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Soybean seed purity is a critical factor in agricultural products, standardization of seed
quality, and food processing. In this study, laser-induced breakdown spectroscopy
(LIBS) as an effective technology was successfully used to identify ten varieties of
soybean seeds. We improved the traditional sample preparation scheme for LIBS.
Instead of grinding and squashing, we propose a time-efficient method by pressing
soybean seeds into rubber sand filled with culture plates through a ruler to ensure a
relatively uniform surface height. In our experimental scheme, three LIBS spectra were
finally collected for each soybean seed. A majority vote based on three spectra was
applied as the final decision judging the attribution of a single soybean seed. The results
showed that the support vector machine (SVM) obtained the optimal identification
accuracy of 90% in the prediction set. In addition, PCA-ResNet (propagation coefficient
adaptive ResNet) and PCSA-ResNet (propagation coefficient synchronous adaptive
ResNet) were designed based on typical ResNet structure by changing the way of self-
adaption of propagation coefficients. Combined with a new form of input data called
spectral matrix, PCSA-ResNet obtained the optimal performance with the discriminate
accuracy of 91.75% in the prediction set. T-distributed stochastic neighbor embedding
(t-SNE) was used to visualize the clustering process of the extracted features by PCSA-
ResNet. For the interpretation of the good performance of PCSA-ResNet coupled
with the spectral matrix, saliency maps were further applied to visually show the pixel
positions of the spectral matrix that had a significant influence on the discrimination
results, indicating that the content and proportion of elements in soybean seeds could
reflect the variety differences.

Keywords: soybean seed, variety identification, laser-induced breakdown spectroscopy, convolutional neural
network, voting strategy

INTRODUCTION

Soybean is one of the most important agricultural products, which has abundant vegetable protein
and oil. The yield and quality of soybeans are directly related to their variety with different genetic
purity, physical purity, germination ability, and vigor (John et al., 2016; Mccarville et al., 2017; Zhu
et al., 2019a). Mixed and adulterated soybean seeds cause substantial problems for farmers and lead
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to seed market complexities (Liu et al., 2016). With the increasing
requirements for food quality, it is necessary to process different
products according to different seed varieties. For instance, the
soymilk and tofu made from high-protein soybeans are more
delicious (Sato et al., 2014; Yu et al., 2014). Therefore, rapid
identification of soybean seed varieties plays an essential role in
agricultural products, standardization of seed quality, and food
processing. It becomes more and more crucial to build a general
discriminant model for distinguishing different soybean seed
varieties with large amounts but little difference (Luo et al., 2019).

DNA analysis and protein-based technologies are regarded
as powerful tools for specific and precise identification of
soybean seed varieties, such as polymerase chain reaction
(PCR) (Grohmann et al., 2017), high-performance liquid
chromatography (HPLC) (Cho et al., 2013; Kim et al., 2013)
and simple sequence repeat (SSR) analysis (Zhang et al., 2014).
These genetic methods often require environmentally unfriendly
chemical agents to show results. By comparison, the spectroscopy
technique does not need any chemical agent and causes minor
damage to samples. Therefore, the spectroscopy technique can
be an alternative as a non-genetic method to achieve fast
genotype discrimination.

Laser-induced breakdown spectroscopy (LIBS) is an atomic
emission spectroscopy technique which is characteristically fast,
micro-damaging, and with simple sample pretreatment (Erler
et al., 2020). In a typical LIBS system, a high-energy pulsed laser
is transmitted nearly to the surface of the sample. After that,
the plasma is created with the vaporization and excitation of the
sample (Li et al., 2019). The emitted spectra from the plasma
are collected for multi-element analysis (Liu et al., 2019; Wang
et al., 2020). So far, LIBS technology has been widely used in
qualitative and quantitative analysis in agricultural products such
as rice (Luo et al., 2020), psoralea corylifolia seeds (Dhar et al.,
2013), cucurbit seeds (Singh et al., 2017), coffee beans (Song et al.,
2017), soybean seeds (Gamela et al., 2020; Larios et al., 2020), and
grape seeds (He et al., 2020). However, the samples above were
grounded and pressed into tablets before collecting LIBS spectra
for better signals, which greatly reduced the detection efficiency.
This study proposed an innovative method of pressing soybean
seeds into a culture plate filled with rubber sand, with a ruler used
to ensure a relatively uniform surface in height. Then the soybean
seeds could be directly shot by laser beam without any specific
pretreatments, markedly reducing the time cost. The LIBS spectra
of 2,000 soybeans contributed to establishing a discriminant
model with improved generalization due to extensive data.

Much attention has been paid to the traditional machine
learning algorithms for modeling LIBS data but little to deep
learning and its interpretation (Zhao et al., 2019). For example,
support vector machine (SVM) is a commonly used algorithm
in machine learning (Liakos et al., 2018). SVM is intrinsically a
binary classifier that constructs a linear separating hyperplane to
classify data instances (Vapnik and Chapelle, 2000). On account
of kernel trick and structural risk minimization principles,
SVM usually presents a better performance in classification
and regression (Hesami et al., 2020). It has been applied in
various fields in agriculture (Ang and Seng, 2021), such as plant
breeding (Yoosefzadeh-Najafabadi et al., 2021), pest detection

(Ebrahimi et al., 2017), and soil condition prediction (Morellos
et al., 2016). However, SVM usually takes a long time to search for
optimal parameters. What is more, for multiclass classification,
SVM may have a lower classification accuracy than artificial
neural network (ANN) (Xia et al., 2018). Therefore, it is necessary
to use advanced methods like deep learning. Convolutional
neural network (CNN) is one kind of deep learning, which is
often used for image and speech recognition. CNN can also be
used for spectral data processing (Yan et al., 2021). Compared
to ANN, CNN is more likely to reduce the risk of overfitting
by sharing the same convolution parameters. Moreover, CNN
can identify important spectra regions by applying the same
convolutional kernel in a spectrum (Acquarelli et al., 2017).
A saliency map is a powerful tool to show the important
regions visually (Peruzzi et al., 2021). As we all know, CNN is
particularly suitable for image data processing relying on the two-
dimensional and self-adaptive characteristics of the convolution
kernel. Therefore, we proposed a new form of input data by
connecting three spectra of a soybean seed into a spectral matrix.
Because of the self-adaptive characteristic of convolution kernel,
we expect CNN to learn the important features of the spectral
matrix and further improve the modeling effect. At the same
time, we can use t-distributed stochastic neighbor embedding (t-
SNE) (van der Maaten and Hinton, 2008) to display the learning
effect for different layers in CNN. Thus, the main objectives of
this study are: (1) to compare identification accuracy between
machine learning and deep learning; (2) to use spectral matrix
as the input of CNN; (3) to use t-SNE to visually observe
the learning process of CNN; (4) to use saliency maps to find
the more influential positions in the spectral matrix on the
discriminant results.

MATERIALS AND METHODS

Sample Preparation
The soybean seeds from a single batch were purchased
from a seed company in Shuyang Pengyuan horticulture
farm, Suqian, Jiangsu, including Guandou 1, Zhoudou 23,
Hedou 13, Jiadou 23, Hedou 33, Lvbaoshi, Hedou 25,
Qihuang 34, Zhonghuang 13, and Wandou 15, which were
correspondingly numbered from variety 1 to variety 10 for
convenient description. Two hundred seeds free from damage
and disease spots for each variety were selected. Then,
without any other pretreatment, every four soybean seeds were
pressed into rubber sand in a culture plate using a ruler to
ensure a relatively uniform surface height (Figure 1) for the
LIBS experiment.

Experimental Setup
The experiment was completed using the LIBS system as
shown in Figure 1. A Q-switched Nd:YAG pulse laser (Vlite-
200, Beamtech Optronics, Beijing, China) was used to generate
a pulse laser at 532 nm with a pulse duration of 8 ns,
beam diameter of 7 mm, and maximum energy of 200
mJ. Then, the pulse laser was guided to the sample by an
optical system, in which a glass slide and a polarizer was
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FIGURE 1 | The schematic diagram of the laser-induced breakdown spectroscopy (LIBS) experiment.

combined to control laser energy and a plano-convex lens
(f = 100 mm) was fixed to focus the laser beam 2 mm below
the surface of the sample. To avoid repeat ablations, an X-Y-
Z motorized stage was applied to move the sample every ten
accumulation shots. The LIBS spectra were separated by the high-
resolution Echelle spectrometer (ME5000, Andor Information
Technology Ltd., Belfast, United Kingdom) in the range of
230–904 nm with 0.01 nm resolution and then collected by
an intensified charge coupled device (ICCD) camera (DH334,
Andor Information Technology Ltd., Belfast, United Kingdom).
The delay generator (DG645, Stanford Research Systems Inc.,
Sunnyvale, CA, United States) was applied to adjust the
delay time between the action of the laser ablation and
the camera working.

The pulse energy, delay, and integration time were the
three important parameters for LIBS, which were optimized
as 60 mJ, 2 µs, and 10 µs, respectively, improving the data
quality. In the air environment, three different points on a
soybean seed were used to be ablated as shown in Figure 1.
The horizontal distance between two adjacent points is one
millimeter and the middle point is the highest. At each
point, the spectra with 10 times accumulation were collected
to gather information from the surface to the inside of the
soybean seed. The average spectra were taken as the final
spectrum. Thus, one soybean seed produced three spectra and
a total of 6,000 spectra were produced in this experiment.
It only took 30 s to complete the spectral acquisition for
one soybean seed.

Data Preprocess
LIBS spectra within soybean seeds contained obvious random
noise in the head and end of the spectra. Thus, the wavelengths
in the range of 242–882 nm were studied. To reduce fluctuations
from point to point, area normalization method was used for each
LIBS spectrum following the equation below:

Xi =
xi∑n

i = 1 xi
(1)

where xi is the ith variable relative intensity measured by LIBS
system, n is the total number of LIBS spectral variables, Xi is the

relative intensity by area normalization. Then variables with near-
zero standard deviation were removed to reduce the dimension
of LIBS spectra (Boucher et al., 2015). All soybean seeds were
randomly divided into the calibration set, validation set, and
prediction set according to the ratio of 3:1:1. The number of
the LIBS spectra in the three data sets was 3,600, 1,200, and
1,200, respectively.

Principal Component Analysis
Principal component analysis (PCA) is a commonly used method
to generate an easy visualization of the distribution of samples
(Velioglu et al., 2018; Zhu et al., 2019b). The principle of PCA
is to find the unit vector to maximize the variance after the
original spectral data is projected on the vector, so that the
information of the original spectral data can be retained to the
greatest extent. The variance can be calculated by the following
equation:

σ2
=

1
n

∑
(xiv)2

=
1
n

∑
vTxiTxiv = vT(

1
n

∑
xiTxi)v = vTCv (2)

Where xi is a LIBS spectrum, v is unit vector and C is
covariance matrix of all pixel spectra. So, v = argmax(vT Cv),
subjected to vTv− 1 = 0. We can use the lagrange
multiplier method to solve v. The process is as below:

L = vTCv−λ(vTv−1) (3)

∂L
∂v
= 2Cv−2λv = 0

yields
−→Cv = λv (4)

∂L
∂λ
= 0

yields
−→vTv = 1 (5)

Where, λ is the lagrangian multiplier.
Therefore, λ is the eigenvalue of C and v is eigenvector of C.

Through PCA, we can get different unit vectors vs with different
λs. The larger is, the greater the contribution rate of v is. In this
study, the first three vs were used to generate three principal
components (PCs). PC1 = Xv1, PC2 = Xv2, PC3 = Xv3. We
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can intuitively see the clustering of samples by scoring 3-D scatter
plots of PC1, PC2, and PC3.

Discriminant Analysis Method
Machine Learning
K-nearest neighbor (KNN) is the simplest classification algorithm
in machine learning. The distances between samples are
calculated first. Then, k nearest samples are considered to be
in the same category. In this study, k is determined by the
discriminant accuracy of the validation set and selected in
the range of 3–20.

SVM is a stable supervised classification model, which is
also suitable for small and high-dimensional data (Vapnik and
Chapelle, 2000; Scholkopf et al., 2001). In the process of SVM
modeling, the optimal hyperplane is searched to separate the
samples by exploring support vector points. At the same time,
the structural risks should be minimized. Due to the simplicity
of radial basis function (RBF) and its ability to solve complex
nonlinear problems, RBF was selected as the kernel function
in this study. Kernel function parameter g determines the
linearity of the hyperplane and the regularization parameter c
determines the capacity of fault tolerance (Yu et al., 2016). In
order to guarantee the better performance of SVM, the optimal
parameters c and g were selected through grid-search procedure

from 10−8 to 108 and determined by classification accuracy of
five-fold cross validation.

Deep Learning
Deep learning has become the hottest topic in the field of
artificial intelligence. CNN is one of the well-known deep
learning structures for classification (Kamilaris and Prenafeta-
Boldu, 2018; Ren et al., 2020). In this study, three kinds of
common network structures called LeNet (Lecun et al., 1998),
DenseNet (Huang et al., 2017) and ResNet (He et al., 2016) were
compared firstly. Then according to the discriminant results,
two kinds of self-proposed network structures based on ResNet
were further studied. The detailed structures based on LeNet and
DenseNet are shown in Supplementary Figures 1, 2.

For three kinds of ResNets, basic network architecture is
shown in Figure 2. Residual block (RES. Block) is the main
characteristic that distinguishes this network structure from
others. RES. Block is composed of two convolution layers
(Convs), each of which is followed by a batch normalization
process and rectified linear unit (Relu) activation function. The
two Convs have the same parameters in kernel size, padding,
and strides with values of 3, 1, and 1. For four RES. Blocks, the
channel number of Convs was 64, 64, 128, and 128, respectively.
It is worth noting that the input data can be propagated forward
directly to the data before passing through the last layer. For

FIGURE 2 | The soybean seeds classification flowchart including data input, ResNet-based classifier, and a majority vote strategy.
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common ResNet, the value of the propagation coefficient W is
1. We proposed the self-adaption of W including propagation
coefficient adaptive ResNet (PCA-ResNet) and propagation
coefficient synchronous adaptive ResNet (PCSA-ResNet). For
PCA-ResNet, there is no limit between the four W and they
are updated separately during the back-propagation process. For
PCSA-ResNet, the four W are updated synchronously during the
back propagation following the equation below:

W1 = W2 = W3 = W4 = W∗ (6)

Between the input layer and the RES. Block 1, there was a
pretreatment process as shown in Figure 2. In the process, the
channel number, kernel_size, padding, and strides of Conv were
64, 7, 3, and 2, respectively, to deal with more information at
once. A soybean seed could produce three spectra which could be
treated separately or concatenated together into a spectral matrix.
Therefore, all the Convs in 1D-CNN had two states including
one dimension (1D) or two dimensions (2D) corresponding to
different data forms. Additionally, a majority vote was employed
to make the final decision for classification when the data form
was the first one and the corresponding data transmission flow
was marked using gray dotted lines. Another data transmission
flow for the spectral matrix was marked using red dotted lines.

VGG is another common network structure for image
processing (Simonyan and Zisserman, 2014). The model based on
VGG was built as a comparison. The detailed structure is shown
in Supplementary Figure 3. In order to compare the modeling
effects of different 2D-CNNs, the same pretreatment process as
shown in Figure 2 (between the input layer and the RES. Block 1)
was added to 2D-LeNet, 2D-DenseNet, and 2D-VGG.

Deep learning models were trained using stochastic gradient
descent (SGD) with different learning rates. At the beginning
of model training, the learning rate was high and gradually
decreased to approximate the optimal accuracy. For each learning
rate, there was a threshold for the accuracy of the validation set,
which gradually increased with the decrease of the learning rate.
When the accuracy of the validation set reached the threshold,
the training of the model was stopped. If the accuracy of the
validation set could not reach the threshold, the model training
would be stopped after 100 iterations. The learning rates and
thresholds were set together at different stages of the training
process of the model. Taking PCSA-ResNet based on spectral
matrix as an example, the learning rates were set as 0.25, 0.124,
0.05, and 0.01, respectively, and the corresponding thresholds
were set as 0.84, 0.86, 0.88, and 0.887. The accuracy of the
validation set finally converged to 0.887.

Model Evaluation and Visualization
Discriminant accuracy was used to evaluate each model in
this study, defined as the ratio of the number of correctly
discriminated soybean seed to the total number. To further
evaluate model performance, four common evaluation indicators
including precision, recall, F-measure, and Matthews correlation
coefficient (MCC) were calculated. The corresponding formula
refers to the article by Yoosefzadeh-Najafabadi et al. (2021). In

this article, the average value of the four indicators was used for a
more convenient evaluation.

A confusion matrix was applied to analyze the detailed effects
of classification further. The difference between the prediction
results and actual results for each soybean seed could be
visually observed. The confusion matrix consists of a square
matrix whose vertical axis represents the true category and
horizontal axis represents the predicted category. Therefore, the
number on the diagonal indicated the number of soybean seeds
correctly classified.

T-SNE was used to visualize the clustering process of the
extracted features from the deep learning model. It could realize
the nonlinear dimension reduction of high-dimensional spectra
data (Husnain et al., 2019). In t-SNE, the Gaussian distribution’s
perplexity was defined as 30, and the initial dimensions of PCA
were defined as 12 for layers of Max pooling and RES Block4.
For Dense layer, since the length of the feature vector was 10,
the dimensions of PCA were set as 6, which should be smaller
than 10. The spectral matrix (similar to image data format) was
first reshaped into tensor in three dimensions including channel
and image, and then each image data of channels was averaged
(Zhang et al., 2020).

The deep learning model could calculate the weight of each
pixel on the input image (spectral matrix) through the back-
propagation algorithm. The graph composed of the weight value
of each pixel was called the saliency map. Through the saliency
map, we could visually see the pixel positions that had a higher
influence on the discrimination results. The calculation formula
of the weight of each pixel was as follows:

GradI =
∂(DenseI × CorrectI)

∂I
(7)

Where, I is spectral matrix, Dense is the output vector (ten
probability values) of Dense 10, Correct is a vector of 0 and 1
that corresponds to the Dense. For example, if the spectral matrix
comes from variety 3, the third position is set as 1 and the others
are set as 0. Grad is the gradient of the spectral matrix.

Software and Hardware
The machine learning algorithms were run on Matlab
R2014b (The MathWorks, Natick, MA, United States). The
software was installed on a Windows7 Desktop with Intel
Xeon E5-2620 and 64 GB RAM. CNN was deployed on the
framework of Apache MXNet1.4.0 in another computer of
Ubuntu Desktop with GTX1080Ti (NVIDIA, California,
United States) and 48 GB RAM.

RESULTS AND DISCUSSION

Average Spectral Analysis
The average spectra of soybean seeds from 10 varieties are
shown in Figure 3. The ten LIBS spectra showed a high
degree of similarity in the position of excitation peak, as they
all came from the same agricultural product called soybean.
Based on the National Institute of Standards and Technology
(NIST), the elements corresponding to the excitation wavelength
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FIGURE 3 | The average spectra of soybean seed samples including different varieties numbered 1–10.

were marked in the average spectra from variety 1 (Guandou
1). The marked molecular bands CN 0–0 (around 388 nm)
are usually associated with organic compounds (Fernandez-
Bravo et al., 2013). It is well known that soybeans are rich in
calcium, leading to many excitation lines representing calcium
that could be observed at 317.93 nm, 393.37 nm, 396.8 nm,
422.67 nm, 430.25 nm, 445.48 and 854.21 nm. In addition,
some microelements such as C (247.86 nm), Si (251.61 nm), Mg
(279.55 nm, 280.27 nm), H (656.28 nm), K (766.49 nm, 769.90
nm), O (777.54 nm), and N (746.83 nm, 821.63 nm, and 868.03)
and microelements like Fe (844.80 nm) and Na (589.59 nm) could
also be easily recognized. Although the signal intensity varied
among different varieties, it was difficult to distinguish them
just by LIBS spectra intuitively. Thus, it was necessary to adopt
mathematical data analysis to identify soybean seed varieties.

Principal Component Analysis
To test the feasibility of an unsupervised classification, a
qualitative analysis of PCA was applied to explore the differences
among ten different varieties of soybean seeds. The 3D score
scatter plot (X-axis: PC1, Y-axis: PC2, and Z-axis: PC3) is
presented in Figure 4. The first three PCs had explained 77.4%
of the variation with PC1 of 33.0, PC2 of 25.9, and PC3 of 18.5%.
Each variety of soybean seeds was marked with different color

or shape for better visualization. We could see a slight distinction
among different varieties. But spectra from the same variety could
not be completely clustered together. For variety 10 (Wandou 15)
marked with a blue circle, two clusters appeared, which indicated

FIGURE 4 | 3D scatter plot of 10 different varieties of soybeans based on the
first three principal components (PCs).
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that PCA could not explore the variety differences very well.
Therefore, supervised data processing was needed to explore the
differences among the ten varieties of soybean seeds.

Machine Learning and 1D-Convolutional
Neural Network
Both 1D-LeNet and 1D-DenseNet had poor performances
after trying different model parameters. The accuracy in the
prediction set is about 10% for them. For machine learning
and ResNets, Table 1 shows the results based on a single
spectrum and a majority vote. Based on a single spectrum,
KNN had the worst performance with the accuracy of 64.33%
in the prediction set. SVM had a higher accuracy of 84.67%.
Three different kinds of 1D-ResNets were superior to machine
learning. The accuracy in the prediction set was 86.42, 86.00, and
86.83%, respectively, for 1D-ResNet, 1D-PCA-ResNet, and 1D-
PCSA-ResNet. For 1D-PCA-ResNet, four different propagation
coefficients of W1, W2, W3, andW4 had the value of –0.15, –
1.06, 0.04, and 3.13, respectively. For 1D-PSCA-ResNet, the
shared W∗ had the value of 1.52. Based on a majority vote, the
discriminant accuracy of the validation set and prediction set
were both improved. For machine learning, SVM obtained the
highest accuracy of 90% in the prediction set. For deep learning,
1D-PCA-ResNet obtained the highest accuracy of 89.50% in
the prediction set.

Based on a single spectrum, the discriminant effects from
deep learning were superior to machine learning, revealing
the advantages and effectiveness of deep learning in spectral
analysis. This is because CNN has different principles in data
processing from SVM. The output of each convolutional layer
of CNN is directly related to small regions of the input
spectrum. Thus, CNN can identify important regions of the
input spectrum (Acquarelli et al., 2017). The existing research
in spectral application showed that CNN might have better
performance than machine learning (Brugger et al., 2021; Chen
et al., 2021). The network structure based on ResNet had higher
accuracy than that based on LeNet and Densenet. Therefore,
residual block played a vital role in the soybean genotype
discrimination coupled with LIBS spectra. The main feature of
the residual block is that the data can be propagated forward
more quickly through a cross-layer data path (Moussa and
Owais, 2021). However, the propagation coefficient of common

TABLE 1 | The results of discriminant models based on single spectrum and
a majority vote.

Model Based on single spectrum Based on majority vote

Cala (%) Valb (%) Prec (%) Cala (%) Valb (%) Prec (%)

KNN 75.56 66.42 64.33 80.67 70.25 66.75

SVM 99.97 83.33 84.67 100.00 87.00 90.00

1D-ResNet 100.00 87.42 86.42 100.00 91.75 89.00

1D-PCA-ResNet 100.00 86.75 86.00 100.00 91.00 89.50

1D-PCSA-ResNet 100.00 86.92 86.83 100.00 90.25 89.25

a,b,c Cal, Val and Pre are assigned, respectively, as the discriminant accuracy of
calibration set, validation set, and prediction set.

ResNet was set directly as 1. We believe that propagation
coefficient can also be automatically learned like convolution
parameters to achieve better results. The results showed that 1D-
PCSA-ResNet obtained higher accuracy for a single spectrum,
which aligns with our ideas. In order to determine the
variety of soybean seeds, the voting strategy was proposed.
The classification accuracy for both validation and prediction
sets was further improved. The results illustrated the stability
and effectiveness of the voting strategy. However, the optimal
classification accuracy was obtained by SVM rather than 1D-
PCSA-ResNet. The reason might be that SVM was characterized
by minimal structural risk (Yoosefzadeh-Najafabadi et al.,
2021). In the three spectra from a soybean seed, one may be
misclassified. Through majority vote, the classification accuracy
could be improved.

2D-Convolutional Neural Network
2D-DenseNet had the same poor performances as 1D-DenseNet.
The accuracy in the prediction set was about 10%. For other
2D-CNNs, Table 2 shows the results. The accuracy in the
prediction set of 2D-LeNet and 2D-VGG were 85.25 and 85.75%,
respectively. The model based on residual block outperformed
them. 2D-ResNet had an accuracy of 89.75%. 2D-PCA-ResNet
had a lower accuracy of 89.00%. The four different propagation
coefficients had values of –0.15, –0.92, 0.04, and 2.43, respectively.
Whereas 2D-PCSA-ResNet obtained the highest accuracy in
the prediction set with the value of 91.75%. The four same
propagation coefficients had the value of 1.30. For 2D-ResNet and
2D-PCSA-ResNet, the average value of four indicators including
precision, recall, F-measure and MCC was calculated. For 2D-
ResNet, they were 0.90, 0.90, 0.90, and 0.89, respectively. For 2D-
PCSA-ResNet, they were 0.92, 0.92, 0.92, and 0.91, respectively.

The highest accuracy was 91.75% from 2D-PCSA-ResNet,
whose result was still 1.75 higher than SVM by voting strategy,
demonstrating that taking spectral matrix as the input of
CNN could improve the classification accuracy. One spectrum
could only contain the information of one point on the
soybean seed while the spectral matrix could involve more
sufficient information. Moreover, the 2D convolution kernel
could automatically learn the joint useful information (Zhang
et al., 2020). These might be the reason for a higher accuracy.
Also, all four indicators of 2D-PCSA-ResNet had higher values
than that of 2D-ResNet, indicating that 2D-PCSA-ResNet
performed better, consistent with our idea in 3.3 again.

TABLE 2 | The results of 2D-CNNs based on a spectral matrix.

Format of data Model Cal (%)a Val(%)b Pre (%)c

Spectral matrix 2D-LeNet 100.00 87.75 85.25

2D-VGG 100.00 85.50 85.75

2D-ResNet 100.00 89.50 89.75

2D-PCA-ResNet 100.00 90.75 89.00

2D-PCSA-ResNet 100.00 88.75 91.75

a,b,c Cal, Val, and Pre are assigned, respectively, as the discriminant accuracy of
calibration set, validation set, and prediction set.

Frontiers in Plant Science | www.frontiersin.org 7 October 2021 | Volume 12 | Article 714557

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-714557 September 30, 2021 Time: 16:6 # 8

Li et al. Identification of Soybean Seed Varieties

FIGURE 5 | Training and testing curves of 2D-PCSA-ResNet.

Training and Testing Curves of
2D-Propagation Coefficient Synchronous
Adaptive-ResNet
Figure 5 shows the training and testing curves of 2D-PCSA-
ResNet. As the number of iterations increased, the loss value
decreases gradually and the accuracy of the modeling set
increased gradually. The accuracy of the validation set fluctuated

but finally converged just like the calibration set. The accuracy of
the modeling set, validation set, and prediction set was 100, 88.75,
and 91.75%, respectively. There was no fitting phenomenon in the
2D-PCSA-ResNet model.

Feature Clustering Process in
2D-Propagation Coefficient Synchronous
Adaptive-ResNet
The clustering effects of features extracted from Max pooling,
RES. Block4 and Dense 10 in 2D-PCSA-ResNet are visualized in
Figure 6. As the layers went from shallow to deep, the feature
clustering phenomenon became more apparent, indicating that
the features learned by the deep learning model were more and
more representative with the deepening of layers. As shown
in Figure 6C, the layer close to the output had successfully
learned the soybean seed varieties’ characteristics. Although a
small number of data points were misclassified, the classification
results were generally satisfactory.

Saliency Map of the Input Spectral
Matrices
Connected saliency maps of spectral matrices of soybean seeds
in the prediction set from ten varieties based on 2D-PCSA-
ResNet are shown in Figure 7. The darker the color was,
the greater the influence of the corresponding pixels on the
discrimination results. (1) It could be seen that the saliency pixels

FIGURE 6 | The visualization of clustering effects in layers of (A) Max pooling, (B) RES. Block4 and (C) Dense 10 in 2D-PCSA ResNet by t-SNE.
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FIGURE 7 | Connected saliency maps for spectral matrix of soybean seeds in prediction set from ten varieties based on 2D-PCSA-ResNet. The two spectra at the
bottom are same and are the average spectra from prediction set.

FIGURE 8 | The confusion matrix for the (A) validation and (B) prediction based on 2D-PCSA-ResNet.

for each variety were distributed in strips. This was because the
essence of the input image was spectral matrices. The wavelength
and the corresponding intensity of the spectrum could reflect
the differences of different samples (Liu et al., 2017). (2) For
each variety, there were slight differences in color at the same
wavelength. The reason might be that the three spectra that
made up the spectral matrix came from three different points
on the surface of a soybean seed. And the deep learning model
could automatically identify the valuable information for the
discrimination (Acquarelli et al., 2017). (3) The saliency maps

from different soybean varieties were different. For example,
saliency maps from variety 4 had significantly more red spots
in the number range of 250–1,000 than that of varieties 3
and 2. These differences were the fundamental reason why
the 2D-PCSA-ResNet could distinguish different soybean seed
varieties. Moreover, these differences had a certain corresponding
relationship with the excitation peak of LIBS spectra, indicating
that the content and proportion of elements (C, Si, Mg, Ca,
Na, H, K, O, N) in soybean seeds played an important role in
variety differences.
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Confusion Matrix Analysis
Figure 8 shows the confusion matrices of validation and
prediction for 2D-PCSA-ResNet. The details of misclassification
of each variety of soybean seeds could be observed clearly.

Good classification performances could be found for Variety
6 (Lvbaoshi) and Variety 8 (Qihuang 34), for which few samples
were misclassified. For the validation set, the classification results
of Variety 7 (Hedou 25) and Variety 9 (Zhonghuang 13) were
poor, more likely to be misclassified as Variety 4 (Jiadou 23) and
Variety 3 (Hedou 13), respectively. For the prediction set, Variety
9 (Zhonghuang 13) had similar poor classification results to those
in the validation set and Variety 5 (Hedou 33) was more likely to
be misclassified as Variety 7 (Hedou 25).

All the samples from Variety 6 (Lvbaoshi) could be correctly
classified, which might be attributed to the fact that Lvbaoshi
have a distinct color (green) compared to other varieties (yellow),
causing the different element distribution from other varieties.
Variety 5 (Hedou 33) and Variety 7 (Hedou 25) are easy to
be misclassified as each other. This was probably because they
were both a type of Hedou with similar genotypes. Variety 9
(Zhonghuang 13) and Variety 3 (Hedou 13) are easy to be
misclassified as each other. The reason might be that the saliency
maps of Variety 9 and Variety 3 were similar, which was related to
the internal structure of the discriminant model. As for variety
9 with the lowest accuracy of 82.5%, special attention should
be paid to actual application. Generally, most soybean seeds
could be accurately classified, which indicated that LIBS coupled
with CNN could be used as a rapid and small-invasive detection
method to identify soybean seed varieties.

CONCLUSION

Laser-induced breakdown spectroscopy combined with deep
learning was successfully applied to the fast identification of
soybean seed varieties. It only took 30 s to complete the
spectral collection for one soybean seed. Considering the two-
dimensional and self-adaptive features of the convolution kernel

of CNN, the three spectra of a soybean seed were connected into
a spectral matrix as the input. Coupled with spectral matrix, 2D-
PSCA-ResNet obtained the highest accuracy in the prediction set
with an accuracy of 91.75%. In the future, it can be considered
to combine with portable LIBS instruments to realize rapid and
on-site identification of soybean seed variety. Meanwhile, more
ablation schemes (different laser wavelengths, ablation times,
more suitable ablation locations, etc.) can be studied to enhance
the detection effects further.
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