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The stomatal index of the leaf is the ratio of the number of stomata to the total number

of stomata and epidermal cells. Comparing with the stomatal density, the stomatal

index is relatively constant in environmental conditions and the age of the leaf and,

therefore, of diagnostic characteristics for a given genotype or species. Traditional

assessment methods involve manual counting of the number of stomata and epidermal

cells in microphotographs, which is labor-intensive and time-consuming. Although

several automatic measurement algorithms of stomatal density have been proposed,

no stomatal index pipelines are currently available. The main aim of this research is to

develop an automated stomatal index measurement pipeline. The proposed method

employed Faster regions with convolutional neural networks (R-CNN) and U-Net and

image-processing techniques to count stomata and epidermal cells, and subsequently

calculate the stomatal index. To improve the labeling speed, a semi-automatic strategy

was employed for epidermal cell annotation in each micrograph. Benchmarking the

pipeline on 1,000 microscopic images of leaf epidermis in the wheat dataset (Triticum

aestivum L.), the average counting accuracies of 98.03 and 95.03% for stomata and

epidermal cells, respectively, and the final measurement accuracy of the stomatal index

of 95.35% was achieved. R2 values between automatic and manual measurement of

stomata, epidermal cells, and stomatal index were 0.995, 0.983, and 0.895, respectively.

The average running time (ART) for the entire pipeline could be as short as 0.32 s per

microphotograph. The proposed pipeline also achieved a good transferability on the

other families of the plant using transfer learning, with the mean counting accuracies of

94.36 and 91.13% for stomata and epidermal cells and the stomatal index accuracy of

89.38% in seven families of the plant. The pipeline is an automatic, rapid, and accurate

tool for the stomatal index measurement, enabling high-throughput phenotyping, and

facilitating further understanding of the stomatal and epidermal development for the plant

physiology community. To the best of our knowledge, this is the first deep learning-based

microphotograph analysis pipeline for stomatal index assessment.
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INTRODUCTION

Stomata are formed by pairs of specialized epidermal guard
cells, which are the main pathways for gas exchange in the
essential physiological processes of leaf plants, such as carbon
assimilation, respiration, and transpiration (Kim et al., 2010).
The counting and measuring of stomata in microscopic images
of leaf epidermis have been one of the most typical plant
biological activities (Willmer and Fricker, 1996). The stomatal
density and size are good indicators that reflect the response
of plants to abiotic stresses in the environment and permit
quantitative estimation of the stomatal gas exchange parameters
(Sack and Buckley, 2016). However, these traits will alter with
the growth of plants or the environment that cannot be used to
reveal the stomata initiation and epidermal development across
plant genotypes or species. The stomatal index, estimated as the
number of stomata per number of epidermal cells plus stomata,
is relatively constant during plant growth (Salisbury, 1928). It is
of greater significance in studying the epidermal development
process in plant physiology and their genetic basis in plant
breeding for productivity (Royer, 2001; Sack and Buckley, 2016).

The microscopic images of plant leaf epidermis contain two
types of cells, namely, the tightly arranged epidermal cells and
the guard cells. Stomata in the leaf epidermis are bounded by the
bean- or dumbbell-shaped guard cells with fixed shapes, and in
some species but not all, they are surrounded by one-to-many
subsidiary cells (Boetsch et al., 1996). At present, various image
analysis tools have been developed for detecting, counting (Aono
et al., 2019; Fetter et al., 2019), and measuring stomatal aperture
(Omasa and Onoe, 1984; Li et al., 2019) as well as assessing
stomatal density (Vialet-Chabrand and Brendel, 2014). However,
to the best of our knowledge, there is no pipeline designed for
the stomatal index measurement, possibly due to the difficulty
in epidermal cell detection. For that reason, this study aims to
develop a pipeline for automatically measuring stomatal index
by simultaneously counting epidermal cells and stomata from
microscopic images of plant epidermis.

So far, many image processing-based stomata analysis tools
have been proposed for a diversity of plant species. For tomato,
Sanyal et al. (2008) isolated the stomata using a watershed
algorithm, eliminated noise using morphological operations,
and extracted the stomatal edges using the Sobel operator
to measure the morphological features of the stomata (e.g.,
area, center of gravity, and compactness). As an edge-based
method, its performance is insufficient when the edge of the
stoma is discontinuous or has considerable noise. Laga et al.
(2014) proposed a fully automatic tool for phenotyping the
length and width of stomata openings and the size of guard
cells in wheat. But this tool relied on a template-matching
technique to detect stomata, which reduced its versatility in
the presence of considerable variability in the stomata shapes.
Another automatic method for stomata detection and counting
used morphological operations (Da Silva Oliveira et al., 2014).
This method required relatively high image quality and was
not robust to images containing impurities. These disadvantages

of image processing-based methods have led to the adoption
of more advanced computer vision techniques. Recently, deep
learning techniques, especially convolutional neural networks
(CNNs), have emerged as powerful methods for automatically
training the feature detector with the classifier. They made
remarkable achievements in a range of object detection tasks.
Stomata recognition is not an exception. General one-stage object
detection algorithms, single shot multiBox detector (SSD, Sakoda
et al., 2019) and you only look once (YOLO, Casado-García et al.,
2020), and two-stage object detection algorithm, real-time object
detection with Faster R-CNN (Li et al., 2019) and mask region-
based CNN (Mask R-CNN, Bheemanahalli et al., 2021) built
accurate stomata detection models for many plant species such as
rice, soybean, wheat, barley, or sorghum. This study selected the
Faster R-CNN for detecting and counting stomata by considering
the speed-accuracy trade-off of the model.

Identifying and counting epidermal cells in leaf images are
vital for developing the stomatal index measurement algorithm.
Unlike stomata with fixed shapes and distinct morphological
features, epidermal cells exhibit great diversities in size, shape,
and clustering in different plant species. The epidermal cells of
the wheat leaf are long, thin, transparent, and tightly touching
with one another. Although we attempted multiple generic
object detection algorithms, none of them achieved satisfying
performance in recognizing epidermal cells. U-Net, a deep-
learning model designed for frequently occurring quantification
tasks such as cell detection and semantic segmentation in
biomedical image data (Ronneberger et al., 2015), may be
a suitable solution. Modified and extended from a fully
convolutional network (FCN), U-Net used excessive elastic
deformations for data augmentation and trained on a diverse
set of data, allowing adaption to new tasks with a small number
of annotated images. Recently, some animal cell segmentation
studies, such as bladder cancer cell segmentation in phase-
contrast microscopy images (Hu et al., 2019) and nuclei
segmentation (Zeng et al., 2019) were based on the U-Net
structure. Some studies of smart farming showed promising
performance using U-Net, such as segmentation of cucumber
leaf disease (Lin et al., 2019) and field study of wheat yellow rust
monitoring (Su et al., 2020). A weight loss in U-Net was designed
for isolating background labels between touching cells, which is
suitable for the detection task of epidermal cells. Unfortunately,
there is currently no example of applying U-Net to plant cell
segmentation to the best of our knowledge.

In this study, we developed an automatic image analysis
pipeline to assess the stomatal index from microscopic
images of the leaf epidermis. Faster R-CNN was deployed
to count the stomata number. U-Net was utilized to extract
the epidermal cell network. After a series of morphological
image post-processing, the number of epidermal cells was
calculated by counting the number of connected domains
from the epidermal cell network. Finally, the stomatal index
of the current microscopic image was calculated by dividing
the stomata number by the total number of stomata and
epidermal cells.
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MATERIALS AND METHODS

Image Acquisition
Wheat Dataset
A total of 1,000 microscopic images was collected from the leaf
abaxial epidermis of fully expanded leaves derived from 100
wheat varieties (Triticum aestivum L., Supplementary Table 1).
Seedlings were grown in a growth chamber at 14◦C with 16 h
of light and 8 h of darkness. At the two-leaf stage, the fully
expanded second leaves were cut from the plants. We stuck
the abaxial surface of the collected wheat leaves on tapes and
scraped off the epidermis and mesophyll cells at the adaxial
surface of the leaves with a sharp scalpel, leaving only the
colorless and transparent abaxial epidermal cells attached to the
tape. The tape with intact and clean abaxial epidermal cells
and stomata was stuck onto a clean slide and then imaged
the leaf areas on either side of the primary veins at ×10
magnification using the Olympus DP72 microscope camera
(Figure 1A). Five micrographs were taken for each specimen,
and a total of 15 micrographs were collected for three specimens
of each variety. They were stored in JPEG format with a
resolution of 1,360 × 1,024 (Figure 1B). A total of 500
images, were randomly selected and cropped to 680 × 512
and reshaped to 1,360 × 1,024 using cubic interpolation to
obtain 500 images at × 20 magnification. In the end, 500
images at × 20 magnification and the remaining 500 images
at × 10 magnification were combined as the wheat dataset for
this study.

Cuticle Dataset
To verify whether the pipeline can be applied to
other species, 156 microscopic images of plant cuticles
derived from 31 plant families (Supplementary Table 2)
were downloaded from the cuticle database (https://
cuticledb.eesi.psu.edu/, Barclay et al., 2007). As shown in
Supplementary Figure 1, the morphologies of stomata and
epidermal cells of these 31 plant families are pretty diverse.
These micrographs were obtained via imaging the specimens
of stained leaf tissues (Barclay et al., 2007; Fetter et al.,
2019).

Automatic Pipeline for Stomatal Index
Measurement
We developed a fully automatic solution for stomatal index
measurement that mainly consisted of two parts, namely,
stomata and epidermal cell counting (Figure 2). The details
are described as follows: At first, the microscopic images
of crop leaves were annotated and augmented to build the
dataset. The Faster R-CNN was used to identify the stomata
and counting in a given microscopic image. The U-Net
was employed to segment the epidermal cells as connected
domains. Several image-processing techniques were applied
to refine the segmentation results of U-Net based on cell
morphological features of epidermal cells. The number of
epidermal cells in a given microscopic image was measured
by counting the number of high-quality connected domains.
Subsidiary cells associated with the guard cells were present
in wheat and many (but not all) plant families of the cuticle
dataset (Figure 1B and Supplementary Figure 1). It should

be noted that they were not counted as epidermal cells in
the study. Finally, the stomatal index was calculated by the
following formula.

stomatal index = stomata number

(stomata number + epidermal cell number)
× 100%(1)

Image Annotation
Stomata in the 1,000 microscopic images were manually
annotated by three experts using the Colabeler (AI labeling
tool, http://www.colabeler.com). For each annotated image, an
additional extensible markup language (XML) file with the
same name as the original image file was exported in Pascal
VOC format of object detection (Everingham et al., 2010).
Each stoma was marked by the smallest circumscribed rectangle
{xmin, ymin, xmax, ymax} to determine its relative position on
the image. All the complete stomata or stomata with more
than half of the length at the edge of the image were marked.
For epidermal cell annotation, we utilized the semi-automatic
strategy considering a large number of epidermal cells in each
microscopic image. There were two types of annotations for
each epidermal cell segmentation experiment: black and white.
We used black (RGB: 0, 0, 0) to label the cell wall or leaf
vein and white (RGB: 255, 255, 255) to label the intracellular
regions. In addition, we ignored trichomes by marking them
as white to eliminate their interferences for epidermal cell
segmentation. Subsidiary cells were labeled in black since they
were not counted as epidermal cells (Figure 3A). Usually, it is
very time-consuming and laborious to obtain the ground truth
of the semantic segmentation task. A semiautomatic annotation
method was used to improve the efficiency of cellular annotation.
The whole annotation process was shown in Figure 3B. In brief,
210 images were grayscaled, binarized, and manually annotated
using Microsoft Paint 3D for Windows. These annotated
images trained the U-Net with image augmentation for 200
epochs to obtain an initial segmentation model (Model_1).
The remaining 790 images in the dataset were fitted into
Model_1 to generate corresponding pseudo labels. After manual
modification to the ground truths, all the 1,000 microscopic
images were annotated. The proposed semiautomatic annotation
method was much more efficient than the manual method.
It took about 10min to generate an annotation with manual
correction, while fully manual annotation cost about 1 h
per image.

Deep Learning-Based Algorithms
Stomata Detection by Faster R-CNN
ResNet101 (He et al., 2016) was implemented as the
backbone of Faster R-CNN to extract feature maps. In this
network, the region proposal network (RPN) was used to
scan the backbone feature map, which effectively reused
the extracted features and avoided repeated calculation of
region of interest (ROI). The region proposal generated
by RPN was combined with the feature map obtained
in the last layer of Resnet101 to generate a fixed size
proposal feature map using ROIPooling, and prepare for
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FIGURE 1 | Data collection platform. (A) Olympus DP72 industrial microscope. (B) Microscope image of wheat leaf epidermis.

FIGURE 2 | A flow chart of the proposed pipeline of the stomatal index measurement.

FIGURE 3 | Epidermal cell annotation. (A) Original image of wheat leaf epidermis microscope (upper) and its annotation image (lower). (B) Semiautomatic annotation

process using an initial segmentation model (Model_1).
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the following full connection operation target classification
and location regression. After that, softmax was used for object
classification. In addition, the smooth L1 loss was adopted to
complete the bounding box (bbox) regression operation and
obtain the exact position of the object. The loss function is
as follows:

L
({

pi
}

, {ti}
)

= 1

Ncls

∑

i

Lcls
(

pi, p
∗
i

)

+ λ
1

Nreg

∑

i

p∗i Lreg
(

ti, t
∗
i

)

(2)

smoothL1 (x) =
{

0.5x2 if |x| < 1

|x| − 0.5 otherwise
(3)

where Lcls is the Softmax Loss, Lreg
(

ti, t∗i
)

= smoothL1(ti − t∗i )
defined in Formula (3) and λ =10.

We trained the Faster R-CNN model with a specific
configuration. The general idea is to use mini-batch gradient
descent. The batch size was set to 16, and the input image
size was adjusted to 800 × 600, considering the limited
graphics processing unit (GPU) memory. The initial learning
rate was 0.0005 and attenuated to 0.00005 during 20 epochs
using the cosine annealing algorithm (Loshchilov and Hutter,
2016). Considering the relatively small proportion of stomata
in the image, we set the anchor scale to 4, 8, 16, and
anchor ratios to 0.5, 1, and 2. The loss weight of the
RPN class, RPN bbox, Faster R-CNN class, and Faster R-
CNN bbox were the same. Details of other parameters
can be obtained from the literature (Ren et al., 2015).
The backbone of the Faster R-CNN was initialized by
the ResNet101 pretrained model of ImageNet (Deng et al.,
2009), and the other parts were initialized randomly by a
normal distribution.

Epidermal Cell Segmentation by U-Net
We applied the U-Net, a semantic segmentation network
specially designed for biomedical images (Ronneberger et al.,
2015), for segmenting leaf epidermal cells. Since semantic
segmentation belongs to the classification of each pixel, it is very
sensitive to light. To better extract, the cellular network, each
channel of the training image was standardized before training
using formula (4). The resolution of the image was adjusted to
512 × 512 for training the U-Net model, which is a compromise
between obtaining as many image details as possible and GPU
memory limit.

Î = I − µ

adjusted_stddev
, adjusted_stddev = max(σ ,

1.0√
N
) (4)

where µ is the mean value of all image pixels in the dataset,
I is an image matrix, σ is the SD of all image pixels in the
dataset, and N is the number of pixels in I, Î is the standardized
image matrix.

Parameters for the training model were as follows: the
initial learning rate was 0.0001 (Smith, 2017); it was decayed
to 0.00001 by the cosine annealing algorithm (Loshchilov and
Hutter, 2016) during 200 epochs; the batch size was set as 8.
Kaiming initialization method (He et al., 2015) was used for

the initialization of the weights. The loss function was binary
cross-entropy, as shown in Formula (5).

Hp
(

q
)

= − 1

N

N
∑

i=1

yi · log(p
(

yi
)

)+ (1− yi) · log(1− p(yi)) (5)

Stomatal Index Measurement
Both the Faster R-CNN-based stomata detection algorithm and
U-Net-based epidermal cell segmentation algorithm did not
export the number of stomata and epidermal cells. Before
measuring the stomatal index in each microscopic image, we
need to count stomata and epidermal cells. The stomata detection
model returned a series of five-dimensional vectors for each
microscope image, given by

{

score,xmin,ymin,xmax,ymax
}

. The
score in the vector represents the confidence of each bbox, and
the following four parameters represent the position of the bbox
on the image. To avoid counting low-probability stomata within
the noise, the bbox with a score >0.9 was counted as a stoma.

Epidermal cell segmentation by U-Net generated a
corresponding cell network image for each leaf microscopic
image. We regarded each connected domain as an epidermal
cell and counted the number of connected domains in each
image as the epidermal cell number. Before counting, bilateral
filtering (Tomasi and Manduchi, 1998) was used to remove noise
from the prediction, binarization, and morphological opening
operations (first erosion and then dilation) were performed to
connect breaks of some cell walls. The incomplete connected
domains were filtered out if their pixel numbers were <1/10 of
the average pixel number of all connected domains in the image.
In the end, the stomatal index of each microscopic image was
calculated as the ratio of stomata number to the total number of
stomata and epidermal cells, as shown in the Formula (1).

Performance Evaluations
We evaluated the performance of the stomata detection
algorithm using average precision (AP), which is defined as the
area under an interpolated precision-recall curve. The AP was
computed as follows:

AP =
1
∫

0

P(R)dR (6)

where precision is P = NTP
NTP+NFP

and recall is R = NTP
NTP+ NFN

.

NTP is the true positive, NTN is the true negative, NFP is the false
positive, and NFN is the false negative.

The performance of the epidermal cell segmentation
algorithm was assessed using the Dice Coefficient (DC) (Formula
7), which compares the overlap rate of segmentation results of
the models with the manual annotation.

Dice coefficient = 2NTP

2NTP + NFP + NFN
(7)

where NTP, NFP, and NFN represent the true positives, false
positives, and false negatives of pixel numbers, respectively.
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As shown in Formula 8, counting accuracy was defined
to evaluate the stomata and epidermal cell counting pipeline
performance. We assumed the manual counts by experts
containing true positives and the automatic counts by the image
analysis pipeline containing true positives and false positives.
Therefore, counting error could be obtained by subtracting the
automatic results from the manual results, and the counting
accuracies for stomata and epidermal cells were defined as:

Counting accurary = 1− abs(Automatic Count −Manual Count)

Manual Count
(8)

To detect the overcounting and undercounting errors, we defined
counting precision as:

Counting precision = log(
Manual Count

Automatic Count
) (9)

The negative values of counting precision indicated the
overcounting errors, and the positive values indicated
undercounting errors. The counting precision was undefined
when the manual count or the automatic count is zero. Simple
linear regression was also applied to explore the relationship
between manual and automated counting of stomata and
epidermal cells.

To explore the accuracy and precision of stomatal index
measurement, we calculated the stomatal index using the manual
results of stomata and epidermal cells and their automatic results.
Equations were defined as:

Stomatal index accuracy = (10)

1− abs(Automatic result −Manual result)

Manual result

Stomatal index precision = log(
Manual result

Automatic result
) (11)

We assessed the measurement speed of the stomatal index
on the central processing unit (CPU) and GPU (1080Ti) by
calculating the average running time (ART) for each image. The
measurement time of the stomatal index is equal to the sum of
stomata counting time and cell counting time.

ART = TN_stoma + TN_cell + TN_SI

N
(12)

where N represents the number of images, TN_stoma, TN_cell,
and TN_SI represent the total running time for counting
stomata and cells and stomatal index formula calculation for N
images, respectively.

Statistical Analysis
R version 3.6 (R Core Team, 2020) was used to perform
simple linear regressions (y = x) for assessing the linear
relationship between manual counting by experts and automatic
counting by the proposed pipeline. The equations of coefficient of

determination (R2) and root mean square error (RMSE) for the
simple linear regression are as follows:

R2 = 1−
∑

i

(

xi − yi
)2

∑

i

(

xi − ȳ
)2

(13)

RMSE =

√

∑

i

(

xi − yi
)2

N
(14)

where N represents the total number of measurements; xi is the
manual counting; yi is the automatic counting, and ȳ is the mean.

Code and Data Availability
The detection and segmentation models were all developed using
the PyTorch software library (Facebook Artificial Intelligence
Research Institute, FAIR), which is an open-source Python
deep learning library. The code is fully open-source for
academic usage and can be downloaded at https://github.
com/WeizhenLiuBioinform/stomatal_index. The wheat
dataset is available for downloading at https://github.com/
WeizhenLiuBioinform/stomatal_index/releases/download/
wheat1.0/wheat_dataset.zip.

RESULTS AND DISCUSSION

The hardware for training the proposed stomatal index
measurement pipeline is a GPU server equipped with an Intel
Xeon(R) E5-2650 CPU and four GeForce GTX 1080Ti GPUs with
11G memory, but only two of the four GPUs were used. The
pipeline was implemented using the PyTorch framework running
on the CentOS 7.7 operating system.

Stomata Detection
The Faster R-CNN-based stomata detection model was set
up with the initial learning rate of 0.0005 and the batch
size of 16. It was trained over 20 epochs. To evaluate the
stability and reliability of the model, we conducted five-fold
cross-validation that shifted the training and test sets for
each fold. The 1,000 microscopic images of leaf epidermis
were randomly divided into five mutually exclusive subsets.
One subset was used as the validation set (200 images), and
the other four were used as the training set (800 images).
Offline data augmentation was performed to expand each
subset by applying rotations of 45, 90, and 135◦, respectively,
to each image and keeping the original images. By these
geometric transformations, 4,000 images were obtained that can
be used to enhance the robustness of the model to different
stomata angles.

The stomata detection results of the proposed model were
quite satisfactory, which achieved a mean validation AP of 0.997
across the five-fold cross-validation with an SD = 0.000521. The
evolutionary curves of the AP and loss over 20 epochs are shown
in Figure 4. An “epoch” was defined as the process of training
the model once using all of the images in the training set. In
this study, we took the prediction bbox with the intersection
over union (IoU) of ground truth >0.6 as the true positive.
The curves showed a good learning ability since the loss of
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training sets decreased rapidly in the first two epochs and reached
a small value of 0.12 after five epochs. The AP of validation
sets rose rapidly that reached 0.975 after the first epoch. It had
satisfactory convergence after 10 epochs until finally reaching
its optimal prediction performance. The fast convergence is also
due to adopting the ResNet101 pretraining weight on ImageNet
to initialize the feature extraction network. All the AP curves
of the five-fold cross-validation were close to each other with
small fluctuations before the first 10 epochs, illustrating the high
stability and reliability of the model for stomata detection.

An example of the stomata detection result conducted was
present in Figure 5. The Faster R-CNN-based model generated
112 proposal bboxes (Figure 5A). After applying the filtration
with a confidence threshold value of 0.9, all 32 stomata on the
leaf epidermal image were accurately detected (Figure 5B).

Epidermal Cell Segmentation
The UNet-based epidermal cell segmentation model was set
up with a batch size of 8 and an initial learning rate of
0.0001. Unlike the Faster R-CNN-based stomata detectionmodel,
it was trained over 200 epochs, since it decayed to 0.00001
by the cosine annealing algorithm until 200 epochs. We also
performed the five-fold cross-validation using the same 1,000
microscopic images as stomata detection. Online augmentation
was used to enlarge the image dataset. This augmentation
focuses on “batches,” which refers to various transformations
of images during training to increase the diversity of image
samples. The number of iterations can be increased to ensure
that the number of images for training increases. In this study,
in each batch, before the data being fed into U-Net, online
data augmentation was performed to transform images and the
corresponding ground truths by applying affine transformation
with a probability of 0.2 and rotating 90◦ with a probability of 0.5.

The epidermal cell segmentation of the proposed model
achieved the mean DC of 0.978 with SD = 0.00121 across
the five-fold cross-validation that demonstrates segmentation
performances of the models which are reliable and stable. As
shown in Figure 6, the U-Net model started to converge after
100 epochs. Although the loss of the training sets fluctuated,
the DC stabilized above 0.97 after 150 epochs and finally
reached its optimal performance over 200 epochs. During the
whole convergence, the DC fluctuated upward, while the loss
continued in a fluctuational decline, indicating that the models
were continuously learning rather than being trapped in a
local optimal.

For epidermal cell segmentation, the U-Net-based model
predicted the epidermal cell network (Figure 7). Comparing
to the ground truth (Figure 7A), the predicted cell network
(Figure 7B) had several breakpoints in some cell walls, which
affected the cell counting accuracy because the connected domain
method was used for counting. To connect these breakpoints,
a series of image-processing techniques were utilized, including
bilateral filtering, binarization, and morphological opening
operation (Figures 7C,D). Considering the incomplete cells
present in the image, before cell counting, the small connected
domains were filtered out whose areas were <1/10 of the mean
area of connected domains. In Figures 7E,F, after this area

filtering, 39 connected domains remained as the epidermal cells,
while six small connected domains at the edge (filled with red)
were not counted.

Performance Evaluations of Stomatal
Index Measurement
Accuracy and Precision
We counted the number of stomata and epidermal cells for
all the microscopic images over the five-fold cross-validation
using the proposed Faster-RCNN and U-Net-based models,
respectively. For each fold, their counting accuracies were
estimated and summarized in Table 1. Both models had good
counting accuracy, ranging from 97.577 to 98.451% for stomata
and 94.584 to 95.330% for epidermal cells. The epidermal cell
model had slightly lower counting accuracy than the stomata
model. This result was easily understood because morphological
features of epidermal cells were less distinct from the background
than stomata, making accurately count the numbers of epidermal
cells more challenging. Since the high-counting accuracies and
precisions of stomata and epidermal cells, as expected, the
stomatal index, which is the ratio of stomata number over the
total numbers of stomata and epidermal cells, also achieved a
high accuracy of 95.35%.

To further evaluate the differences between results of
automatic counting by the proposed pipeline and ground
truths, the numbers of stomata and epidermal cells were
counted manually for all the 1,000 microscopic images in
the dataset. Regression analysis was performed between the
manual and automatic counting (Figure 8). R2 for stomata,
epidermal cells, and stomatal indices were 0.995, 0.983, and
0.895, respectively, and the RMSE values were 0.821, 6.460,
and 1.099, respectively. These results verified strong correlations
between manual and automatic counting results. Counting
and measurement precisions were also estimated to detect
the overcounting (negative values) and undercounting (positive
values) errors. As the distributions shown in Table 2, the means
of counting precisions for stomata and epidermal cells, and
stomatal index were very close to 0 (−0.009, 0.019, and −0.016,
respectively) with SD = 0.024, 0.027, and 0.023, respectively.
Overall, automatic counting results in most of the microscopic
images were identical to manual counting results, illustrating the
high precision of the proposed pipeline. To be more specific, the
Faster R-CNN-based stomata counting algorithm was a little bit
more likely to overcounting, while the U-Net-based epidermal
cell counting algorithm was more likely to undercounting. The
stomatal index using the proposed pipeline was prone to be
slightly overestimated.

Average Running Time
We estimated the speed of the proposed automatic analysis
pipeline for stomatal index measurement using the 1,080 Ti
GPU and CPU. The ART of the pipeline mainly came from the
counting time for stomata and epidermal cells and the calculation
time of the stomatal index (Formula 1). From inputting the
microscopic image to outputting the stomatal index value, the
ART per image was only 0.32 s using the GPU via the matrix
acceleration calculation but 7.49 s on the CPU. Specifically, the
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FIGURE 4 | The evolutionary curves of loss of training sets and average precision (AP) of validation sets of the Faster R-CNN-based model across 20 epochs from

five-fold cross-validation. Bold lines represent the mean of loss (blue) and AP (red), and the translucent bands represent the range of loss and AP across five-fold.

FIGURE 5 | Output images of stomata detection results by the Faster R-CNN-based model at ×10 magnification. (A) Original detection result with all proposal

bboxes (112 bboxes), and the number on the bbox represents its detection score. (B) Detection result after filtering (32 stomata).

FIGURE 6 | Training loss and validation dice coefficient (DC) of U-Net-based model over 200 epochs from five-fold cross-validation. Bold lines represent the mean of

loss (blue) and DC (red), and the translucent bands represent the range of loss and DC across five-fold.
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FIGURE 7 | Example images of epidermal cell segmentation by the U-Net-based model and morphological post-processing on a 20× magnified microscope image of

the wheat leaf. (A) Ground truth. (B) Epidermal cell network predicted by U-Net. (C) Bilateral filtering and binarization; Red circles highlighted the breakpoints in the

cell network. (D) Morphological opening operation; red circles highlighted connected breakpoints in the cell network after the morphological opening operation. (E)

Connected domains with different colors (45 connected domains). (F) Epidermal cell counting after area filtering (39 epidermal cells). The six small connected domains

that were filtered out were marked with red color.

TABLE 1 | The counting accuracies of stomata and epidermal cells over 5-fold cross-validation.

Trait Accuracy (%)

Fold_1 Fold_2 Fold_3 Fold_4 Fold_5 Mean

Stomata 97.675 98.058 97.577 98.451 98.397 98.031

Epidermal cell 94.584 95.106 95.33 94.977 95.168 95.033

FIGURE 8 | Simple linear regression between the manual and automatic measurement. (A) Stomata. (B) Epidermal cell. (C) Stomatal index.
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TABLE 2 | The precisions of stomata and epidermal cell counting and stomatal index measurement in 1,000 microscopical images of the wheat dataset.

Trait Precision

Min Max Mean SD

Stomata −0.204 0.067 −0.009 0.024

Epidermal cell −0.056 0.250 0.019 0.027

Stomatal index −0.214 0.097 −0.016 0.023

ART for the stomata counting was 0.15 and 5.96 s using GPU
and CPU, respectively. As the ART for the stomata counting
part was comprised by the time of inference of Faster R-CNN-
based stomata detection model and non-maximum suppression
(NMS) of bboxes, the large difference of ART using GPU and
CPU came mainly from the NMS process. For the epidermal
cell counting, the ART, including the time of inference of the
cell segmentation model and the morphological postprocessing
time, was 0.17 and 1.53 s using the GPU and CPU, respectively.
The speed difference came from the inference of the U-Net-
based-segmentation model running on the different hardware
because the post-processing procedures could only be run on the
CPU.Overall, the proposed automatic pipeline for stomatal index
measurement had an excellent running efficiency.

Stomatal Index Values at Different Magnifications
Using the proposed pipeline, we explored the measurement
results of stomata number, epidermal cell number, and stomatal
index of wheat leaf epidermal at × 10 and × 20 magnifications
(Table 3). A total of 50 brand new images that were not used to
train the pipeline at ×10 magnification were selected and used
to generate 50 images at × 20 magnification by cropping and
reshaping. The mean numbers of stomata and epidermal cells
at × 10 magnification were 27.16 and 133.82, which were more
than four times compared with those at × 20 magnification.
More importantly, the means of the stomatal indices at × 10
and × 20 magnifications were 16.76 and 13.70, which were
significantly different from each other (pairwise T-test: t =
5.752, df = 49, and P = 5.623E-7). The same trend was also
observed in the 1,000 images (500 images at × 10 and × 20
magnifications, respectively) previously used for training the
pipeline (Supplementary Table 3). This systematic difference
hints that the larger field of view, the higher the stomatal index
value from the same leaf. When comparing values of the stomatal
index among different samples or genotypes, we should make
sure they are at the same magnification.

Comparison Between Stomatal Index and Stomatal

Density
The stomatal index and stomatal density of two wheat varieties
were assessed (Gharflor-1611 and Ningmai9) using the proposed
pipeline. Stomatal density was defined as the number of stomata
divided by the area of the field of view. Five micrographics
at ×10 magnification were sampled for each variety, and the
field of view of each image is 1.428 mm2. As expected, a
smaller coefficient of variation was obtained for the stomatal
index than the stomatal density in two wheat cultivars (Table 4).

It illustrates that the stomatal indices were more constant
than stomatal densities within a cultivar. Moreover, Pearson’s
correlation coefficients between stomatal density and stomatal
index were high, which are 0.878 and 0.926 for Gharflor-1611 and
Ningmai9, respectively.

Applications on Other Plant Families
How well the proposed pipeline can be applied to other
plant families is an interesting point worth studying. The
cuticle dataset with 156 micrographs collected from 31
plant families (Supplementary Table 2) was used. Considering
the morphological differences of stomata and epidermal
cells between the wheat (Figure 1) and the cuticle dataset
(Supplementary Figure 1), transfer learning was employed that
the Faster RCNN and U-Net were initialized using the model
parameters in the wheat dataset and all parts of the models were
then finetuned by the training set of the cuticle dataset. In this
way, an excellent model can be trained using a small amount
of data (Zhuang et al., 2020). To avoid the possible overfitting
of the model parameters to the wheat dataset, the intermediate
checkpoints were selected (the 10th epoch of Faster RCNN and
the 100th epoch of U-Net) in the training process of the wheat
dataset as the pretraining model and finetuned the model with
a smaller initial learning rate (0.0001 for Faster RCNN and
0.00005 for U-Net). A total of 105 images in the cuticle dataset
were used as the training set and 51 images as the testing set
(Supplementary Table 2). After 20 epochs for Faster RCNN and
100 epochs for U-Net, the models reached convergences.

The finetuned pipeline achieved good counting accuracies
and precisions for stomata and epidermal cells on the testing
set derived from seven plant families (Table 5 and Figure 9).
The average counting accuracies of all families were 94.355%
for stomata and 91.127% for epidermal cells, and the stomatal
index accuracy reached 89.384%. The counting precisions for
stomata, epidermal cells, and stomatal index were very close to
0 (0.006,−0.02, and 0.023, respectively). In five of seven families,
the Faster RCNN-based stomata counting model achieved better
performance than the U-Net-based epidermal cell counting
model. The same situation was observed in the wheat dataset.
In the Araceae family, all the stomata were accurately predicted,
and the counting accuracy of epidermal cells reached 93.895%.
Therefore, the stomatal index accuracy (94.63%) was the highest
in all the families. The Euphorbiaceae family obtained the lowest
counting accuracy of the stomatal index (82.68%) due to the
relatively low-counting accuracy of epidermal cells.

Regression analysis on the cuticle test set was
performed between the manual and automatic counting
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TABLE 3 | Summary of average numbers of stomata and epidermal cells and the stomatal index trait in 50 epidermis images at × 10 and × 20

magnifications, respectively.

Magnification Stomata Epidermal cell Stomatal index (%)

Min Max Mean Min Max Mean Min Max Mean

10x 14 53 27.16 83 209 133.82 10.83 20.99 16.76

20x 0 17 6.44 24 60 38.66 0 24.29 13.70

TABLE 4 | Summary of the stomatal index and stomatal density characters of two wheat varieties.

Cultivar Stomatal density (pores|mm2) Stomatal index (%) Correlation coefficient

Range Mean CV Range Mean CV

Gharflor-1611 17.503–26.605 21.704 0.134 16.779–19.388 17.922 0.051 0.878

Ningmai9 2.800–9.802 7.000 0.329 3.810–9.910 8.066 0.271 0.926

CV, coefficient of variation; correlation coefficient of each cultivar was calculated using stomatal density values and stomatal index values of five micrographs.

TABLE 5 | Summary of performance evaluations of the proposed pipeline on the cuticle dataset.

Plant family Nimage Stomata Epidermal cell Stomatal index

CA (%) CP R2 RMSE CA (%) CP R2 RMSE SIA(%) SIP R2 RMSE

Annonaceae 6 92.59 0.034 0.89 2.68 94.58 0.02 0.97 10.71 90.11 0.046 0.71 1.9

Apocynaceae 7 92.49 −0.001 0.96 1.41 90.65 −0.001 0.94 12.83 85.55 −0.0002 0.65 2.56

Araceae 5 100 0 1 0 93.9 −0.02 0.96 9.45 94.63 0.019 0.95 0.43

Euphorbiaceae 7 93.36 0.032 0.98 1 82.35 −0.064 0.58 18.81 82.68 0.084 0.43 2.61

Fabaceae 7 91.19 −0.017 0.88 1.46 95.18 0.002 0.98 5.2 89.22 −0.067 0.96 1.12

Lauraceae 13 94.85 −0.0003 0.98 1.98 91.46 −0.001 0.97 19.72 92.19 0.008 0.91 0.92

Sapindaceae 6 97.37 0.012 0.98 0.91 90.72 −0.027 0.71 16.98 90.68 0.034 0.67 1.42

All 51 94.36 0.006 0.98 1.63 91.13 −0.02 0.97 15.17 89.38 0.023 0.84 1.7

Nimage, the number of microscopic images used for individual plant family; CA, counting accuracy; CP, counting precision; SIA, stomatal index accuracy; SIP, stomatal index precision;

R2 and RMSE were obtained from the simple linear regression (y = x) between manual counting by experts and automatic counting.

(Table 5 and Supplementary Figure 2). R2 for stomata,
epidermal cells, and the stomatal index was 0.976, 0.967, and
0.841, respectively, and the RMSE values were 1.627, 15.17,
and 1.704, respectively, indicating that the proposed pipeline
also showed excellent performances in many other species
besides wheat.

CONCLUSIONS AND FUTURE WORK

In this study, an automatic deep learning-based method was
proposed for measuring stomatal index, taking microscope
images of wheat leaves as the input. The proposed method
consisted of three parts that were the Faster R-CNN target
detection algorithm for detecting and counting the stomata;
the U-Net semantic segmentation network for extracting the
epidermal cell network and measuring the number of connected
domains as the number of epidermal cells; and subsequently
calculated stomatal index of each image using the previous
counting results. Satisfactory accuracies were obtained for
stomata detection and counting, cell segmentation and counting,
and stomatal index measurements. High correlations were

observed between manual and automatic methods. In addition,
the proposed image analysis pipeline was quite fast. Using the
GPU (1080Ti), it took only 0.32 s to estimate the stomatal index
of an image. It should be noticed that a possible difference in the
stomatal index could be identified from the same leaf at different
magnifications. If using this trait as a diagnostic characteristic
for a given genotype or species, magnification of the microscopic
images should be taken into consideration. The wheat stomatal
index assessmentmodel also exhibited a promising transferability
on the other plant species. Using a small number of images to
finetune the model, it achieved good accuracies and precisions
on seven plant families.

The proposed pipeline regarded stomata and epidermal cell
counting as two independent tasks and trained their neural
networks separately. In reality, they are related to each other.
Multitask deep neural network, as a subfield of machine learning,
solves multiple tasks simultaneously by taking advantage of the
sharing representations between related tasks. It was utilized
successfully across many applications in computer vision (Zhang
et al., 2014; Li et al., 2016). In the future, we can attempt the
multitask deep neural network to improve the performance of
the proposed stomatal index measurement pipeline. The hidden
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FIGURE 9 | Example images of seven plant families in the testing set of cuticle dataset using stomata detection and epidermal cell segmentation algorithms.

layers of the stomatal detection and epidermal cell segmentation
networks can be soft- or hard-shared to obtain an end-to-end
model for stomatal index estimation, possibly achieving a better
generalization ability and a faster analysis speed.
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