THE EARLY
RECOMBINOSOME

During meiosis, two homologous DNA molecules can form
new recombined ones using the general mechanics of the error-
proof DNA damage repair pathways (Mercier et al., 2015;
Wang and Copenhaver, 2018; Zelkowski et al., 2019).
The initiation of meiotic recombination starts with the
introduction of DNA DSBs. The DSBs are formed by the
SPO11 complex composed of the catalytical A subunits,
SPO11-1 (Grelon et al., 2001; Edlinger and Schlögelhofer,
2011; Da Ines et al., 2020) and SPO11-2 (Stacey et al., 2006;
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Hartung et al., 2007b; Benyahya et al., 2020), associated with
two B subunits, called MTOPVIB of the class II topoisomerase
type VI (Fu et al., 2016; Vrielynck et al., 2016; Xue et al., 2016).
The Arabidopsis spo11-1 mutant has an interesting distinctive
23 and 24 nt sRNA profile than wild type in male meiocytes.
These SPO11-1-dependent sRNAs are mapped to bind coding
sequences and some CO feature motifs, while some sRNAs can
target some meiotic genes such as RAD51 or ASK1 (Huang et al.,
2019). Whether or not these sRNAs are produced at or near the
site of DSBs and represent a signaling mode for repairing the
DSB requires further work.

Though every CO is derived from a DSB event, not all DSBs
are repaired as COs, and a vast majority of DSBs result in
NCOs (Mercier et al., 2015). In maize, the CML228 inbred line
that has naturally less DSBs (evaluated by the RAD51 number)
has a correlated decreased CO number compare to B73 and
other inbreds, indicating that the level of CO homeostasis is
limited (Sidhu et al., 2015). In Arabidopsis, hypomorphic spo11-
1 mutants that reduce the DSB number also diminish the CO
number but interestingly also alter the pattern of CO toward
the telomeres (Xue et al., 2018). These data suggest that, at
least in these two model plant species, CO homeostasis is not
observed or limited.

In maize, using superresolution microscopy, it was observed
that only a subset of SPO11-1 foci, the one closely associated
with the AEs, correspond to the number of DSBs formed in
leptotene (Ku et al., 2020). This suggests that the topoisomerase
II-like nuclease function of the SPO11-1 complex occurs only
when it is associate with the AE (Ku et al., 2020). Whether or
not this particular configuration allows the nuclease activity of
only one of the two attached sister chromatids is not known. The
SPO11-1 “early recombinosome” complex also contains various
accessory proteins that might participate in the tethering between
the chromatin loop and the axis where DSBs are formed. SPO11-
1 and MTOPVIB can interact with PRD1 (Vrielynck et al.,
2016; Tang et al., 2017). In addition, rice and maize MTOPVIB,
rice PRD1, and Arabidopsis PRD2/MPS1 are required for the
assembly of the meiotic bipolar spindle (Ji et al., 2016; Xue et al.,
2019; Jing et al., 2020; Shi et al., 2021). It was long recognized in
maize that the meiotic spindle can associate around chromatin
independently of the formation of the bivalent (Chan and Cande,
1998; Nannas et al., 2016) suggesting that the multipolar spindle
observed in the meiotic recombination mutants might be a
consequence of the formation of univalents instead of bivalents.
The rice PRD1 initially forms numerous foci during leptotene,
progressively restricted to few foci colocalizing with centromeric
CENH3 and other kinetochore proteins (MIS12, NDC80, and
CENP-C) at pachytene (Shi et al., 2021). PRD1 can directly
interact with REC8 and SGO1 (Shi et al., 2021) suggesting a
mechanism for early coordination between DSB formation and
meiotic spindle organization. Other SPO11-associated factors
such as DFO1, PRD1, PRD2, and PRD3/PAIR1 have also been
identified as essential for DSB formation (Nonomura et al.,
2004b; De Muyt et al., 2007, 2009; Zhang et al., 2012) but their
relationship, specific function, and potential interaction with
the cohesin and AE proteins still need to be explored (Mercier
et al., 2015; Kim and Choi, 2019). PHS1, discovered in maize
(Pawlowski et al., 2004), is poorly conserved with the rec114

yeast DSB factor but has a divergent function in plants. It is
involved in the nuclear localization of the RAD50 protein into
the nucleus in maize and Arabidopsis (Ronceret et al., 2009).
SKI8 is also not conserved between yeast and Arabidopsis (Jolivet
et al., 2006). Interestingly, the PRD2/MPS1 can form different
splicing isoforms depending on the methylation status of its
intron 9, dependent on the RNA-directed DNA methylation
pathway (Walker et al., 2018).

GENOMIC MAPPING OF DSBs AND
RECOMBINATION MOTIFS

Several studies using ChIP or SPO11 oligonucleotide sequencing
have now revealed the genomic pattern of DSBs in maize
and Arabidopsis. As previously well-known, genomes contain
hotspots of COs, that are now correlated with genomic hotspots
regions more prone to form DSBs (He et al., 2017; Choi
et al., 2018; Tock and Henderson, 2018). In these two diploid
species, DSBs are associated with specific active chromosome
features such as transcriptional start sites that are depleted
of nucleosomes. In Arabidopsis, several motifs associated
with recombination have been defined. The A-rich motif is
preferentially associated with promoters, while the CCN repeat
and the CTT repeat motifs are preferentially associated with
genes (Shilo et al., 2015). The motifs correlating with COs are
not necessarily identical to motifs correlating with sites of DSB.
This suggests that several genomic contexts required for the
different steps of recombination progressively shape the choice of
chromosomal exchange sites. The presence of a similar but not
identical 20-bp-long GC-rich degenerate DNA sequence motif
was correlated with DSB formation in maize and Arabidopsis (He
et al., 2017; Choi et al., 2018). Interestingly, while DSBs are also
formed in regions that will not form CO such as centromeric
regions and repetitive DNA (especially RNA transposons), it was
found that only DSBs formed in genic regions will form CO in
maize (He et al., 2017). In Arabidopsis, mutants affecting the
methylation of H3K9me2 and DNA CG and non-CG in the
transposon-rich pericentromeric heterochromatin also increase
the formation of DSB near centromeres (Underwood et al.,
2018; Fernandes et al., 2019). In maize, the mop1 mutation
(homolog of RDR2) that removes CHH methylation adjacent
to hotspots also affects the recombination landscape, increasing
it in the chromosome arm but decreasing it in pericentromeric
regions (Zhao et al., 2021). These data indicate that though the
molecular bases are distinct in species of different genome sizes,
and with relative repetitive element contents, a strong effect of
epigenetic and chromatin state controls the fate of the early
meiotic recombinosome.

SIGNALING AND PROCESSING OF THE
DSBs

The programmed DSBs are identified by the signaling
pathway of DNA damages via the ATM and ATR kinases
(Kim and Choi, 2019; Zhang et al., 2020a). In budding yeast,
ATM/ATR can phosphorylate REC8 and other chromosome
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axis proteins and, therefore, modulate CO homeostasis (Kim
and Choi, 2019). It is not clear, however, if this is also the case
in plants. The meiocyte nuclei use prepared recombination
machinery to repair the numerous endogenous DSBs using
a preferential homologous recombination pathway. The
somatically preferred non-homologous end joining (NHEJ)
is suppressed by the exonuclease (RAD9-RAD1-HUS1) 9-1-1
complex system (Che et al., 2014; Hu et al., 2016). This 9-
1-1 complex itself is possibly recruited by the DNA damage
sensor RAD17 (Hu et al., 2018). This inhibition is essential
to avoid inaccurate interactions between non-homologous
chromosomes during meiosis (Che et al., 2014). The DSBs are
rapidly associated with the phosphorylation of histone H2AX
and processed by endonuclease and exonucleases activities of
the MRN complex composed of MRE11, RAD50, NBS1, and
COM1 (Bleuyard et al., 2004; Puizina et al., 2004; Uanschou
et al., 2007; Waterworth et al., 2007; Lohmiller et al., 2008;
Šamanić et al., 2013; Wang Y. et al., 2018) creating 5′ overhang
sequences. These sequences are recognized by specialized single
DNA strand affine replication protein A (RPA) types such as
RPA1a in Arabidopsis (Osman et al., 2009) or RPA1C and
RPA2C in rice (Li et al., 2013). RPAs are generally involved in
telomere-length maintenance (Aklilu et al., 2020) suggesting
a functionalization of this single DNA strand capping for the
processing of meiotic DSBs.

SINGLE-END INVASIONS AND PAIRING

These single ends can invade homologous sequences (process
called single-end invasion or SEI) thanks to the recombinase
activities of RAD51 and DMC1 (Couteau et al., 1999; Li et al.,
2004). These recombinases have the properties to form a strong
homology-based DNA triple helix called a displacement loop
(D-loop) (Kurzbauer et al., 2012; Wang et al., 2016; Singh
et al., 2017; Colas et al., 2019; Draeger et al., 2020). The
RAD51 and DMC1 are part of the same recombinase protein
family also containing RAD51C and XRCC3 that derive from
the same ancestor but have undergone subfunctionalization
(Bleuyard et al., 2004; Da Ines et al., 2013; Pradillo et al.,
2014). RAD51C and XRCC3 facilitate the RAD51 chromosome
localization (Su et al., 2017; Jing et al., 2019; Zhang et al.,
2020c). RAD51 and DMC1 also associate with other proteins
modulating their activities such as BRCA2 (Siaud et al., 2004;
Dray et al., 2006; Seeliger et al., 2012; Fu et al., 2020),
FIGL1 and FLIP (Zhang P. et al., 2017; Fernandes et al.,
2018a; Kumar et al., 2019), or MND1, and HOP2 (Vignard
et al., 2007; Uanschou et al., 2013; Aklilu et al., 2020). Rice
MND1/MSF1 can interact with RPA2b and HOP2 (Lu et al.,
2020), while OsHOP2 can directly interact with the SC central
element ZEP1/ZYP1 suggesting a second mechanism for the
link observed between early recombination and synapsis (Shi
et al., 2019) at the SEI step. The excess number of SEI creating
several interconnections between homologous chromosomes
(also called interhomolog joint molecules) were proposed to be
involved in the pairing process (Pawlowski et al., 2003). Pairing
allows the recognition between accurate homologs before its

stabilization by the polymerization and lateral extension of the
SC during zygotene.

ANTICROSSOVER PATHWAYS

The number of DSB and SEI is far greater than the number of
COs and the vast majority of DSBs [around 85% in Arabidopsis
(Higgins et al., 2004) and 97.7% in durum wheat (Desjardins
et al., 2020)] are resolved as NCOs. NCOs are formed when
the SEI occurs on the sister chromatid but also when a
D-loop formed on the homologous chromosome is resolved
in a configuration that only involves the exchange of genetic
material in a short sequence called conversion tracts (Mercier
et al., 2015; Wang and Copenhaver, 2018). Three parallel anti-
CO pathways have been discovered using suppressor genetic
screens of zmm meiotic recombination mutants in Arabidopsis
(Séguéla-Arnaud et al., 2015).

The first NCO pathway involves the SGS1/BLM helicases
homologs RECQ4A and RECQB (Hartung et al., 2007a; Higgins
et al., 2011) and the topoisomerases TOP3α (Hartung et al., 2008)
associated with BLAP75/RMI (Chelysheva et al., 2008), which
unwinds D-loops leading to a sixfold CO number increase in
Arabidopsis (Séguéla-Arnaud et al., 2015). In rice, the MEICA
protein that interacts with TOP3a also has an anticrossover
activity (Hu et al., 2017).

The anti-CO pathway that involves the FANCM helicase
possibly displaces the invading strand through the synthesis-
dependent strand annealing (SDSA) process (Crismani et al.,
2012). SDSA can form NCOs by annealing the SEI with the
other end of the DSB, repairing the DSB using the original
DNA molecules. FANCM has two binding cofactors MHF1 and
MHF2 that also limit the number of COs formed via the type
II non-interfering pathway (Dangel et al., 2014; Girard et al.,
2014). Interestingly, the anti-CO effect due to FANCM is more
pronounced in inbred than in hybrids backgrounds (Girard
et al., 2015). The FANCM pathway also affects COs in a Brassica
rapa pure line (Blary et al., 2018). In lettuce, the fancm mutant
shows a univalent phenotype not observed in other species (Li
et al., 2021) indicating possible divergence in the regulation
of this pathway or different consequences between species of
different genome sizes.

Another cumulative NCO pathway involves the FIDGETIN
AAA-ATPase FIGL1 (Girard et al., 2015; Zhang P. et al., 2017)
and its partner FLIP (Fernandes et al., 2018a). FIGL1 directly
interacts with RAD51 and DMC1 and is proposed to limit SEI
and CO number (Fernandes et al., 2018a). Using the mutants
of these different pathways or combining them together or with
elevated expression of the procrossover factors HEI10 (Serra
et al., 2018) are particularly interesting for agronomy since it
allows to unleash the number of CO by several folds in various
plant species and potentially speed up new breeding strategies
(Fernandes et al., 2018b; Mieulet et al., 2018). Interestingly, these
CO increase do not cause problems in chromosome segregation.
The relative role of these different pathways in male vs. female
plant meiosis requires further analysis.
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SYNAPSIS AND ROLE OF THE SC IN
THE REGULATION OF RECOMBINATION

The central element ZYP1 of the SC starts polymerizing during
zygotene to form a protein complex resembling a zipper structure
connecting the two meiotic homologous chromosomes from
telomere to telomere at pachytene. The two AEs are called
lateral elements once they form this tripartite structure (Higgins
et al., 2005; West et al., 2019; Darrier et al., 2020; Kurzbauer
et al., 2021). Although two redundant ZYP1 proteins sharing
87% identity are present in Arabidopsis; their relative role is
still unknown. The SC can regulate the number and spacing
of CO. While barley zyp1 mutants show limited CO numbers
(Barakate et al., 2014), the homolog rice zep1 mutants have
the opposite effect (Wang et al., 2010). The SC components
have diverged rapidly among eukaryotes but the general SC
structure is conserved (West et al., 2019). These results might
reflect divergent modes of regulation of the SC on CO between
different species. ZYP1 was also recently reported as required
for CO interference and the obligate CO (France et al., 2021).
In Arabidopsis zyp1a/b null mutant, heterochiasmy is abolished
(Capilla-Pérez et al., 2021). These recent data suggest that the
SC coordinates the regulation of obligate CO, interference,
and heterochiasmy. Arabidopsis asy1 mutants also abolish CO
interference (Lambing et al., 2020a). ASY1 acts as an antagonist
of telomere-led recombination in a gene dosage-sensitive manner
(Lambing et al., 2020a). The ASY1 immunolocalization signal
disappears concomitantly with the loading of the central element
ZYP1 (Lee et al., 2015). This suggests that obligate CO,
heterochiasmy, and interference mechanisms are not directly
mediated by either ASY1 or ZYP1 but rather involve the
regulation of the SC length. ASY1 can be phosphorylated by
CDKA;1 counteracting the ASY1 disassembly activity of PCH2
and P31 (Yang et al., 2020), which suggests a dynamic control of
SC length regulation. The phosphorylation of the ASY1 protein
increases its binding affinity with the chromatin-anchoring
ASY3/DSY2 protein (Yang et al., 2020). ATM is another meiotic
protein kinase essential to limit DSB number; it regulates
chromatin loop size and affects SC length and width (Kurzbauer
et al., 2021). The relative role of ATM and CDKA1;1 in the
phosphorylation of SC components or other meiotic proteins
is still unknown.

FORMATION OF THE LATE
RECOMBINOSOME AND CROSSOVER
PATHWAYS

The DNA repair of the damaged molecules involves the
formation of double Holliday junctions (dHJs) that are resolved
by resolvases leading to CO or NCO. Two pathways of CO
formation have been described in plants.

The interfering pathway (CO type I) positions CO with non-
random spacing between each CO event. In general, the CO type
I accounts for the majority (80–95%) of all COs in plant species
(Mercier et al., 2015). It involves the ZMM pathway, namely,

MER3 (Chen et al., 2005; Mercier et al., 2005), ZIP4 (Chelysheva
et al., 2007), the DNA mismatch repair mutS/mutL homologs
MSH/MLH (MSH4, MSH5, MSH7, MLH1, and MLH3) (Higgins
et al., 2004, 2008b; Chelysheva et al., 2010; Colas et al., 2016)
and HEI10 (Chelysheva et al., 2012; Ziolkowski et al., 2017).
In rice, a new member of the ZMM pathway was discovered
through its interaction with HEI10, MSH4, and ZIP4 and named
HEI1P1 (Li et al., 2018). SHOC1 and PTD, which were described
in Arabidopsis as involved in the type I CO pathway (Macaisne
et al., 2008, 2011), are conserved and play similar roles in rice
(Ren et al., 2019). Interestingly, it was found that the obligate
COs (that ensure the correct chromosome segregation during
anaphase I) are maintained by MSH4 and MSH5 in durum wheat
(Desjardins et al., 2020). In the allotetraploid Brassica napus,
reducing the MSH4 copy number prevents non-homologous
CO (Gonzalo et al., 2019). The analysis of hypomorph mutants
of two essential B-class DNA polymerases (the delta POLD1
supposed to be involved in DNA lagging strand synthesis and
the Epsilon POL2A thought to be involved in DNA leading
strand synthesis) has shown that they are also involved in
the formation of type I COs (Huang et al., 2015; Wang C.
et al., 2018). It was first hypothesized that elongation activity
of these polymerases is required for the process of meiotic
recombination but the multifunctionality of these POL proteins,
containing exonuclease proofreading domains (Ronceret et al.,
2005), could complicate the interpretation of the activity required
during meiotic recombination. In addition, DNA polymerases
are involved in the deposition of the H3K4me3 transcriptionally
active epigenetic marks linked to DSB formation and participate
in DNA repair (Yin et al., 2009; Iglesias et al., 2015) suggesting
other possibilities for the role of DNA POL in the formation of
type I COs. However, since most of the pol mutants have embryo-
lethality phenotypes (Ronceret et al., 2005; Wang et al., 2019) this
is a difficult topic to study.

The second minor CO pathway (type II or non-interfering)
can form closely spaced COs. In plants, it involves the dHJ
resolvases (structure-specific endonuclease) MUS81 (Higgins
et al., 2008a), GEN1 (Wang et al., 2017), and SEND1, which
is also essential for telomere stability (Geuting et al., 2009;
Olivier et al., 2015).

Though it was found to be involved in the mechanism of
interference in yeast, the topoisomerase TOPII was not found
to have an effect on CO interference in Arabidopsis but to
facilitate interlocks resolution (remove interlacement of different
bivalents at the time of synapsis) (Martinez-Garcia et al., 2018)
that are normally all resolved by pachytene (Wang et al., 2009).
Interestingly, TOPII is associated with the chromosome axis
and accumulates in entangled regions during the zygotene stage
(Martinez-Garcia et al., 2018). In Arabidopsis, a second non-
interfering pathway of CO (called type III non-interfering CO
in Figure 1), parallel to the MUS81 (type II) CO pathway,
depends on FANCD2 and contributes to the formation of some
non-interfering COs (Kurzbauer et al., 2018). The hotspots and
coldspots of recombination are supposably due to the combined
effects of chromatin features and the different anticrossover and
crossover pathways. The relative mechanisms by which the CO
rate is modulated at these sites still require further exploration.
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EFFECTS OF GENOMIC REGIONS,
CENTROMERE PAIRING, TELOMERE
BOUQUET, AND REPEATED DNA
RECOMBINATION

Various genomic regions are known to have variable
recombination rates in various plant species. New whole
genome sequencing techniques have now given us a clear vision
of the recombination maps at a fine scale in several plant species
(Hellsten et al., 2013; Luo et al., 2019; Rowan et al., 2019). It is
known that the genomic recombination rate is influenced by
epigenetic marks, the genetic background (Sidhu et al., 2015;
Ziolkowski et al., 2017; Dreissig et al., 2019; Lawrence et al.,
2019), and the level of heterozygosity (Ziolkowski et al., 2015).
It also greatly depends on chromatin structural variation where
large inversion and translocations can suppress recombination
(Rowan et al., 2019; Termolino et al., 2019). The molecular basis
of this suppression is still unclear but probably involves the
abnormal SC installation on unpaired chromatin loop domains.

Chromosome conformation changes are highly dynamic
during meiotic prophase, involving active mechanisms to gather
telomeres at the nuclear envelope (called telomere bouquet),
centromere coupling, and chromosome pairing and synapsis
(Sepsi and Schwarzacher, 2020; Lenykó-Thegze et al., 2021).

In maize and rice, the SUN proteins are involved in telomere
bouquet formation (Murphy et al., 2014), synapsis, and CO
formation (Zhang et al., 2020b). SUN1 and SUN2 Arabidopsis
mutants delay the progression of meiosis, affect synapsis, and
reduce the chiasma number (Varas et al., 2015). The role of
AtSUN1 and AtSUN2 on the bouquet has not yet been analyzed
since the Arabidopsis telomere bouquet was only recently defined
using techniques that maintain the 3D structure of the nucleus
intact (Hurel et al., 2018). In rice, the bouquet is dependent on the
PAIR3/ASY3 AE element (Wang et al., 2011) and on the F-Box
ZYGO protein that also affects the initiation of homologous
pairing (Zhang F. et al., 2017). In maize, SPO11-1 foci are
transiently observed on the nuclear periphery and seem excluded
from the nucleolus (Ku et al., 2020) suggesting a potential
gathering of the DSBs machinery at the nuclear envelope and
that its chromatin localization is not homogenous on the genome.
Interestingly in Arabidopsis, the repetitive nucleolus organizing
regions (NORs) acquired distinct chromatin characteristics
during meiosis with strong ASY1 signals and the absence
of the synaptic ZYP1 protein. The nucleolus employs an
NHEJ mechanism requiring LIG4 (instead of the homologous
recombination pathway dependent on RAD51) to repair the
few DSBs produced in NORs and avoid unequal recombination
in the repetitive recombinant DNA clusters (Sims et al.,
2019). The presence of fewer COs in the heterochromatic
repetitive knob region was observed cytogenetically in maize
male meiocytes (Stack et al., 2017). However, by contrast to the
nucleolus, knob meiotic recombination still uses the homologous
recombination pathway as observed by the presence of MLH1
foci. This indicates that the diminution of meiotic recombination
in distinctive heterochromatin regions probably uses several
distinct mechanisms.

EFFECTS OF AGE AND SEX ON MEIOTIC
RECOMBINATION

A moderate effect of the age of the shoot apical meristem on the
number of CO was reported in Arabidopsis (Francis et al., 2007;
Toyota et al., 2011; Li et al., 2017; Saini et al., 2020). Whether or
not these age effects also occur in other plants is still unknown.

Sex difference in CO frequency is called heterochiasmy.
In Arabidopsis, the CO number is higher in male meiocytes
than in female meiocytes (Drouaud et al., 2007; Giraut et al.,
2011; Saini et al., 2020). By sequencing Arabidopsis male and
female backcrossed plants, 4.58 crossovers were found in male
backcrossed compared to 3.08 in female backcrosses (Capilla-
Pérez et al., 2021), noting that only half of the true CO number
can be identified since gametes inherit a single chromatid and
CO involves only two of the four chromatids of a bivalent.
In Arabidopsis and maize, the difference is attributed to the
length of the SC and the distribution of CO is also different
in male and female meiocytes (Giraut et al., 2011; Kianian
et al., 2018; Lloyd and Jenczewski, 2019; Luo et al., 2019). It
was recently demonstrated that heterochiasmy is enforced in
Arabidopsis by the SC central element ZYP1 (Capilla-Pérez
et al., 2021). This suggests that heterochiasmy and SC length
differences in male and female meiocytes are regulated by a
common molecular pathway.

EFFECT OF ENVIRONMENTAL
CONDITIONS ON MEIOSIS

In plants, meiosis occurs in flowers whose development was
initiated via various past and present environmental clues
(Antoniou-Kourounioti et al., 2021). The temperature variation
is also known to modify the meiotic and somatic recombination
rate using fluorescent-tagged lines (Francis et al., 2007; Li
et al., 2017; Saini et al., 2017) correlated with cytological MLH1
foci counting (Lloyd et al., 2018). In Arabidopsis, both high
(28◦C) and low (8◦C) temperature conditions increase meiotic
recombination compared to medium temperature (18◦C).
Interestingly, external temperatures are negatively correlated
with the SC length that is itself correlated with the CO
number. A correlation between SC length and CO number
per chromosome was found (von Wettstein et al., 1984).
Consequently, the longer SC length observed at low temperatures
can explain the higher number of CO but not the increase of
CO number observed at the higher temperatures. This increase
in CO due to high temperature is not due to an increase in
DSB formation as observed with γH2A.X and RAD51 foci.
These extra COs are class I (ZMM) pathway as evidenced by
increased MLH1 and HEI10 focus numbers in male meiocytes
(Blary et al., 2018). Using mutants of different CO pathways in
Arabidopsis, it was confirmed that the extra COs are derived
from the interfering type I CO pathways and not to the type II
(Modliszewski et al., 2018; De Storme and Geelen, 2020). The
response of CO number to external temperature is not a universal
stress response since saline stress does not affect it. Though the
effect of temperature on COs was also observed and analyzed
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in barley, it seems that the mechanism of action is distinct. In
contrast to Arabidopsis, the SC length in barley male meiocytes
increases with higher temperature. The number of CO type I
is not altered but their position shifted toward more internal
non-telomeric regions as observed with cytologically mapped
MLH3 foci (Phillips et al., 2015). The same effect of the position
shifting from distal to more internal CO is also observed for some
chromosome arms in wheat (Coulton et al., 2020). Though it
seems an attractive and easy parameter that could modulate CO
in crops, it appears that extremal temperatures have also other
deleterious effects on the progression of meiosis such as defects
of secondary division and wall formation reducing euploidy and
seed set (De Storme et al., 2012; Draeger and Moore, 2017;
De Storme and Geelen, 2020).

The presence of the histone H2A.Z was determined as the
marker of the thermosensory response in Arabidopsis, with
H2A.Z deposition decreasing with increasing temperatures
(Kumar and Wigge, 2010). In addition, the CO sites
overlap with the presence of H2A.Z nucleosome at gene
promoters (Choi et al., 2013). Arabidopsis mutants of the
H2A.Z placement show lower CO frequency. The correlation
between H2A.Z and CO frequencies could explain the part of
the effect of lower temperatures increasing CO frequency
but not the effects of higher temperatures. Indeed, the
higher CO frequency of Arabidopsis plants grown at 12◦C
compared to plants grown at 21◦C disappears in mutants
defective for H2A.Z deposition (Kumar and Wigge, 2010).
The relation between the deposition of H2A.Z and the
phosphorylation of γH2AX associated with the formation
of DSB is currently unknown.

Another key factor of this regulation of the meiotic
recombination by temperature is the cyclin-dependent kinase
CDKG1. Arabidopsis cdkg1 mutants show temperature-sensitive
meiotic defect at 23◦C but not at 12◦C with abnormally formed
SC, lower CO frequency, and reduce the bivalent number
(Zheng et al., 2014; Nibau et al., 2020b). There are temperature-
dependent isoforms of CDKG1 (Nibau et al., 2020a). These
isoforms can interact with the spliceosome and can regulate
the splicing of other spliceosome components and the Callose
synthase5 forming the pollen wall (Huang et al., 2013; Cavallari
et al., 2018). It is still not known that whether or not the
CDKG1-dependent temperature-sensitive regulation affects the
production of different splicing variants of meiotic genes or
affects H2A.Z deposition.

Another meiotic cyclin CDKA;1 has an important role in the
regulation of the recombination landscape (Wijnker et al., 2019).
CDKA;1 is also involved earlier in the germline fate decision
via the inactivation of RBR1 (Chen et al., 2011; Zhao et al.,
2017) pointing out the coordinating role of a peculiar meiotic
CDK as a key factor for the meiotic fate and the regulation
of meiotic recombination. What are the relative roles of the
meiotic CDKs, the associated meiotic cyclins (such as SDS and
TAM), and CDK inhibitors (KRPs) in the coordinated control
of meiotic recombination in different temperature conditions
remain to be analyzed.

Other factors such as climate, agrochemicals, heavy metals,
combustible gasses, pharmaceuticals, and pathogens are known

to modify meiosis in plants (Modliszewski and Copenhaver, 2017;
Fuchs et al., 2018; Dreissig et al., 2019) but their mechanistic
modes of action still need to be explored.

CONCLUSION

The understanding of several fundamental meiotic processes
has strongly advanced during the past few years thanks to
many studies in model and non-model plant species. Figure 1
summarizes the different proteins and functional modules known
to be involved in the formation of bivalents.

The new techniques of isolated cell high throughput
sequencing will revolutionize the questions we can ask about the
dynamic meiotic chromosome conformation through prophase I.

Though controversial for many years, the divergence of
several basic molecular meiotic mechanisms is now clear between
different plant species. Achiasmatic inverted meiosis has also
been reported in few non-model plants (Cabral et al., 2014;
Heckmann et al., 2014; Hofstatter et al., 2021) underlining the
extreme diversity of the plant meiotic programs. It contradicts
the predictive expected assumptions based on phylogenetic
relationships between plant species. In this perspective, one of
the future challenges will be to identify the actual biochemical
functions of the meiotic proteins not only based on the putative
function supposed by the homology of conserved protein
families. These interspecific differences are probably the real
essence of the meiotic process that has evolved to bring genomic
diversity. Even in the same species, there are known sex and cell to
cell variability (Wang et al., 2019). It underlines the importance
of studying directly meiosis in crops to manipulate it properly.
Increasing our meiotic manipulation tools for improving plant
breeding strategies is essential to cope with the challenge of
feeding 10 billon humans by 2050.
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