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Genomic repetitive sequences commonly show species-specific sequence type,
abundance, and distribution patterns, however, their intraspecific characteristics have
been poorly described. We quantified the genomic repetitive sequences and performed
single nucleotide polymorphism (SNP) analysis between 29 Ae. tauschii genotypes and
subspecies using publicly available raw genomic Illumina sequence reads and used
fluorescence in situ hybridization (FISH) to experimentally analyze some repeats. The
majority of the identified repetitive sequences had similar contents and proportions
between anathera, meyeri, and strangulata subspecies. However, two Ty3/gypsy
retrotransposons (CL62 and CL87) showed significantly higher abundances, and CL1,
CL119, CL213, CL217 tandem repeats, and CL142 retrotransposon (Ty1/copia type)
showed significantly lower abundances in subspecies strangulata compared with the
subspecies anathera and meyeri. One tandem repeat and 45S ribosomal DNA (45S
rDNA) abundances showed a high variation between genotypes but their abundances
were not subspecies specific. Phylogenetic analysis using the repeat abundances
of the aforementioned clusters placed the strangulata subsp. in a distinct clade
but could not discriminate anathera and meyeri. A near complete differentiation of
anathera and strangulata subspecies was observed using SNP analysis; however, var.
meyeri showed higher genetic diversity. FISH using major tandem repeats couldn’t
detect differences between subspecies, although (GAA)10 signal patterns generated
two different karyotype groups. Taken together, the different classes of repetitive DNA
sequences have differentially accumulated between strangulata and the other two
subspecies of Ae. tauschii that is generally in agreement with spike morphology, implying
that factors affecting repeatome evolution are variable even among highly closely
related lineages.

Keywords: satellite repeat, repetitive sequence abundance, tandem repeat, speciation, wheat

INTRODUCTION

Aegilops tauschii Coss. (2n = 2x = 14, DD genome) is the D genome progenitor of common wheat
(Kihara, 1944; McFadden and Sears, 1946) and the pivotal genome of several polyploid Aegilops
species (Kimber and Yen, 1988; Mirzaghaderi and Mason, 2017). Ae. tauschii harbors a high-genetic
variation that can be used in wheat-breeding programs against biotic and abiotic stresses tolerance
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(Mirzaghaderi and Mason, 2019). Iran is widely referred to as
the center of the origin and diversity of Ae. tauschii (Dvorak
et al., 1998). However, during the long periods of dispersal and
adaptation, this species has been distributed through a wide
geographical region in the central Eurasia, from the northern
Syria and Turkey to the western China (Kihara et al., 1965;
Matsuoka et al., 2015).

On the basis of the spike morphology, Ae. tauschii has been
divided into three varieties, of which two (var. anathera, and
var. meyeri) are grouped into A. tauschii subsp. tauschii, whereas
the third is subsp. strangulata. Variety anathera is commonly
awnless except for the two apical spikelets, while meyeri form
is very slender and has short spikes with only 4–8 spikelets,
awned except the two lowest ones. Subspecies strangulata is
monophyletic and form a sharply defined moniliform spike. This
classification remains controversial because of the presence of
intermediate forms so for example var. typica has also been
mentioned as a distinct variety of subsp. tauschii (Eig, 1929;
Kihara and Tanaka, 1958; Hammer, 1980; Wang et al., 2013).
Variety meyeri, which is morphologically an intermediate type
between typica and anathera, is found mainly on the west coast
of the Caspian Sea (Kihara et al., 1965).

Interestingly, Ae. tauschii botanical classification has a weak
agreement with the genetic relationships. Based on the genetic
studies, Ae. tauschii has been divided into L1 and L2 lineages
that are broadly related to tauschii and strangulata subspecies,
respectively (Dvorak et al., 1998; Mizuno et al., 2010). L2 has a
limited distribution and is mainly composed of subsp. strangulata
along with the accessions (mainly var. meyeri and a number of
accessions from var. typica) formerly assigned to subsp. tauschii
based on spike morphology. These troublesome accessions have
likely been originated by the gene migration from subsp. tauschii
into subsp. strangulata (Lubbers et al., 1991; Dvorak et al.,
1998). A subpopulation mainly composed of var. meyeri and
var. typica within L2 in the southwestern and southern Caspian
appears to be the main source of the wheat D genome (Wang
et al., 2013). L1 lineage has been distributed in more diverse
environments (Lubbers et al., 1991; Dvorak et al., 1998; Wang
et al., 2013).

Understanding the genetic and evolutionary relationships of
Ae. tauschii accessions might lead to more effective utilization
of this species in the wheat breeding (Kilian et al., 2011;
Mirzaghaderi et al., 2020). Genomic repetitive sequences
commonly show species-specific sequence type, abundance, and
distribution patterns, however, there is little information about
their intraspecific characteristics. With the increasing genomic
data available for the model organisms, it is now possible to
investigate repeatome organization among subspecies. Hence, the
aim of the present study is to provide an overview of the repetitive
sequences in Ae. tauschii, and to characterize its dominant
lineages related to the botanical classification. Specifically, we
analyzed the repetitive sequences of 29 different Ae. tauschii
genotypes using publicly available low coverage, Illumina-
sequencing data, and compared repeat abundance between
the different subspecies. The result was further compared to
the genome relationships interfered from single nucleotide
polymorphism (SNP) analysis and some repeats were localized

on the D genome chromosomes using fluorescence in situ
hybridization (FISH).

MATERIALS AND METHODS

Exploring Repetitive Sequences
Raw Illumina reads (in FASTQ format with 150 bp length)
of 29 different Ae. tauschii accessions belonging to subspecies
anathera (10 accessions), meyeri (10 accessions), and strangulata
(9 accessions) (Zhou et al., 2020) (Supplementary Table 1) were
downloaded from EBI to RepeatExplorer2 pipeline (Novák et al.,
2013, 2020) via Get Data option. Reads were pre-processed using
the ‘Preprocessing of FASTQ paired-end reads’ tool using default
settings, except that read sampling was set to 500,000 and all
the reads were trimmed to 149 nucleotides. Sample codes were
added to each sample using “FASTA read name affixer” to specify
the corresponding subspecies and accession. All the read samples
were merged into a single dataset using “Concatenate datasets
tail-to-head” tool. Comparative analysis of repetitive sequences
were done by similarity-based clustering of Illumina paired-
end reads using the “RepeatExplorer2 clustering” tool (Novák
et al., 2020) where 0.01% cluster size threshold (considering only
repeats with at least 0.01% of the input reads) and “automatic
filtering of abundant satellite repeats” were selected. In the output
cluster table, all the clusters were checked manually, and the
automated annotation was corrected if needed. The clusters
were used to characterize and quantify the most abundant
repeats and genomic proportions of the major repeat types
were calculated based on the proportion of reads in individual-
annotated clusters.

The previously published genome size of 4,968 Mbp per 1C-
value (Ozkan et al., 2003) was considered to normalize the sizes
of resulting repeat clusters of all the Ae. tauschii accessions using
optparse package of R version 4.0.2 (The R Project for Statistical
Computing, Vienna, Austria) as described in Novák et al. (2020).
This generated a plot of rectangles proportional to the amounts
of repeats in the genome of the analyzed accessions.

Separate analyses of read samples from each accession were
run on RepeatExplorer, using default settings (i.e., similarity
threshold of 90 over 55% of the read length) and consensus
sequences of the identified repeat monomers were reconstructed
by TAREAN (TAndem REpeat ANalyzer) (Novák et al., 2017).

Phylogenetic Analysis Based on the
Identified Repeats
Repeat counts for each genotype were obtained from the
output table of the comparative analysis in RepeatExplorer2.
Repetitive sequence clusters that differentially amplified between
subspecies were identified by the ANOVA. Repeats that
showed high-variable abundances between individuals were
identified by inspecting the comparative analysis output table
manually. A UPGMA (average linkage) tree of 29 Ae. tauschii
accessions was generated based on the Euclidean distances
between the abundances of the repetitive sequence clusters
that showed differential amplification between genotypes and
subspecies as inferred from RepeatExplorer2. Also, 18S and
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26S rDNA genes of the identified 45S rDNA were searched
by RNAmmer (Lagesen et al., 2007) and “+” strand of the
rDNA sequences of all genotypes were obtained using Range
Extractor DNA at https://www.bioinformatics.org/sms2/range_
extract_dna.html (Stothard, 2000). Subsequently, the ITS1-5.8S-
ITS2 region was extracted for each genotype and used as input
for multiple sequence alignment by MUSCLE method using
the “msa” package (Bodenhofer et al., 2015). A phylogenetic
maximum likelihood tree was obtained using the “phangorn”
package (Schliep, 2010) with 100 bootstrapping replications. Box
plots were generated based on read abundances in R using
ggplot2 package.

Characterization of Transposable
Element
Identification and classification of transposable element protein
domain sequences were performed using the DANTE tool
at https://repeatexplorer-elixir.cerit-sc.cz/galaxy/(Novak et al.,
2019) and the REXdb database (Neumann et al., 2019). The
output gff3 files belonging to the different retrotransposons were
used to generate corresponding bed and bedgraph files that
were subsequently visualized in the Integrative Genomics Viewer
(IGV) software (Robinson et al., 2017).

Variant Calling, Quality Control of SNPs,
and Genetic Diversity Analysis
The same sequence reads of Ae. tauschii accessions that used
for the above mentioned RepeatExplorer analysis, were also
downloaded and mapped to their corresponding reference
genome (Aegilops_tauschii.Aet_v4.0.dna_rm.toplevel.fa) with
Bowtie2 (Langmead and Salzberg, 2012) after sequence trimming
with Trimmomatic v. 0.36 (Bolger et al., 2014). Variant calling of
each genotype was performed using freebayes v1.3.2 (Garrison
and Marth, 2012). VCF output files of all samples were
merged into a single VCF file using BCFtools and high quality
SNPs with minimum allele frequency of 5% (QUAL > 30,
AF > 0.05 and AF < 0.95, GQ > 20) were filtered using
VCFtools 0.1.16 (Danecek et al., 2011). A maximum likelihood
phylogeny was inferred based on the filtered SNPs using
RAxML-NG v. 1.0.2-master (Kozlov et al., 2019) with 100
bootstrapping replications.

FISH Experiments
Sixteen genotypes of Ae. tauschii were received from the Seeds
and Plant Improvement Institute of Iran (SPII) or IPK gene
bank of Germany (Supplementary Table 2) and analyzed by
FISH. Oligo-(GAA)10 (Pedersen and Langridge, 1997), oligo-
pTa535-1 (Komuro et al., 2013; Tang et al., 2014), oligo-pSc119.2-
1 and oligo-pAs1-1 probes were used for karyotype analysis
(Table 1). Oligo-(GAA)10 and oligo-pSc119.2-1 were directly
labeled at the 5′ end with FAM (6-carboxyfluorescein) and oligo-
pTa535-1 and oligo-pAs1-1 were 5′-end-labeled with TAMRA.
Oligonucleotide probes were synthesized by Bioneer Co. Ltd.
(Daejeon, South Korea). Synthesized probes were diluted using
1 × TE solution (pH 7.0). A partial sequence of the CRM
repeat unit (3D:250158225-250159002 region) was amplified

using forward: 5′AGGGCCTAGCTTTGAGAAGG, and reverse:
5′ATGGATATCGCTTTGGTGGA primers, labeled with a nick
translation kit (Jena Bioscience, Jena, Germany), recovered by
ethanol precipitation and used as a probe in FISH for localization
of CRM elements. Chromosome preparation and FISH were
performed according to Abdolmalaki et al. (2019), except that
root tips pretreatment time with nitrous oxide (N2O) was
reduced to 2 hours.

RESULTS

General and Intervarietal Repeatome
Structure of Ae. tauschii
In the present study, publicly available raw Illumina 150 bp
paired end reads from 29 different Ae. tauschii accessions
belonging to anathera, strangulata, and tauschii subspecies
(Supplementary Table 1) were analyzed using RepeatExplorer2
pipeline to elucidate the evolutionary patterns of highly repetitive
sequences among subspecies. The GC content for Ae. tauschii
genome showed a value of 47% and highly and moderately
repetitive sequences constitute 77.35% of the nuclear genome
(Supplementary Table 2). The majority (61.56%) of the repeats
are composed of transposons with 58.42% of which being
retrotransposons. On the other hand, class II transposons
contributed to only 2.03% of the repeats. Long terminal repeat
LTR retrotransposons are the most abundant mobile elements
and composed 58.27% of the genome. LTRs divided into
Ty3/gypsy and Ty1/copia super families with 38.65 and 19.35%
of genome, respectively (Supplementary Table 3).

The proportion of the identified repeat clusters and the
number of reads in each cluster (which is proportional to
their genomic abundance) per accessions and other details
including satellite probabilities and related indices, i.e., connected
component index (C) and are pair completeness index (P)
(Novák et al., 2017) are shown in Supplementary Table 4

TABLE 1 | Partial sequences of the identified Ae. tauschii satellite clusters
homologous to the oligonucleotide probes used in the present study i.e.,
oligo-pAs1-1, oligo-pTa535-1, and oligo-pSc119.2-1.

Cluster or probe Sequence (5′ - > 3′)

CL1

oligo-pAs1-1

CCTTTCTGACTTCATTTGTTATTTTTCATGCATTTACTA
ATTATTTTGAGCTATAAGAC
CCTTTCTGACTTCATTTGTTATTTTTCATGCATTTACTA
ATTATTTTGAGCTATAAGAC

CL57

oligo-pTa535-1

GAAACCCTGATACTCCGAAAGAGATTGTCCAGTTTGT
ACACGAGGTGCGTCCAGTTTTC
GAAACCCTGATACTCCGAAAGAGTTTGTCCAATTTGT
ACGTGACGTGCGTCAAGTTTTT

CL211

oligo-pSc119.2-1

CCGTTTCGTGGACTATTACTCACTGTTTTGGGGTCCC
GGAGTGAT
CCGTTTTGTGGACTATTACTCACCGCTTTGGGGTCCC
ATAGCTAT

Nucleotides different from the homologous sequence are highlighted in red. Oligo-
pAs1-1, oligo-pTa535-1, and oligo-pSc119.2-1 sequences are originally from Ae.
tauschii Rayburn and Gill, 1986, Triticum aestivum Komuro et al., 2013, and Secale
cereal Bedbrook et al., 1980.
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FIGURE 1 | Box plot of repetitive DNA abundances (number of reads in each read sample) in 29 Ae. tauschii accessions belonging to subsp. anathera (red dots),
subsp. meyeri (green dots) and subsp. strangulata (blue dots). CL119, CL1, CL142, CL87, and CL62 clusters showed significant differences between subspecies
and CL213 and rDNA (45S) showed considerable variation between genotypes.

where cluster numbers are in order of their amount in the
genome. Comparative repeatome analysis revealed that the
overall contents and proportions of the identified repetitive
sequences are highly similar between the three subspecies of
Ae. tauschii (Supplementary Figure 1 and Supplementary
Table 4) except seven repeat clusters which showed significantly
different abundances between the studied subspecies. The
read counts of these differentially amplified repeats are
presented in Supplementary Table 5, and results of their
statistical comparisons between the subspecies are presented
in Supplementary Table 6. Monomer, analysis of individual
genomes using TAREAN (data not presented) showed that
monomer sequences of tandem repeats are completely identical
among all the Ae. tauschii genotypes.

Sixteen different satellite repeats representing 3% of the
genome of Ae. tauschii were identified with unit lengths ranging
from 44 to 6371 nucleotides, although a majority (13) of
them had unit length in range of 118 to 567 nucleotides.
The proportion and other details of each of these tandem
repeats including consensus length and satellite probability are
shown in Supplementary Table 7. Seven clusters including
CL1, CL62, CL87, CL213, CL217, CL119, and CL142 showed
subspecies-specific amplification during the diversification of Ae.
tauschii (Figure 1). CL62 and CL87 were Tekay retrotransposons
belong to Ty3/gypsy super family and showed significantly
higher abundances, while CL213, CL217, CL119, and CL1

tandem repeats and CL142 (Ty1/copia) retrotransposon showed
significantly lower abundances in subsp. strangulata compared
with subsp. anathera and subsp. meyeri (p value < 0.05;
Supplementary Table 6). 45S rDNA abundances were highly
variable between accessions but their abundances were not
subspecies specific (Figure 1). Cluster CL220 was observed in
only some of the studied accessions (Supplementary Table 5).
Based on a dendrogram made from read counts of these
clusters (Figure 2A), subsp. strangulata was clearly confined
to a distinct clade. We extracted ITS1-5.8S-ITS2 sequences
(Supplementary Table 8) from all the accessions and made a
maximum likelihood tree (Figure 3) which could not resolve
the subspecies, although most of the strangulata genotypes
were grouped together. Compared with ITS sequences, it seems
that repeat abundance is a more efficient tool for intraspecific
classification in Ae. tauschii.

Satellite Repeats Characterization
Homology search of the identified satellite repeats using
BLASTn revealed that CL1 is homologous to pTa-173 (GenBank:
KC290893.1) (Komuro et al., 2013), pAs1 (Rayburn and Gill,
1986) and Afa family (Nagaki et al., 1995). CL57 is homologous
to pTa-s53 (KC290895.1) and pTa-535 (KC290894.1) that is
also related to pAs1. CL119 satellite is homologous to 4P6-
2 (AY249987.1), a repeat that has been identified already by
FISH using bacterial artificial chromosome (BAC) clones as
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FIGURE 2 | (A) Dendrogram of 29 Ae. tauschii accessions derived from the abundance of repetitive sequences differentially amplified between genotypes and
subspecies as inferred from RepeatExplorer2. (B) Phylogenetic tree by maximum likelihood method based on SNPs discovered from low coverage Illumina reads.
Numbers at the nodes are bootstrap values from 100 replications. Accession codes have been shown in red (for subsp. anathera), green (subsp. meyeri), and blue
(subsp. strangulata).

probes (Zhang et al., 2004). CL23 has 78% identity with pTa-451
(KC290912.1), CL173 is homologous to Triticum aestivum
clone pTa-465 sequence and CL211 is homologous to pTa-
835 (KC290898.1).

Fluorescence in situ hybridization using oligo-pAs1-1
(homologous to the most abundant tandem repeat CL1),
oligo-pTa535-1 (homologous to CL57 tandem repeat), oligo-
pSc119.2-1 (homologous to CL211 tandem repeat) and (GAA)10
was applied on sixteen Ae. tauschii genotypes (Figures 4, 5).
Oligo-pAs1-1 and oligo-pTa535-1 probes generally produced
comparable patterns, and have been widely used for the
identification of D genome chromosomes (Tang et al., 2014).
Oligo-pSc119.2-1 probe generated weak signals in subtelomeric
regions of chromosome arms 1DS, 2DS, 3DS, and 4DS
(Figure 5) in some accessions. Although none of the probes
discriminated subspecies (GAA)10, signal patterns generated two

karyotype groups, that poorly agreed with botanical classification
(Figure 4).

Distribution Patterns of Major
Retrotransposons on Chromosomes
The density of the Ty1/Copia and LINE (short interspersed
nuclear element) superfamilies accompanied codding gene
density and increased from the centromere toward the telomere
whereas the density of the Ty3/Gypsy superfamily and two of
its most abundant lineages, i.e., Athila and Tekay increased
in the opposite direction (Figure 6). The centromere-specific
retrotransposon CRM (homologous to cereba) that is a lineage
of Ty3/gypsy chromoviruses has been preferentially accumulated
in centromeres (Nagaki et al., 2003). BLASTn mapped the
previously identified Triticeae specific CCS1 centromeric repeat
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FIGURE 3 | A maximum likelihood phylogenetic tree inferred from ITS1-5.8S-ITS2 part of rDNA sequences. Reduced form of the sequences covering all the variants
and their locations has also been presented. An asterisk indicates deletion and an asterisk followed by a number indicates the number of deleted residues.

FIGURE 4 | Distribution patterns of (GAA)10 (green) and pTa535-1 (red) probes on the mitotic metaphase chromosomes of sixteen Ae. tauschii accessions. Types of
spike morphology (S, subsp. strangulata; T, subsp. tauschii; and I, intermediate) has also been indicated.
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FIGURE 5 | Distribution patterns of pAs1-1 (red) and oligo-pSc119.2-1 probes (green) on the mitotic metaphase chromosomes of eleven Ae. tauschii accessions.
Spike morphologies of S, T, and I refers to as subsp. strangulata, subsp. tauschii, and intermediate form, respectively.

(Aragon-Alcaide et al., 1996) between the CRM elements
indicating that these elements are enriched for the centromere
core sequences (Figure 7). The CRM peaks showed uneven
distribution within the 7 Ae. tauschii chromosomes (Figure 7).
We used root tips of an F1 hybrid generated from a cross between
emmer wheat and Ae. tauschii ‘G 299’ for the localization of CRM
elements: Chromosomes 6D and 7D showed stronger signals
relative to the other D genome chromosomes (Figure 8).

SNP Calling and Genetic Diversity
Analysis
The same Illumina reads that used for the repeat identification,
were also used for variant calling and SNP identification among
the Ae. tauschii accessions. A total of 466,498 SNPs identified
from all the genotypes after filtering. Distributions of each type
of SNP were as follows: A/G, 147010 (31.1%), C/T, 149165
(32%), A/T, 35523 (7.6%), A/C, 44284 (9.4%), C/G, 46079 (9.8%),
and G/T, 44437 (9.5%). Of the 466498 identified SNPs, 296175
(63.4%) were classified as transitions (A/G or C/T), and 170323

(36.5%) were classified as transversions (A/T, A/C, C/G, and
G/T) (Supplementary Table 9). A phylogenetic tree based on
the identified SNPs and Nei’s genetic distances was constructed,
based on which, almost all anathera and strangulata genotypes
were grouped according to their subspecies (Figure 2B).
Genotypes of var. meyeri showed a substantial genetic diversity
based on SNP analysis. The SNP-derived phylogenetic tree rather
supported the tree generated from the abundances of subspecies
and genotype specific clusters (Figure 2B). This agreement was
specifically obvious for strangulata subspecies whose genotypes
were clustered together in both trees, although the tree of
repeat abundances was unable to unify genotypes belonging to
anathera subspecies.

DISCUSSION

Genomic repetitive sequences commonly show species-specific
sequence type, abundance, and distribution patterns, however,
their intraspecific variations have been poorly described. To
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FIGURE 6 | Distribution map of genes and selected retrotransposon lineages including Ty1/copia, Ty3/gypsy, LINE, Athila, Tekay, and CRM retrotransposons along
the chromosome 2D of Ae. tauschii.

see how the repeatome differentiate in Ae. tauschii, we used
publicly available genomic Illumina read data and compared
the repetitive sequences between 29 Ae. tauschii genotypes from
different subspecies, i.e., anathera, meyeri, and strangulata using
RepeatExplorer (Novák et al., 2020).

Repetitive DNA constitutes about 80% of angiosperm
genomes with 1C DNA value greater than 5.0 pg (Flavell
et al., 1974). Nearly, 85% of the maize (Schnable et al.,
2009), wheat (Appels et al., 2018), and barley (Mayer et al.,
2012) genomes are composed of transposable elements, the
majority of which are LTR retrotransposons. Our analysis
using RepeatExplorer2 showed that the repetitive sequences
constitute 77.35% of the nuclear genome of Ae. tauschii, the
majority of which (61.56%) are composed of transposons
with 58.42% of which being retrotransposons (Supplementary
Table 3). LTR retrotransposons were found to be the most
abundant mobile elements and composed 58.27% of Ae. tauschii
genome. The LTR retrotransposons divided to Ty3/gypsy and
Ty1/copia super families with 38.65 and 19.35% of genome,
respectively. Estimation of the amount of transposable element
by RepeatExplorer is in agreement with the amount of
transposable element (55.12%) estimated via Ae. tauschii genome
sequencing (Jia et al., 2013). On the contrary, class II transposons
contributed to only 2% of the repeats. This estimate was not
in agreement with 11% (Jia et al., 2013) and 16% (Luo et al.,
2017) ratios estimated by genome sequencing projects of Ae.
tauschii. A similar proportion of 2–3% class II transposons is
found in each of maize (Meyers et al., 2001) and Arabidopsis
(The_Arabidopsis_Genome_Initiative, 2000) whose genomes are
1.9 and 16.8 times smaller than that of Ae. tauschii (4,968 Mbp),

respectively. However, this estimate is different from that of
Brassica and rice, whose genomes contain ∼6 and 12% class II
DNA transposons, respectively (Jiang and Wessler, 2001; Jiang
et al., 2004).

Sixteen different satellite repeats representing 3% of the Ae.
tauschii genome were identified. The unit length of the identified
satellites ranged from 44 to 6371 nucleotides, although a majority
(thirteen) of these had a unit length in the range of 118 to 567
nucleotides. The unit length of most tandem repeat families in
plants varies from 150 to 180 bp, but can reach up to 1000 bp
or more (Melters et al., 2013). For example, centromeric tandem
repeats lengths are 178 bp in Arabidopsis (Copenhaver et al.,
1999), 155 bp in rice, and 156 bp in maize (Ananiev et al., 1998;
Melters et al., 2013), a length sufficient for wrapping around a
single nucleosome (Henikoff et al., 2001).

Unequal crossing-over and strand slippage are the
mechanisms which can easily explain the duplication of
tandem repeats in the genome (Garrido-Ramos, 2015). Tandem
repeats are highly prevalent at centromeres of both the animal
and plant genomes (Melters et al., 2013); however, here the most
frequent satellites such as CL1 and CL57 are distributed outside
the centromeres and toward the distal end of chromosome arms.
CL1, CL34, and CL57 are homologous to the already identified
repeats pAs1 or Afa family (Nagaki et al., 1995; Komuro et al.,
2013), pTa-451 (Komuro et al., 2013), and pTa535 (Komuro
et al., 2013), respectively.

A key result of this study is that a few repetitive sequence
clusters were revealed to be differentially proliferated between
Ae. tauschii subspecies. Although the type and amount of the
identified repeats were generally the same between accessions,
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FIGURE 7 | Density of CRM lineage of Ty3/gypsy retrotransposon along the chromosome 3D of Ae. tauschii. A small part from the centromeric region which is highly
enriched in CRM elements has been show in detail. BLASTn mapped the Triticeae specific CCS1 centromeric repeat (red elements) between the CRM elements.
CHDCR, chromodomain of centromeric retrotransposons; INT, integrase; PROT, protease; RH, ribonuclease H; RT, reverse transcriptase.

however, we found seven repeats with differential amplification
between subspecies (Figure 1 and Supplementary Table 7).
In a dendrogram generated based on the abundances of these
repeats, subsp. strangulata differed from subsp. meyeri and subsp.
anathera while the latter two were grouped together. Taken
together, these results are in agreement with the monotypic
nature, distinct spike morphology, and the lower geographic
dispersal and genetic diversity of subsp. strangulata compared
with the other subspecies, e.g., subsp. tauschii and intermediate
forms (Kihara and Tanaka, 1958; Dvorak et al., 1998).

Variation in repeat abundance is common during the
speciation and might change DNA C value. For example,
differential lineage-specific amplification of transposable
elements has been observed in Gossypium (Hawkins et al., 2006).
Subspecific repeats amplification has also been reported in other
plants. In Beta nana copy number of a specific satellite, was
more than tenfold higher than in B. lomatogona and up to 200
times higher than in B. vulgaris, indicating the different levels
of sequence amplification during evolution in the genus Beta
(Kubis et al., 1997). In rice, the different repetitive sequence
families have been differentially amplified between indica and
japonica rice (Ohmido et al., 2000).

Our study suggests that repetitive sequence abundances could
provide additional helpful data for phylogenetic and genome
evolution studies. Comparative graph-based clustering of next-
generation sequence reads has been utilized for the phylogenetic
analysis. It has been shown that the abundance of repetitive
elements has a phylogenetic signal and can be used as a
continuous character to infer phylogenetic trees (Dodsworth
et al., 2015a,b). CL220 tandem repeat and 45S rDNA abundances
were highly variable between genotypes but their abundances
were not subspecies specific. Variation in rDNA copy number
between individuals within a species is well documented (Rogers
and Bendich, 1987). Variation in rDNA copy number is thought
to be tolerated because of redundancy, and the observation that
only a subset of the repeats is transcribed at any one time (McStay
and Grummt, 2008; Lopez et al., 2021).

Besides the repeat abundances, we further used a
reference-based SNP calling and ITS1-5.8S-ITS2 sequences
(Supplementary Table 8) for phylogeny of Ae. tauschii
accession. The ITS tree did not group subspecies even the
strangulata accessions together (Figure 3), implying lack of
ITS sequence efficacy for intervarietal classification. A near
complete differentiation of anathera and strangulata subspecies
was observed using SNP analysis although var. meyeri showed
a higher genetic diversity (Figure 2B). There are reports that
some meyeri accessions, specifically those from the west coast of
the Caspian Sea, are genetically closer to strangulata (Lubbers
et al., 1991; Dvorak et al., 1998; Wang et al., 2013). Although
phylogenetic analysis using the repeat abundances placed all
the strangulata accessions in a distinct clade but could not
discriminate between anathera and meyeri (Figure 2).

FIGURE 8 | Localization of CRM element (green signals) on the mitotic
chromosomes of an F1 hybrid from a cross between emmer wheat (T.
dicoccum “TazeabadAliabad”) and Ae. tauschii “G 299.” Oligo-pTa535-1
probe (red signals) was also applied to identify the D genome chromosomes.
Scale bar = 10 µm.
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Providing that anathera and meyeri varieties be considered as
a single tauschii subspecies as suggested basically by the botanical
classifications, we can conclude that subspecific differential
amplification of CL62 and CL87 and CL217 (all belonging to
Ty3/gypsy super family) and CL142 (belonging to Ty1/copia
super family) retrotransposons have been resulted from change
in their activity after strangulata subsp. divergence. In fact, LTR
retrotransposons are the most dynamic part of the genome,
and an important source of within species differences in repeat
abundances (Vitte and Panaud, 2005).

Our results suggest the involvement of repeat amplification
rates in botanical differences such as spike morphology between
Ae. tauschii genotypes. Types and abundances of repetitive DNA
might have an impact on the expression of the adjacent genes
(Ramírez-González et al., 2018; Bariah et al., 2020). TEs also have
an impact on DNA methylation and expression of nearby genes in
the different plant species (Makarevitch et al., 2015; Wang et al.,
2018; Stritt et al., 2020). TEs in gene promoter might affect gene
expression in a tissue-specific manner as cis-regulatory elements
or through other epigenetic mechanisms (Ramírez-González
et al., 2018). For example, MITE domestication into miRNA
precursors might have an important role in gene expression in
wheat (Poretti et al., 2020). Association between a specific TE
insertion into a gene and the levels of gene expression in wheat
has also been reported (Domb et al., 2019). TE insertions can
also have a direct effect on phenotypes such as brittle rachis
and heading date in wheat (Jiang et al., 2019; Shi et al., 2019).
Various functions ranging from chromosome organization and
pairing to the modulation of gene functions are also proposed for
tandem repeats (Martienssen, 2003; Kloc and Martienssen, 2008;
Garrido-Ramos, 2015).

Fluorescence in situ hybridization using pAs1-1 (homologous
to CL1), pTa535-1 (homologous to CL57), pSc119.2-1
(homologous to CL211), and (GAA)10 oligo-nucleotide probes
could not discriminate Ae. tauschii subspecies but (GAA)10
signal patterns generated two distinct karyotype groups. The two
karyotype groups were poorly agreed with botanical classification
of subspecies, but were concurrent with the molecular marker-
based phylogeny that proposed the presence of two distinct
lineages of Ae. tauschii (Dvorak et al., 1998; Mizuno et al., 2010;
Wang et al., 2013). This is not the first report on Ae. tauschii
that links karyotype to genetic structure. The presence of two
distinct genomes in Ae. tauschii has already been demonstrated as
well based on the GAA distribution patterns (Zhao et al., 2018).
Based on the spike morphology and karyotypic analysis, Zhao
et al. (2018) concluded that subsp. tauschii var. meyeri, as an
intermediate form, should be redesignated subsp. strangulata var.
meyeri. The FISH pericentromeric signal resulting from (GAA)10

probes on chromosome 4 seems to be specific to strangulata
subspecies and is not available on the other two types (Zhao et al.,
2018), but chromosome 4 of “AE 956” and “AE 1548”– which
belong to tauschii subspecies, exceptionally showed a very weak
(GAA)10 signal in this study (Figure 4).

CONCLUSION

Although the SNP-based analysis proved to be the gold
standard for the intraspecific classification, the present study
demonstrated that different classes of repetitive DNA sequences
have differentially accumulated between tauschii and strangulata
subspecies of Ae. tauschii. The differential repeat amplifications
generally agreed with morphological differences. Taken together,
the results imply that repeatome is differentially evolved even
among highly closely related lineages.
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