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High-throughput phenotyping systems with unmanned aerial vehicles (UAVs) enable

observation of crop lines in the field. In this study, we show the ability of time-course

monitoring of canopy height (CH) to identify quantitative trait loci (QTLs) and to

characterise their pleiotropic effect on various traits. We generated a digital surface

model from low-altitude UAV-captured colour digital images and investigated CH data

of rice multi-parental advanced generation inter-cross (MAGIC) lines from tillering and

heading to maturation. Genome-wide association studies (GWASs) using the CH data

and haplotype information of the MAGIC lines revealed 11 QTLs for CH. Each QTL

showed haplotype effects on different features of CH such as stage-specificity and

constancy. Haplotype analysis revealed relationships at the QTL level between CH

and, vegetation fraction and leaf colour [derived from UAV red–green–blue (RGB) data],

and CH and yield-related traits. Noticeably, haplotypes with canopy lowering effects at

qCH1-4, qCH2, and qCH10-2 increased the ratio of panicle weight to leaf and stem

weight, suggesting biomass allocation to grain yield or others through growth regulation

of CH. Allele mining using gene information with eight founders of the MAGIC lines

revealed the possibility that qCH1-4 contains multiple alleles of semi-dwarf 1 (sd1),

the IR-8 allele of which significantly contributed to the “green revolution” in rice. This

use of remote-sensing-derived phenotyping data into genetics using the MAGIC lines

gives insight into how rice plants grow, develop, and produce grains in phenology and

provides information on effective haplotypes for breeding with ideal plant architecture

and grain yield.
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INTRODUCTION

Crops dramatically change during their cultivation in the field
in terms of mass, morphology, and colours, and these changes
are similar when grown in the same cultivation region and
season. These phenological aspects in crops are possibly acquired
through domestication (Gong, 2020; Lu et al., 2020) and are
important to farmers in terms of efficient seasonal farming
activities and maximisation of yields in a single harvest. How
crops grow and develop differs depending on their genotypes,
which often determine yield by regulating the transition from
vegetative to the reproductive stage (Xue et al., 2008; Hill and
Li, 2016). So far, to increase rice yields in breeding studies,
genetic approaches using a population with natural variation and
artificial mutation lines have largely focused on genes related
to panicle number (PN), grain number per panicle, and grain
weight (Xing and Zhang, 2010;Miura et al., 2011; Yin et al., 2021).
On the other hand, how growth patterns during the cultivation
term affect yield have not been examined in the field. One
reason is that manual time-series measurement of crop growth
is time-consuming and laborious. Another reason is that remote-
sensing technology for observing crops has not been popular and
familiar for breeding researchers. However, the advent of low-
cost, user-friendly unmanned aerial vehicles (UAVs) is changing
this situation.

Unmanned aerial vehicles can be used as non-destructive
high-throughput phenotyping tools in the field and can facilitate
the rapid observation of thousands of crop lines. A series
of images covering a cultivation field are combined into an
orthomosaic image using structure-from-motion/multi-view-
stereo (SfM/MVS) software with high-accuracy ground control
points (GCPs) (Jin et al., 2017; Weiss and Baret, 2017), enabling
observation of a time-course of the changes in each crop line.
Image data analysis can now be performed even by consumer-
grade personal computers, and UAVs can be equipped with
various sensors, such as digital red–green–blue (RGB), thermal,
multispectral, and hyperspectral sensors (Gracia-Romero et al.,
2019). From the image data derived from the sensors, specific
phenotypes, such as vegetation fraction (VF), plant height,
architecture, drought adaptability, and disease severity, have
been evaluated (Gracia-Romero et al., 2017; Madec et al., 2017;
Condorelli et al., 2018; Zhang et al., 2018; Chen et al., 2019;
Hassan et al., 2019; Li et al., 2019; Marcial-Pablo et al., 2019;
Ogawa et al., 2019; Wang et al., 2019b) and used for estimation of
biomass and yield (Yue et al., 2017; Gong et al., 2018; Di Gennaro
et al., 2019; Duan et al., 2019; Wang et al., 2019a).

One of the major issues in the use of UAVs in breeding
studies is that the digital data deviate from the traditional
traits related to yield, which are manually investigated using
the conventional method using a ruler and scale. If the gaps
between the image data and traditional trait data can be
narrowed, it will accelerate the use of UAV imagery in the
breeding study. In our previous study, we showed that VF
calculated from UAV imagery is related to shoot dry weight
during the vegetative stage in rice when observed in a population
of multi-parental inter-mated lines [known as multi-parental

advanced generation inter-cross (MAGIC) lines] named Japan-
MAGIC (JAM) (Ogawa et al., 2021). A genome-wide association
study (GWAS) using haplotype information in the JAM lines
identified four quantitative trait loci (QTLs) for VF. Noticeably,
the correlation between the VF and panicle weight (PW), grain
yield trait was detected at the QTL level, suggesting that genetic
analysis has the potential to make connections between high-
throughput phenotyping data derived from UAV imagery and
traditional yield trait data. This motivated us to examine another
physical indicator, plant height, to reveal how vertical growth
influences traits related to yield because VF represents growth
only in two dimensions.

Plant height in crops is an important trait for plant
architecture, affecting lodging tolerance and yield (Sakamoto
and Matsuoka, 2004; Liu et al., 2018). Historically known as
the “green revolution,” the introduction of semi-dwarf gene
alleles resulted in remarkable increases in yields of wheat
and rice (Peng et al., 1999; Sasaki et al., 2002). Plant height
is regulated by many factors involved in the biosynthesis of
and signal transduction by phytohormones, gibberellins (GA),
brassinosteroids, and strigolactones (Salas Fernandez et al., 2009;
Liu et al., 2018). Although the QTL analysis using genetically
characterised populations and time-course plant height data has
begun in wheat, maize, and rice (Tanger et al., 2017; Wang et al.,
2019b; Lyra et al., 2020), the timing of the action of the genetic
factors for plant height during the cultivation term and how
they have an effect on plant architecture, biomass, and yield are
scarcely known.

In this study, we focused on rice canopy height (CH) derived
from UAV imagery. From 2 years of field experiments using the
JAM lines, we showed that CH is a genetic trait. Genetic analysis
using the JAM lines identified QTLs for CH (qCH), some of
which have phenological features of growth stage specificity in
their effects on CH. Haplotype analysis showed correlations of
CH with other types of image data including VF and colour and
with traits related to yield. Characterisation of these QTLs will
facilitate the breeding of ideal rice varieties.

MATERIALS AND METHODS

Cultivation of JAM Lines
The JAMpopulation is derived from eight founders (Ogawa et al.,
2018b): “Akidawara” (AK), “Bekogonomi” (BE), “Tachiaoba”
(TC), “Mizuhochikara” (MI) (all japonica), “Suwon 258” (SU),
“Takanari” (TK), “Hokuriku 193” (HO), and “Ruriaoba” (RU)
(all indica). We cultivated 165 JAM lines (F7 in 2018 and F8
in 2019) without replication according to standard procedures
at NARO in Tsukuba, Japan as described previously (Ogawa
et al., 2021). In brief, seeds soaked in water at 28◦C for 2 days
were sown in trays filled with soil and incubated at 30◦C in
the dark for 2 days. Seedlings were grown in a paddy field in
Kannondai, Tsukuba, for around a month, and then 33 seedlings
per line were transplanted (11 plants 18 cm apart × 3 rows
30 cm apart, no replicates) into a nearby paddy field and grown
for 5 months.
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UAV-Based Aerial Photography
Aerial images were taken in the same way as described previously
(Ogawa et al., 2021). In brief, a Phantom 4 Pro UAV (P4P;
DJI, Shenzhen, China) flew automatically above the field at
10m altitudes. The flight path and image shooting setting were
planned by DJI GS Pro software as follows: capture mode,
time interval; speed, 1.0 m/s; front overlap ratio, 80%; side
overlap ratio, 79%; gimbal pitch angle, −90◦; image size, 3:2
(5,472× 3,648 pixels); image format, JPG; white balance, cloudy;
aperture, auto; shutter, auto; and exposure compensation value,
−1 or 0. To set the focus, the P4P was manually raised to
10m, the camera was focused automatically on a region of the
canopy, and then the focus mode was changed to manual. On
GCPs, we painted black and white markers at eight points on
paved surfaces surrounding the field and precisely measured the
latitude, longitude, and altitude of each point with a TCRP1205
surveyor (Leica, Heerbrugg, Switzerland).

Generation of Orthomosaic Images and
Digital Surface Model From the UAV
Images
In Agisoft Metashape Professional v. 1.6.5 software (Agisoft, St.
Petersburg, Russia), we generated an orthomosaic image from
each set of aerial images using the following steps as described
(Ogawa et al., 2019): (1) align photos (accuracy, high), (2) input
GCPs, (3) build mesh (surface type, height field; source data,
sparse cloud), (4) build digital elevation model (DEM; source
data, sparse cloud), (5) calibrate colours (source data, model;
calibrate white balance, no), and (6) build orthomosaic (surface
DEM; blending mode, mosaic). A digital surface model (DSM)
was also generated from the same dataset in the following
steps: (1) align photos (accuracy, high), (2) input GCPs, (3)
build dense cloud (accuracy, high), (4) build mesh (surface
type, height field; source data, dense cloud), and (5) build DEM
(source data, dense cloud). The orthomosaic images and the DSM
images were analysed in ENVI v. 5.5 remote-sensing software
(Harris Geospatial, Boulder, CO, USA). The map projection
was converted to UTM zone 54N (WGS-84) with a 2-mm/pixel
resolution. The converted image was rotated 66◦ clockwise to
match the long-side direction of the field with the lateral direction
of the final output image. Then the image was resized to a
rectangle (28,000 × 14,000 pixels) including the field and the
eight markers to minimise file size and thus processing time. The
configuration of the computer used in this study is as follows:
Intel(R) Core i7-6850-K CPU@3.8 GHz, 128 GB RAM, two
NVIDIA GeForce GTX 1080Ti GPUs, and Windows 10 Pro,
64-bit operating system. It took 4 h for the whole process to
create and analyse an orthomosaic image derived from about 600
images of a 30m × 50m field area. The workflow of the image
capture and analysis are shown in Supplementary Figure 1.

Quantification of CH
We made a DSM of the paddy field from a series of UAV RGB
data with GCPs (Supplementary Figure 2) and estimated the
CH by taking the difference in DSM between the day before
transplanting and the observation date. We conducted a field

survey to measure the CH of the 165 JAM lines by using a
handy laser range finder (GLM 50C, Robert Bosch, Gerlingen,
Germany) and confirmed that the correlation coefficient between
CH from the model and manual measurement was high
(r = 0.87) (Supplementary Figure 3).

Quantification of VF
The vegetation fraction was calculated as described previously
(Ogawa et al., 2019). In brief, regions covering 3 × 3 plants of
each JAM line in orthomosaic images were extracted, and RGB
data were converted to the L∗a∗b∗ colour space (León et al.,
2006). The a∗ data were used for auto-image thresholding by the
Otsu method to create binary images for extracting plant regions,
and the percentage of the number of pixels of the plant region to
the total number of pixels was defined as the VF.

Haplotype-Based GWAS
Haplotypes in the 165 JAM lines were estimated as in an
Arabidopsis MAGIC population (Kover et al., 2009) from
sequencing data of the eight founders and of 13,603 single-
nucleotide polymorphisms (SNPs) determined by genotyping-
by-sequencing analysis (Ogawa et al., 2018a,b). The haplotypes
at each SNP were defined from the genotypes of the founders.
Haplotype-basedGWAS used haplotype information at each SNP
and phenotype data in non-parametric ANOVA (Kruskal–Wallis
rank-sum test) in the “kruskal.test” package of R software. The
p-values obtained from the statistical analysis were used for the
Manhattan plot. To identify qCH QTLs, we selected SNPs with
a p < 1.0 × 10−2 in 2019 and 2018, and with the product of
the two p-values is <1.0 × 10−5. In the case of consecutive
selected SNPs, the SNP with the lowest p-value defined the
QTL unless the distance between them was more than 2Mb.
The effect of the haplotype on CH at each qCH QTL position
was calculated using CH (Supplementary Data 1) and haplotype
(Supplementary Data 2) data. We defined an averaged CH value
per haplotype as a haplotype effect on CH. If the number of
haplotypes was less than four (Supplementary Data 3), the data
were not used for this study. We calculated the ratio of the
average CH value for each haplotype to the average CH for all
of the JAM lines. The haplotype effect was illustrated on scatter
plots using R software.

Manual Measurement of Traits Related to
Yield
Culm length (CL) and panicle length (PL) were assessed on the
longest culm in each plant and measured with a ruler from 10
days to a month after heading. At the time of the measurement,
the PN was counted. For measurement of PW and stem and
leaf weight (SLW), shoots of mature plants were dried for over
a month in a drying room and cut 3 cm below the panicle base
to separate the parts (Ogawa et al., 2021). The total weight (TW)
was calculated as PW + SLW. CL, PL, PN, PW, SLW, and TW
values for each JAM line are averages of five plants. SDW was
measured as described previously (Ogawa et al., 2021). All of the
abbreviations in this manuscript are listed in Table 1.
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TABLE 1 | List of abbreviations.

Abbreviation Explanation

AK Akidawara (one of the founders of JAM lines)

BE Bekogonomi (one of the founders of JAM lines)

CH Canopy height

CL Culm length

DAT Days after transplanting to the field

DEM Digital elevation model

DSM Digital surface mode

GA Gibberellin

GCP Ground control point

GWAS Genome-wide association studies

HO Hokuriku193 (one of the founders of JAM lines)

JAM Japan-MAGIC

MAGIC Multi-parental advanced generation inter-cross

MI Mizuhochikara (one of the founders of JAM lines)

PL Panicle length

PN Panicle number

PW Panicle weight

qCH QTL for CH

QTL Quantitative trait loci

qVF QTL for VF

RGB Red-green-blue

RU Ruriaoba (one of the founders of JAM lines)

sd1 Semi-dwarf 1

SDW Shoot dry weight

SfM/MVS Structure-from-motion/multi-view-stereo

SLW Stem and leaf weight

SNP Single nucleotide polymorphism

SU Suwon258 (one of the founders of JAM lines)

TC Tachiaoba (one of the founders of JAM lines)

TK Takanari (one of the founders of JAM lines)

TW Total weight (PW + SLW)

UAV Unmanned aerial vehicles

VF Vegetation fraction

RESULTS

Detection of QTLs for CH
We observed how CH in the JAM lines changed during
the cultivation term using UAV imagery. The average CH
in the JAM lines increased for 83 days after transplanting
to the field (DAT) and decreased moderately after that
(Supplementary Figure 4A). This appears to be related to the
vertical growth of rice plants until tillering and heading,
followed by drooping of stems and panicles during maturation.
Wide phenotypic variation was observed in the JAM lines
at 83 DAT in both years. Positive correlations were detected
in the timing after transplanting of six developmental stages
(two tillering, heading, and maturation stages) in the 2-year
data (Supplementary Figure 4B), indicating that the CH is a
heritable trait.

To determine which genetic factors are involved in controlling
CH, we performed a haplotype-based GWAS using CH data

and haplotype information on 13,603 SNPs of the 165 JAM
lines. As a result, we found 11 QTLs (Figure 1, Table 2,
Supplementary Figure 5), and named them qCH1-1, qCH1-2,
qCH1-3, qCH1-4, qCH2, qCH3, qCH5-1, qCH5-2, qCH7, qCH10-
1, and qCH10-2. The time points when the QTLs were detected
were different among the QTLs; qCH1 and qCH5-1, and qCH3,
qCH10-1, and qCH10-2 were heading and maturation stage-
specific, respectively. qCH1-2 and qCH1-4 were detected at the
tillering, heading, and maturation stages.

Among the qCH QTLs, we first focused on qCH1-4,
where the most remarkable peak was detected (Figure 1,
Supplementary Figure 5) close to the semi-dwarf 1 (sd1) gene.
The CH in lines possessing each of the haplotypes at qCH1-
4 on CH was most different at 83 DAT in 2019 and 68 DAT
in 2018 (Figure 2A). There are four alleles of the Sd1 gene in
the eight founders of the JAM lines, as described previously
(Ogawa et al., 2018b). When the lines were classified by their Sd1
gene allele based on the haplotype information, the CH of three
classes (c: allele A, b: allele B, a: allele C and D) was statistically
differentiated from 56 to 111 DAT in 2019 and from 68 to 97 DAT
in 2018 (Figure 2B, Supplementary Figure 6), which is during
the late tillering stage and early maturation stage. This Sd1 allelic
pattern is consistent with the allele function presumed from data
of CL (Ogawa et al., 2018b), indicating that Sd1 is a candidate
gene for qCH1-4.

The time-course pattern of haplotype effect on CH
was different among the qCH QTLs (Figures 2A, 3,
Supplementary Figure 7, Supplementary Data 4). To
characterise the QTLs, hierarchical clustering analysis using
correlation coefficient r-values of all CH data in 2019 and 2018
was performed (Supplementary Figures 8, 9). Pairs of QTLs
close in chromosome position were located in the same clusters,
such as qCH5-1 and qCH5-2, qCH1-2 and qCH1-3, and qCH10-1
and qCH10-2 because their pattern of haplotypes is similar
between the two QTLs (Supplementary Data 2). Although
qCH1-4 and qCH2 are on different chromosomes, they were
located in the same cluster, where the haplotype effect on CH
tended to be relatively stable through rice development and
cultivation years (Figures 2A, 3, Supplementary Figure 7).
Similar to qCH1-4, haplotype [RU] at qCH2 had a greater ability
to increase CH.When the time-course haplotype data on CHwas
modelled using a quadratic curve (Supplementary Figure 10),
the coefficients showing the sharpness of curve for [RU]
at qCH1-4 and qCH2 were remarkably lower than for the
other haplotypes.

Effect of qCH on Vegetation Fraction
qCH1-2 was close to the position of qVF1 (Ogawa et al., 2021),
which is a QTL for VF, detecting using images as shown in
Supplementary Figure 11. To examine the relationship between
CH and VF at all qCH QTLs including qCH1-2, we carried
out correlation analysis at the haplotype level. The haplotype
effects on CH and VF were highly correlated at qCH1-1, qCH1-
2, and qCH1-3 (Supplementary Figure 12A), indicating that
these QTLs contribute to both lateral and vertical growth.
At qCH1-2 and qCH1-3, the indica haplotypes [RU, HO, and
TK] caused increased CH and VF relative to the japonica
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FIGURE 1 | Time-course pattern of QTL appearance in canopy height of JAM lines. (A) Scheme of phenological change of canopy height (CH) of the JAM lines.

Average values of canopy height (CH) of the 165 JAM lines were plotted. There are tillering, heading and maturation stages in the developmental process.

(B) Summary of haplotype-based genome wide association study on CH using the 165 JAM lines. Results from data collected in 2019 and 2018 are shown together

arranged in ascending order of DAT from left to right. Bars in grey, blue and pink were added at positions where P-values are lower than 10−2. Six time points of DAT

indicated by grey boxes were focused on in this study. Defined QTL regions are marked with asterisks.

TABLE 2 | Quantitative trait loci (QTLs) for canopy height (CH) shown in Figure 1.

DAT (2019, 2018)

40, 39† 56, 54† 69, 68† 83, 83† 97, 97† 111, 113†

Name of QTL Chr Pos Tillering Heading Maturation Candidate gene or QTL

qCH1-1 1 5,774,227 – – – + – – –

qCH1-2 1 29,262,844 – 29,617,334 + + – + + – qVF1

qCH1-3 1 32,039,637 + – – + – –

qCH1-4 1 38,560,504 – 39,210,519 – + + + + + Sd1

qCH2 2 3,370,339 – 3,456,275 – – + – – + –

qCH3 3 28,908,224 – – – – + – –

qCH5-1 5 21,564,904 – – + – – – –

qCH5-2 5 24,493,293 + + – + – – –

qCH7 7 15,513,069 – + + – – – –

qCH10-1 10 87,974 – – – – + + –

qCH10-2 10 4,445,470 – 4,699,327 – – – – + + –

†DATs in 2019 (left) and in 2018 (right) are shown.
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FIGURE 2 | Haplotype effect on canopy height at qCH1-4. (A) Time-course pattern of haplotype effect on CH at qCH1-4. Average phenotypic values of the eight

haplotypes (top) and ratio of the haplotype effect to average of the JAM lines (bottom) at each DAT in 2019 (left) and 2018 (right) are plotted. (B) Time-course pattern

of Sd1 allelic effect on CH at qCH1-4. Four Sd1 alleles were included in the eight founders (top). Average phenotypic values of the four alleles (middle) and ratio of the

allelic effect to average of the JAM lines (bottom) at each DAT in 2019 (left) and 2018 (right) are plotted.
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FIGURE 3 | Time-course pattern of haplotype effect on CH at qCH QTLs except for qCH1-4. Average of haplotype effect on CH (left) and ratio of the haplotype effect

to the average values in the JAM lines (right) at each DAT in 2019 were plotted.

haplotypes [AK, BE, TC, and MI] (Supplementary Figure 12B),
and CH was also related to shoot dry weight (SDW)
(Supplementary Figure 12C).

Effect of qCH on Leaf Colour
It has been reported that stem and leaf elongation and leaves
turning pale green are induced by the effect of plant hormone
gibberellin (GA) in Arabidopsis (Jacobsen and Olszewski, 1993;
Olszewski et al., 2002). It is well-known that GA plays a role in
controlling leaf length and CL in rice (Sasaki et al., 2002; Liu et al.,
2018). This motivated us to examine if CH is correlated with leaf
colour from tillering to maturation. We isolated the leaf region

from orthomosaic images and obtained a∗ data from RGB data
(León et al., 2006). We used minus a∗ (–a∗) data as an indicator
of leaf colour, which ranges from red (−128) to green (+128).
The average –a∗ in the 165 JAM lines increased until 69 DAT in
2019 and until 83 DAT in 2018 during the early heading stage and
then decreased duringmaturation (Supplementary Figure 13A).
The –a∗ data at the selected six time-points were similar between
2019 and 2018 (Supplementary Figure 13B). We expected
a negative correlation between CH and –a∗ (green colour
level of leaves) in the JAM lines like the GA response in
Arabidopsis, but a simple negative correlation was not observed
(Supplementary Figure 14).
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FIGURE 4 | Difference of the relationship between CH and –a* data at qCH QTLs. Plots of the correlation of haplotype effect between CH and –a* at qCH1-1 (top),

qCH1-4 (middle) and qCH2 (bottom) in 2019 (left) and 2018 (right). Haplotype [TC] at qCH1-1, haplotype [RU] at qCH1-4, and haplotype [RU] at qCH2 were focused

on as remarkable haplotypes for CH, and are indicated by dotted circles.

At the QTL level, the relationship between CH and
–a∗ depended on the qCH QTLs and the time-point
(Supplementary Figure 14). Correlation values between
haplotype effects on CH and –a∗ dramatically changed from 97
to 111 DAT in 2019 and from 83 to 113 DAT in 2018 during
maturation at several qCH QTLs. To understand these changes,
we examined haplotype effects on CH and –a∗ in detail. We
focused on the effects of haplotype (TC) at qCH1-1, haplotype
(RU) at qCH1-4, and haplotype (RU) at qCH2, which have a
strong ability to increase CH. The effect of haplotype (TC) at
qCH1-1 was kept on CH and –a∗ at a high level until 111 DAT in
2019 and 113 DAT in 2018, but the other two haplotypes caused
sudden drops in –a∗ (Figure 4). This indicates that specific
haplotypes can lead to rapid leaf senescence during maturation.
Considering that Sd1 encoding GA 20-oxidase is a candidate of
qCH1-4, involvement of GA in leaf senescence is presumed.

Effect of qCH QTLs on Traits Related to
Yield
To clarify relationships between CH and traits related to
yield, we first examined if CH contributes to traits including
CL, PL, and PN. CH and CL in 165 JAM lines were
highly correlated at 83 and 97 DAT in 2019 and 2018, but
not after that, possibly because plant architecture including
panicle and leaf positions drastically changed during maturation
(Supplementary Figure 15A). Consistent with this, the patterns
of haplotype effects on CH were highly similar to those on
CL at all qCH QTLs (Supplementary Figures 15B, 16). The
relationship between CH and PL was positive in the JAM lines
in 2019 and 2018, but the relationship between CH and PN
was negative (Supplementary Figure 15B). At the QTL level, the
pattern of the haplotype effect on CH was positively related to

that on PL clearly at qCH1-1, qCH2, and qCH7 in 2019 and 2018
(Supplementary Figure 17A) and was negatively done to that on
PN at qCH1-4 and qCH7 (Supplementary Figure 17B).

We next examined if CH is associated with PW, SLW,
and the TW. CH data tended to be weakly correlated
to SLW and TW in 2019 and 2018, but not to PW
(Supplementary Figure 15A). At the QTL level, the relationship
of the haplotype effects on CH and TW was not robust in 2019
and 2018 (Supplementary Figure 15B). Correlation of haplotype
effects on CH and SLWwas observed at qCH1-1, qCH1-2, qCH1-
4, qCH2, and qCH10-2 in 2019 and 2018 although the time-
points when the correlation was detected depending on the
QTL. Intriguingly, among the qCH QTLs, a negative relationship
between CH and PW was often found at qCH1-4, qCH2, and
qCH10-2. When the ratio of PW to SLW was examined at the
three QTLs, CH was negatively related to the ratio (Figure 5A).
QTL haplotypes that reduced CH led to significantly increased
PW and decreased SLW in contrast to those with the effect
of increasing CH, at least once in the 2 years’ experiments
(Figure 5B). These results suggest regulation of the balance
between PW and SLW by the QTLs for CH.

DISCUSSION

Traditional crop breeding research has focused mainly on
traits that can be obtained in a single destructive inspection.
This approach missed information about the timing and
significance of changes in growth and development. Remote-
sensing technology has the potential to compensate (Sakamoto
et al., 2012; Sakamoto, 2018). In this study, we developed a CH
measurement method using UAV imagery with rice cultivated in
a paddy field and performed GWAS using time-course CH data
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FIGURE 5 | Relationships between CH and ratio of PW to SLW at qCH QTLs. (A) Haplotype effects on CH at 83DAT and ratio of PW to SLW in 2019 (left) and 2018

(right) at qCH1-4, qCH2 and qCH10-2 were plotted. Numbers in blue indicate Pearson’s r. Asterisks indicate significant correlations (Pairwise two-sided, **P < 0.01,

*P < 0.05). (B) Comparison of haplotype effects on CH, PW/SLW, PW and SLW at qCH1-4, qCH2 and qCH10-2 were shown. Data on haplotypes enclosed by

dotted lines in (A) at the three QTLs were examined. Mean ± standard error of phenotypes and ratio of phenotype data in top haplotype class to that in bottom

haplotype class at each QTL were shown (student t-test: **P < 0.01, *P < 0.05, +P < 0.1).

and haplotype information in JAM lines. Due to the opportunity
of multiple observations, we were able to identify 11 qCH
QTLs, which were robust in the 2 years of the experiments.
By analysing haplotype effects on CH, we revealed significant
correlations of the haplotype data in 2019 and 2018 at all
QTLs, and the persistence and transience of different haplotype

functions in vertical growth showed differences in phenology
among QTLs.

As summarised in Figure 6, haplotype analysis using JAM
lines revealed; (1) correlation between haplotype effects on CH
and CL at all QTLs, (2) correlation between haplotype effects
on CH and PL at qCH1-1, qCH2, and qCH7, and (3) negative
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FIGURE 6 | Summary of qCH QTLs. qCH QTLs were aligned in order of hierarchical clustering in terms of haplotype effect on CH in 2019 and 2018, shown in

Supplementary Figure 9. Each QTL was detected in the three stages (tillering, heading, and maturation) and the positive (P) or negative (N) relationships of

haplotype effects between CH and VF, SDW, CL, PL, PN, and PW/SLW were shown. In terms of VF and SDW, results shown in Supplementary Figure 12 were

summarised. In terms of CL, PL, and PN, P or N was labelled when significant correlation (P < 0.05) was detected a total of twice or more among the six time points

in 2019 and 2018. In terms of PW/SLW, results shown in Figure 5B were summarised.

correlation between haplotype effects on CH and PN at qCH1-
4 and qCH7. These results indicate differing pleiotropic effects of
qCH QTLs on traits related to yield, except for CL. Furthermore,
the negative correlation of haplotype effects on CH and the
ratio of PW to SLW was detected at qCH1-4, qCH2, and
qCH10-2, all of which function at least during the maturation
stage. This indicates that CH contributes to increasing the
final number of leaves and stems instead of grains in panicles
under the control of haplotypes at qCH1-4, qCH2, and qCH10-
2, implying the influence of phenological CH regulation on
the allocation of photosynthetic products to leaves and stems
or grains.

We also attempted to examine the relationship between CH
and data derived from UAV imagery including VF and –a∗, leaf
colour. Haplotype analysis in terms of VF revealed a connection
between lateral and vertical growth at qCH1-2 and qCH1-3,
which are close to qVF1 (Ogawa et al., 2021). In the case of –a∗

data analysis, rapid leaf senescence was observed for haplotype
(RU) of qCH1-4 and qCH2, which has a strong ability to increase
CH. PW in JAM lines with this haplotype was lower than that in
the other haplotypes, implying some relationship among yield,
senescence, and timing, and intensity of shoot growth during
the cultivation term. In Japan, only the cultivar RU among the
eight founders of the JAM lines is cultivated for whole crop
silage. The haplotype (RU) at qCH1-4 and qCH2 might play a
central role to increase the amount of leaf and stem relative
to grains.

Our haplotype approach detected qCH1-4 as the most
remarkable QTL for CH, whose candidate is the Sd1 gene.
qCH1-4 affected the balance between the amount of leaf and
stem and yield in this genetic study, showing the effectiveness
of the green revolution with the Sd1 gene in the JAM lines.
In breeding, it is said that the overuse of Sd1 in rice cultivars
runs the risk of lowing genetic diversity (Liu et al., 2018). To
avoid this risk, haplotypes at qCH2 and qCH10-2 with effects

that lower CH may be options for the production of new semi-
dwarf cultivars because they also induce an increase of yield
like qCH1-4.

In the method of CH measurement, it took 30min for
capturing RGB images of 30m × 50m field area by using
UAV and 4 h for image analysis. The method enabled the
measurement of CH with high accuracy without any laborious
steps, demonstrating an effective way to examine CH of rice
lines grown in the field. We used the Agisoft MetaShape
Professional v. 1.6.5 software to create orthomosaic images
and ENVI software (Harris Geospatial, Boulder, CO, USA) to
analyse phenotype data, which we have also been used for the
analysis of VF and plant architecture in our previous works
(Ogawa et al., 2019, 2021). We believe that both of the software
is very useful for high-throughput phenotyping using UAVs
because it is user-friendly and keeping updated. As alternative
SfM/MVS software, Pix4D is known to create orthomosaic
images for investigating phenotypes of crops (Zhang et al.,
2018; Chen et al., 2019; Hassan et al., 2019; Li et al., 2019,
Marcial-Pablo et al., 2019).

In this study, we showed correlations and trade-off
relationships between CH and the other traits at the QTL
level. It is suggested that QTLs for CH are key factors for plant
architecture, biomass, and yield. This study was accomplished
by the integration of the remote-sensing technology and genetics
using our rice MAGIC population. Our methodology can
generate more than 100,000 (8 haplotypes × 13,615 SNPs)
haplotype patterns for each time-course of phenotype data in
a 1-year experiment. If the number of SNPs is increased and
the experiments continue, haplotype data with phenotypic
information increase. Haplotype pattern analysis using recently
developed massive data analysis methods, such as machine
learning, will uncover further relationships between traits
useful for the production of ideal varieties. This haplotype
approach using a genetically characterised population can
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be applied to other high-throughput phenotyping data
and other crops. We believe such trials will advance digital
data-driven breeding.
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