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Genome-assisted prediction of complex (e.g., quantitative) traits is an ingredient of “Genomic
Selection,” a paradigm adopted successfully in animals and plants of agricultural importance. The
approach has impacted the timing of selection decisions, and it has delivered improvements in the
quality of predictions (“accuracy”) relative to what can be attained by the use of pedigrees and
phenotypes. It has enhanced the rate of response to genetic selection and spectacularly so in dairy
cattle, at least as suggested by genome-based estimates of genetic change. Researchers have spent
much effort in developing and adapting prediction machines, and the author will focus on this
matter, with mild excursions into tangential issues. The material is organized into nine sections
and, since the author was to opine, it represents a set of personal views, rather than a review of
literature, made retrospectively.

1. Deconstruction of “genetic architecture”: Molecular genetics and biochemistry confirm that
the theory of quantitative genetics provides just a linear (local) approximation to complexity with
little (if any) mechanistic value. The intricate interactions and feedbacks inherent in biological
systems cannot be captured by simple linear regressions, even if highly-dimensional regression
models are fitted to the data. The effective dimension of a model cannot exceed the sample
size. For example a model with 5 million parameters run with a sample size of 500 does
not provide meaningful estimates of more than 500 distinct estimable functions of parameters:
individual site effects are not likelihood-identified. The view that quantitative genomics can
unravel the “genetic architecture” of complex traits by providing an inventory of allelic frequencies
and allelic substitution effects, or by a decomposition of variance (typically complicated by
strong linkage disequilibrium) is equivalent to stating that tons of bricks, steel, and glass can
represent Zaha Hadid’s new Beijing airport or Frank’s Gehry’s Guggenheim Museum at Bilbao.
The author often refraines from using the buzz term “genetic architecture” and favores “statistical
architecture” instead.

2. Crumbs are not bread: The QTL paradigm [superseded by zillions of genome-wide
association study (GWAS) in human genetics] has had a minor impact on agricultural
practices (fertilization, management, etc.), with few exceptions. GWAS with single-marker
regression is also insufficient because it accounts for little genetic variation (except for major
effect variants at intermediate frequencies, which are “caught” by observation anyhow), apart
from ignoring interactions as stated above. Although a more complex model may improve
learning, the author has not seen reports where variable selection methods and members
of the Bayesian alphabet capture signals much more effectively than a simple GWAS run
with large samples, as in human genetics consortia. Shrinkage methods are typically “vector
optimized” (with ridge regression notoriously so), and the borrowing of information facilitated
by proper priors tends to make signals similar to each other. Bayesian variable selection (BVS)
with spike-slab distributions may be more powerful, but signals from large-effect variants
are strengthened at the expense of mitigating small effects. In BVS or LASSO, the “richer
get richer and the poorer get poorer” whereas ridge regression is more “social democrat,”
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making effect-size estimates similar to each other. If a pizza for
500 persons is divided into 5 million unexpected guests, each
will end up getting a crumb. The perception of the author is that
advances in the resolution and causality of small-effect variants
via GWAS and genome-enabled prediction have been marginal,
at least in agriculture.

3. Corroboration vs. induction: The main contributions
of quantitative genetics (genomics) have been in description,
prediction, and decision, e.g., selection choices, inbreeding
management, and optimum contribution theory, as opposed
to inference. In predictive approaches, genomic heritability or
correlations take the role of “regularization knobs” (i.e., not
viewed as parameters with existential meaning) for constructing
prediction machines. The objective is to make statements about
yet-to-be-observed phenotypes based on some training data.
Predictions can be calibrated empirically, but inferences cannot.
How can one say that an estimate of an entelechy, such as
heritability is bad or good? Following Descartes: “I cannot be
observed, therefore, I do not exist.” According to Encyclopedia
Britannica, for Descartes to prove that heritability exists, one
must assume it does. For prediction, “there is no need for that
hypothesis” as often attributed to Laplace.

4. Occam’s razor resurrected:A less recognized but important
ingredient of the study on genomic selection of Meuwissen
et al. (2001), was the use of predictive cross-validation employed
earlier in plant breeding but almost completely ignored in
animal breeding. In the latter field, the ideas of Henderson
(1963, 1973, 1984) encouraged work in developingmore complex
and bigger models, based on the (incorrect) perception that
bigger was better. An example is multiple-trait longitudinal
models for dairy cattle, producing cow-specific curves at
the genetic and environmental levels for several lactations
in hundreds of thousands of genetically related cows! Little
attention had been devoted to evaluating whether or not a
simple model would predict better than a bigger one. The
use of cross-validation in genome-enabled prediction debunked
the widespread perception. Big complex models make more
assumptions and, with finite sample sizes, it is not uncommon
that such models lack robustness, thus failing to deliver better
predictions. During the 20th century, model choice received
scant formal consideration in animal breeding, a notable
exception being a study by Sorensen and Waagepetersen (2003).
Genomic selection with cross-validation helped to refute older
views. Simplicity can be effective and is often elegant.

5. Prediction is inclusive: There is no universally best
genome-based prediction machine for animal or plant breeding.
The relative performance of the various methods depends mainly
on the information content and structure of the training set, and
on the extent to which a configuration of genotypes spanned
in the training process will also appear in the testing set. These
two aspects are difficult to evaluate ex ante. Often, the size
of the training sample or functions thereof, e.g., Daetwyler
et al. (2008), are used as a proxy for the “expected quality” of
predictions. However, a sample may be huge and yet convey little
information. The plant breeding group in Munich has worked
(e.g., Auinger et al., 2021) in assessing genomic measures of
information content, such as molecular diversity present in a

training sample, and attempting to connect these metrics to
predictive outcomes. For instance, a strong underlying structure
may affect prediction adversely, even in large samples, so
conceivably it could be modified to enhance the quality of
outcomes. The larger the overlap between training and testing
samples, the more relevant to a target population the statements
made from training data will be. George Box andNormanDraper
(my teacher in a regression course I took in 1972) taught: “Never
extrapolate beyond the experimental region”. Suppose a prediction
machine “sees” 50% AABB and 50% aabb individuals in the
training process. However, the testing set has the configuration
1
3AABB +

1
3AaBb +

1
3aabb. Both sets have the same allelic

frequencies, but the testing set contains a “novelty,” AaBb, so the
prediction machine would be extrapolating. Genetic relatedness
is a measure of such overlap, but the driving force is the degree
of molecular similarity between individuals in the corresponding
data partitions. Random replication of cross-validation may
produce an estimate of an upper bound for predictive ability.
Even when both training and testing sets are representative of a
target population, the performance of prediction methods often
depends on cryptic interplays between environment, trait and
model complexity (effective number of parameters fitted vis-a-vis
effective training sample size).

It is futile to have information-rich training samples but
unrepresentative and ridiculously small testing sets, as large
variation among outcomes of similar prediction exercises is
to be expected. Small testing sets and failure to replicate
cross-validation in some studies have produced results where
models accommodating dominance and epistasis appear as
delivering a somewhat better performance than additive
prediction models. Such results may be “false positives” reflecting
chance, rather than signal.

6. And the Oscar goes to. . . :A simplemethod such as genomic
best linear unbiased predictor (GBLUP) may tell something
about the state of nature and perform adequately. An involved
procedure, such as a deep neural network (DNN), may tell
nothing and yet produce spectacular results, although it has failed
miserably in some studies. Like all neural networks, a DNN is
regarded as “universal approximator.” An ongoing meta-analysis
of hundreds of studies made in INIA, Spain (disclaimer: I will be
a coauthor) places reproducing kernel Hilbert spaces regression
(RKHS); e.g., Wahba (2007) methods ahead of others, but only
slightly. Work with animals and plants and with various field
crops in CIMMYT (e.g., Costa-Neto et al., 2021) has shown the
flexibility of kernel methods for capturing genome-environment
interactions and environmental similarities. InWisconsin, RKHS
has been extended to the single-step BLUP setting, and the
CIMMYT group is developing a multiple-trait Bayesian RKHS.
Last, but not the least, RKHS is the mother of GBLUP, along the
lines that Gibbs sampling is a child of the Metropolis-Hastings
algorithm for Markov chain Monte Carlo sampling.

Animal breeding industries have embraced GBLUP, and there
seems to be little scope for adoption of the Bayesian alphabet
models (the membership of this club is converging to infinity) for
routine use, but there can be exceptions. GBLUP is a “good thing”
as pointed out in the early ’90s, and we have known for a while
that it is not only a special case of RKHS, but also a maximum
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penalized likelihood estimator, a linear neural network, and
that it has a Bayesian interpretation. It has been extended to
cross-sectional, multi-trait, longitudinal situations and has been
“robustified.” Importantly, software developed mainly at the
University of Georgia by Misztal allows crunching millions of
predicted genomic breeding values. GBLUP with mild tweeks
will probably remain the technology (term used deliberately)
of choice for genetic evaluation of selection candidates. The
science of genome-enabled prediction has arrived at a reasonable
destination, but the voyage will continue, and new data will
bring challenges.

7. Help needed:Despite an abundance of chips enabling large-
scale genotyping, training samples are seldom drawn at random,
thus unrepresentative. This situation constitutes a selection
process that is often not considered in predictive models. Animal
breeders have been widely influenced by the “selection bias” study
of Henderson (1975), based on questionable assumptions, as
pointed out first by Robin Thompson (1979). Ad-hoc approaches
and arguments have been used for justifying some forms of
analysis or modeling, such as the notion of treating a large
number of contemporary groups as fixed, leading to inefficient
estimation (James-Stein “inadmissibility” argument; Judge et al.,
1985). The arguments were based on an obscure notion of bias
removal advocated by Henderson. Such views have carried into
genome-enabled prediction in animal breeding. The problem
of employing selected samples for inference and prediction
stands and should be studied with more rigor, e.g., via missing
data theory.

8. Bias against bias: The notion of statistical “bias” continues
to be misunderstood. GBLUP is believed (just consider its name)
to be an unbiased predictor, but it is identical to ridge regression
in some settings. However, ridge regression is a biased estimator.
Is this a Dr. Jekyll Mr. Hide issue or some statistical bipolarity?
The answer is that prediction and estimation unbiasedness have
different definitions! Say you own a plant or a bull called
“Charlie,” a fixed entity with identity (e.g., if Charlie is AA, it
has a specific breeding value that possibly differs from that of
Aa or aa). You are not interested in learning the average of a
(very) large sample of potential Charlies; rather, you seek the
breeding value of the Charlie you have. If ridge regression is used
to estimate the breeding value of Charlie, Dr. Jekyll says there is
estimation bias, butMr. Hide states that there would be none. The
latter is wrong (in the bias sense) with respect to Charlie, but not
with respect to an average of potential Charlies, some of which
will be AA, some Aa, and some aa. All good members of the
Bayesian alphabet including GBLUP, with its appealing Bayesian
interpretation (Gianola and Fernando, 1986), and practically
all machine learning methods (e.g., random forests) provide
biased predictions that, on average, will be better than unbiased
machines. A potential therapy for unbiasedness-obsession is

“debiasing” (Breiman, 2001). However, predictions would be
probably worse because, in addition to the extant uncertainty
of prediction sets, there would be an extra error resulting from
a deteriorated bias-variance trade-off. In the end, the debiased
genome-enabled predictions may be much worse than prior to
bias removal.

9. Use a GPS to map the road ahead: Defining pertinent
breeding objectives (the classical Smith-Hazel problem)
continues being crucial in practice, but it has become
academically non glamorous at these times of massive
genotyping, epigenotyping, proteomics, metabolomics, and
(fine) phenotyping. It is important not to lose perspective as,
otherwise, breeders will get inebriated with a cocktail “on apps.”
Another issue of (some) concern is that the current emphasis
on “big data,” “massive computing,” and “visualization” may
diminish basic science education, as it appears that current thesis
students start crunching numbers before they know genomics, or
the meaning of a probability distribution, or attain an elementary
knowledge of randomization or causality. Foundational theory
and concepts should continue being taught. Otherwise, the field
may drown in a technology-induced maelstrom, and critical
or even visionary perspectives may end up playing a role that
becomes secondary to that of a beautiful visualization or, even
worse, to a machine.

W. G. Hill (“Bill”) noted in a 2010 study discussing from
Lush to Genomics: “Opinions we can debate.” I look forward
to that conversation (Hill, 2010).
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