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Anuj Kumar, Chirag Gupta, Julie Thomas and Andy Pereira*

Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, Untied States

To dissect the genetic complexity of rice grain yield (GY) and quality in response
to heat stress at the reproductive stage, a diverse panel of 190 rice accessions in
the United States Department of Agriculture (USDA) rice mini-core collection (URMC)
diversity panel were treated with high nighttime temperature (HNT) stress at the
reproductive stage of panicle initiation. The quantifiable yield component response traits
were then measured. The traits, panicle length (PL), and number of spikelets per panicle
(NSP) were evaluated in subsets of the panel comprising the rice subspecies Oryza
sativa ssp. Indica and ssp. Japonica. Under HNT stress, the Japonica ssp. exhibited
lower reductions in PL and NSP and a higher level of genetic variation compared
with the other subpopulations. Whole genome sequencing identified 6.5 million single
nucleotide polymorphisms (SNPs) that were used for the genome-wide association
studies (GWASs) of the PL and NSP traits. The GWAS analysis in the Combined,
Indica, and Japonica populations under HNT stress identified 83, 60, and 803 highly
significant SNPs associated with PL, compared to the 30, 30, and 11 highly significant
SNPs associated with NSP. Among these trait-associated SNPs, 140 were coincident
with genomic regions previously reported for major GY component quantitative trait loci
(QTLs) under heat stress. Using extents of linkage disequilibrium in the rice populations,
Venn diagram analysis showed that the highest number of putative candidate genes
were identified in the Japonica population, with 20 putative candidate genes being
common in the Combined, Indica and Japonica populations. Network analysis of the
genes linked to significant SNPs associated with PL and NSP identified modules that
were involved in primary and secondary metabolisms. The findings in this study could be
useful to understand the pathways/mechanisms involved in rice GY and its components
under HNT stress for the acceleration of rice-breeding programs and further functional
analysis by molecular geneticists.

Keywords: network analysis, linkage disequilibrium decay, number of spikelets per panicle, GWAS, rice, high
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INTRODUCTION

Rice (Oryza sativa L.) is the main food source for more than
half the world population and one of the most important cereal
crops after wheat, supplying 35–60% of the dietary calorie intake
for an estimated three billion people worldwide (Fageria, 2007;
FAO, 2009; GRISP, 2013). It is considered as the most diverse and
versatile crop in the world, grown between 53◦N in northeastern
China to 35◦S in New South Wales, Australia (Mae, 1997; Santos
et al., 2003), and distributed across tropical, subtropical, and
temperate regions (Vaughan, 1989) worldwide. Based on its
evolutionary history, several studies have reported that there
are two major classes or subspecies (Indica and Japonica) and
two subclasses (Japonica classified further into tropical Japonica,
temperate Japonica, and aromatic; Indica classified into Indica
and aus) of rice growing around the world (Glaszmann, 1987;
Ni et al., 2002; Garris et al., 2005; Huang et al., 2010; Zhao
et al., 2011; McCouch et al., 2016; Kumar et al., 2017). More
than 100 countries grow rice as a crop on more than 630
million ha, coming to an annual paddy rice harvest of more than
980 million tons (FAO, 2017; Laborte et al., 2017). However,
rice production will still have to increase to keep up with the
tremendous growth of the world population (Liang et al., 2010).
By 2030, meeting future demand could be hindered by changing
climate conditions, as water scarcity and the increased frequency
of extreme weather events have shown negative impacts on rice
yield (Satake and Yoshida, 1978; Jagadish et al., 2007, 2010;
Mohammed and Tarpley, 2009a,b; Foley et al., 2011; Coast et al.,
2015; Röth et al., 2016; Lesjak and Calderini, 2017).

The global mean surface air temperature has increased by
0.85◦C over the period from 1880 to 2012, with this temperature
being predicted to increase further by 1–3.7◦C by the end of
the 21st century, which will potentially increase the frequency
and magnitude of heat stress events (IPCC, 2013). Under these
scenarios, climate change has increased nighttime temperature
more than daytime temperature in rice-growing areas worldwide
(Peng et al., 2004; Elagib, 2010). High nighttime temperature
(HNT) is one of the detrimental factors attributed to the decline
in rice grain yield (GY) and quality year after year (Peng et al.,
2004). Rice crops are highly sensitive to HNT stress at all their
growth stages. However, rice plants at the reproductive stage
are tremendously affected by HNT stress, leading to lower GY
and poor grain quality under greenhouse and field conditions
(Counce et al., 2005; Cooper et al., 2008; Jagadish et al., 2015;
Kumar et al., 2017). Peng et al. (2004) reported that an increase of
1◦C in nighttime temperature reduced rice GY by 10%. Similarly,
it has been shown that HNT stress of 28 or 29◦C gave rise to a
cultivar-specific 10–20% GY decline (Shi et al., 2013; Bahuguna
et al., 2017), and a more than 90% reduction was estimated when
HNT stress increased to 32◦C (Mohammed and Tarpley, 2009b).
Based on several recent studies, HNT stress adversely affects all
GY components, leading to significant reductions in total GY in
rice (Jagadish et al., 2015; Kumar et al., 2017, Kumar et al., 2018).

An increase in the GY of cereal crops such as rice depends
on the establishment of several component traits such as the
panicle number per plant, panicle length (PL) (size), number of
spikelets per panicle (NSP), seed set [number of filled grains per

panicle (FGP)], and individual seed/grain size and weight (Chen
et al., 2008; Gaju et al., 2014; Kumar et al., 2018, 2019). All these
components, with and within the plants, compete for favorable
growing conditions. Among these yield components in rice,
panicle size, panicle number, and NSP are the major components
characterized with the highest plasticity under favorable growing
conditions and, therefore, have the highest impact in yield
elaboration (Adriani et al., 2016). So far, HNT stress has been
speculated to have an impact on panicle number, spikelet number
(NSP) per panicle, spikelet fertility (SF) (FGP), and grain size
and weight (Xu et al., 2020). Therefore, limited information is
available on the effects of HNT stress on panicle size determining
the final GY in rice (Shi et al., 2017). In recent years, HNT stress
of 26–32◦C showed negative effects on panicle development
in specific genotypes/cultivars in comparison with the control
treatments of 22–25◦C in several studies (Cheng et al., 2009;
Zhang et al., 2013; Mohammed and Tarpley, 2014). Anacleto et al.
(2019) reported that the NSP, or NSP per panicle, is also a major
yield component determined by panicle size, panicle density,
and panicle branching in rice. Therefore, a compact panicle
structure with a NSP ranging from 200 to 250, fully utilizing
the available carbohydrates, can sustain stable GY in rice (Xu
et al., 2020). Previously, it had been shown that the mechanism of
spikelet development is vulnerable to high daytime temperature
(HDT) conditions (Wu et al., 2016; Chaturvedi et al., 2017; Soda
et al., 2018), however, HNT stress (4–6◦C higher than control
conditions) also reduces the NSP (Zhang et al., 2013; Thuy and
Saitoh, 2017) in rice. Thus, panicle number, panicle size, and NSP
substantially contribute to the total GY in rice (Li et al., 1998).
Under HNT stress, both panicle size and NSP are more prone
to significantly decrease than panicle numbers in rice (Xu et al.,
2020). Furthermore, optimizing plant growth during panicle and
spikelet development is extremely important to elevate GY under
HNT stress in rice.

To understand the basis of elevating the GY and enhancing
the heat tolerance of rice under HNT stress, dissecting the
natural genetic variation widely distributed among the diverse
rice accessions, where the identification of favorable alleles for GY
components such as PL/size and NSP are the easiest phenotypes
to quantify, could be a useful approach (Kumar et al., 2018, 2019).
Several studies have been carried out to map and characterize the
genetic variation conferring yield components and heat tolerance
to rice under HDT stress (Xiao et al., 2011; Ye et al., 2012; Buu
et al., 2014; Adriani et al., 2016; Cao et al., 2020; Xu et al., 2020;
Chen et al., 2021). However, no extensive results of mapping
studies are available under HNT stress until now (Xu et al., 2020;
Kumar et al., 2020). Hence, to dissect and quantify the natural
genetic variation in diverse rice accessions for “all the major loci”
involved in GY components, it is necessary to make a genome-
wide scan, such as through a genome-wide association study
(GWAS), for different favorable/unfavorable loci needed for the
trait and use such information for further advanced genetic
analyses (Kumar et al., 2020).

Conventionally, genetic variation has been characterized using
bi-allelic mapping populations in previous studies (Xiao et al.,
2011; Ye et al., 2012; Buu et al., 2014; Adriani et al., 2016;
Cao et al., 2020; Xu et al., 2020; Chen et al., 2021). However,
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to characterize and map extensive natural genetic variation in
diverse populations, with the advancements in whole genome
sequencing, the utilization of GWAS has now become extremely
common in rice (Huang et al., 2010; Kadam et al., 2017). The most
common approaches to GWAS are to utilize a diverse population,
maximize the diversity of the alleles, and identify a larger
number of potential quantitative trait nucleotides (QTNs)/single
nucleotide polymorphisms (SNPs) associated with the target
traits (Zhao et al., 2011).

In this study, to dissect and quantify the natural genetic
variation in diverse populations, we reported the genetic
dissection of the United States Department of Agriculture
(USDA) rice mini-core collection (URMC) with the genotyping
data set generated by whole genome sequencing that detected the
best quality SNPs. The SNPs are most densely populated based
on the number of SNPs/kb interrogated across the genomes.
We explored the value of these resources for GWAS using
GY components under HNT stress, such as PL and NSP, as
the phenotypes. We also used several analytical techniques in
plant genetics to identify the significant associations revealing
QTNs/SNPs. Using these significant SNPs, we identified the
putative potential QTNs/genes involved directly or indirectly
in the development of panicles and spikelets expressing
heat tolerance in rice. Furthermore, we showed the different
advantages of populations of O. sativa, where we gain power
by directly accounting for significantly associated alleles/SNPs
from the mapping model. The results from the present study will
aid and strengthen rice-breeding programs for high temperature
tolerance using an SNP-based marker assisted selection and the
pyramiding of the QTNs/SNPs related to the GY components
and heat tolerance in elite rice cultivars of rice growing areas,
especially the United States.

MATERIALS AND METHODS

Plant Material and Growth Conditions
A panel of 190 diverse rice accessions, comprising 185 diverse rice
accessions of the URMC and 5 well-studied rice cultivars for HNT
response (Bengal, Kaybonnet, IRAT177, Vandana, and Nagina
22), was obtained from the USDA ARS Dale Bumpers National
Rice Research Center, Stuttgart, AR, United States (Agrama
et al., 2009). This collection was systematically developed from
1,794 core entries in the USDA rice collection based on both
phenotypic and genotypic data and is a representative subset of
more than 18,000 accessions of rice entries worldwide in the
USDA rice germplasm collection (Agrama et al., 2009; Li et al.,
2010). The panel of 190 diverse rice accessions, comprising of 102
Indica (Indica and aus), 81 Japonica (tropical Japonica, temperate
Japonica, and aromatic), and 7 Admixture (mixed populations
of Indica and Japonica) accessions, further comprising 53.68%
Indica, 42.63% Japonica, and 3.68% Admixture accessions, was
used in this study (Supplementary Table 1).

The seeds obtained from the USDA were used for
multiplication and purification using the single seed decent
(SSD) method for a season before this experiment was initiated.
Staggered planting of this diverse panel was done to deal with
the variation in heading days (HD) of the panel (Kumar, 2017).

This was done with a sample of approximately 30 seeds from
each rice accession of the panel, with the samples then being
germinated in single plastic pots, of size 15 cm × 15 cm, filled
with a mix of the SunGro professional potting mix (Sun Gro
Horticulture Distribution, Agawam, MA, United States) and
field soil (3:1), and grown in the greenhouse at the Harry
R. Rosen Alternative Pest Control Center at the University
of Arkansas, Fayetteville, AR, United States (Kumar, 2017).
After 10 days of germination, equal-sized seedlings of each
accession were transplanted in 3-gal plastic pots filled with the
mixture of potting mix and field soil. The plants were then
grown in the greenhouse until panicle initiation stage. For
greenhouse conditions, the temperature was set to 30 ± 1◦C
(86 ± 1◦F) during the day and 22.2 ± 1◦C (72 ± 1◦F) at
night (Ghadirnezhad and Fallah, 2014). The light was set to
a light/dark 13/11-h cycle with maximum photosynthetically
active radiant (800–1,000 µmol PAR m−2 s−1) light and 60–65%
relative humidity (RH) for the growth of the rice plants. The
experimental design was a completely randomized design (CRD)
with three replications (each replication is one plant in the pot).
The plants were watered every day and fertilized with the Peter
Professional soluble fertilizer (Allentown, PA, United States)
containing chelated iron once a week for full vegetative growth.
Plant protection methods were applied to prevent insect pests
and diseases, which followed the Rosen Center greenhouse
standard procedures.

Phenotyping and High Nighttime
Temperature Stress Treatment
At panicle initiation stage, as described by Counce et al. (2015),
three main panicles per plant were tagged in each accession of
the panel. The plants with tagged panicles were then moved
to the greenhouse with the HNT stress treatment, which was
maintained at a day/night temperature of 30◦C (86◦F)/28◦C
(82.4◦F) for 10 h (20:00–6:00), while the control treatment was
set at a day/night temperature of 30◦C (86◦F)/22.2◦C (72◦F)
until harvest maturity (approximately 18–20% grain moisture
content). The HOBO data loggers/sensors (Onset HOBO R©

data logger, Cape Cod, MA, United States) were installed in
both greenhouses (control and HNT stress treatments) for the
continuous monitoring and recording of the day and nighttime
temperatures until physiological maturity (Figure 1A). The data
logger system was operated by the HOBOware R© Pro software/app
with compatible devices. At harvesting maturity, all the panicles
(under control and HNT stress treatments) for each accession of
the panel were harvested separately in individual brown bags,
air-dried (12–14% grain moisture content), and used for the
phenotyping of GY components such as PL (cm), NSP, and
many others (other components not presented here). The PL of
each accession with both (control and HNT stress) treatments
was measured with a plastic ruler (60 cm), while NSP of each
accession was counted manually by skilled personnel.

Statistical Analysis and Phenotype
Evaluation
The statistical analysis of the phenotype data from the panel
was performed using R statistical packages v3.6.2 and John’s
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FIGURE 1 | Experiment comparing high nighttime temperature (HNT) stress and control treatments on the panel of 190 diverse rice accessions of the USDA rice
mini-core collection (URMC). (A) The nighttime temperatures record during the screen of the URMC panel. The nighttime temperature during each night was plotted
across the duration of the experiment for the HNT stress and control treatments, the red line plots the HNT stress temperature treatment, and the green line is the
plot of the control treatment at nighttime. The HNT stress temperature was stably maintained at 82.4 ± 1◦F (28 ± 1◦C), while the control treatment was held steady
at 72 ± 1◦F (22.2 ± 1◦C) during the experiment until harvest maturity. (B) The effects of HNT stress compared to the control treatment on panicle length (PL) in cm
and number of spikelets per panicle (NSP) in the panel.

Macintosh Project (JMP) Genomics Pro version 12.0 for
descriptive statistics. The test for normal distribution and
homogeneity of variances was done using the Shapiro–Wilk
test and Brown–Forsythe test, respectively. An ANOVA was
carried out with a statistical model that included the effects
of accession, treatment (control and HNT stress), and the
interaction between accession and treatment. The Tukey’s Honest
Significant Difference (HSD) test was used to compare the means
of treatments among all the accessions for significant effects
(Tukey’s HSD, p < 0.05) using the hsd function in R packages and
JMP version 12, as Tukey’s HSD can determine slight differences
between the means.

In the individual and Combined genotype (Indica, Japonica,
and Admixture together) populations of the panel, the Pearson’s
correlation between PL and NSP for both treatments was
calculated and displayed in scatter plots using the package
ggplot2 in R v3.6.2. The significance of the results was tested by
the function cor.test at the 95% confidence level. The means of
PL and NSP in the Combined population of Indica and Japonica
under HNT stress were used for the GWAS.

To quantitatively estimate the genetic variation in PL and NSP
in the Combined, Indica, Japonica, and Admixture populations,
the percent genetic variation (PGV) was calculated as:

PGV = Xmax−Xmin
Xmean × 100 where the Xmax, Xmin, and Xmean

are the maximum, minimum, and mean values of PL and NSP
in the Combined, Indica, Japonica, and Admixture populations,
respectively (Gu et al., 2014).

The broad-sense heritability (H2) was estimated to
describe how the environment affected PL and NSP in the

Combined population and the Indica, Japonica, and Admixture
subpopulations using the lmer4 function in R v3.6.2 (Bates, 2010;
Bates et al., 2015a,b). The confint function (Bates, 2010) was
used to compute the standard errors of the variance estimates
provided by lmer, and these were then proliferated to use the
95% confidence intervals for the H2.

Whole Genome Sequencing and SNP
Detection
The total genomic DNA of each accession of the panel was
extracted from fresh and early emerging young leaf tissues
using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany)
according to the instructions of the manufacturer and used for
whole genome sequencing. All the rice genomes of the panel
were sequenced by Novogene,1 with an average coverage of
approximately 20×. The raw reads were first aligned against
the reference rice genome cv. Nipponbare (IRGSP 1.0) for SNP
detection. To generate the SNP dataset for the genetic dissection
of the panel, 6.5 million of the most densely distributed (SNP/Kb)
and high-quality SNPs, with a less than 2% missing rate and
more than 5% minor allele frequency (MAF), were detected and
annotated (Supplementary Figures 1A,B).

Principle Component Analysis and
Population Structure of the Panel
Principle component analysis (PCA) was performed using the
Genome-wide Complex Trait Analysis (GCTA) v1.92.1 software

1www.en.novogene.com
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to estimate the number of subpopulations (Price et al., 2006;
Yang et al., 2011) in the panel. A population structure analysis
of the panel was performed using the fastSTRUCTURE software
v1.0 (Raj et al., 2014), following a Bayesian clustering approach
to characterize the population structure, with the numbers of
tested subpopulations (K) ranging from 1 to 5, and with three
independent runs each. A python script “chooseK.py” was used
to identify the model complexity that maximized marginal
likelihood, choosing the most likely K values based on the rate
of change in LnP between successive K values. The python script
“ditstrcut.py” was also used to construct the population structure
plot using the most likely K values. The marginal likelihood plot
was plotted with the marginal likelihood K values and number of
populations (K = 5) using the package ggplot2 in R v3.6.2.

Linkage Disequilibrium Analysis
The genome-wide pairwise linkage disequilibrium (LD) was
calculated in the Combined, Indica, and Japonica populations
(the Admixture population was removed as the population size
was too small) using the correlation coefficient (r2) between pairs
of SNPs by using the –−r2 – -ld-win 1000 – -ld-score – -ld-score-
cut-off 0.01 command in GCTA v1.92.4 beta2 (Jiang et al., 2019).
A set of 6.5 million SNPs with MAF ≥0.05 was considered for
LD analysis. To estimate the effect of population structure on LD
decay, the LD decay was investigated using r2 values across the
entire genome showing the LD decay pattern. The LD decay (r2)
was plotted against the physical distance (Kb) using the package
ggplot2 in R v3.6.2.

Genome-Wide Association Studies
Under HNT Stress
To identify QTNs/SNPs underlying the genetic regulation of
PL and NSP in the panel, a set of 6.5 million SNPs with
≥0.05 MAF and a <2% missing rate was used for the GWAS.
The genotyping (SNPs) dataset was converted to BED format
using PLINK v1.9 (Purcell et al., 2007; Chang et al., 2015). The
GWAS was conducted on PL and NSP GY components under
HNT stress in the Combined population, and then the Indica
and Japonica populations, while the Admixture population was
removed as the population size was too small (less than 4% of the
panel). For the GWAS, the Genome-wide Efficient Mixed Model
Association (GEMMA) was the software that implemented the
GEMMA algorithm (Zhou and Stephens, 2012), which uses
a linear mixed model (LMM) for association tests using an
estimate of relatedness matrix as a covariate. For further control
of population structure, the first four principal components in
the panel (Combined, Indica, and Japonica populations) were
used as covariates. Genome-wide critical values were determined
by permutations: each studied phenotype was permutated,
and the genome-wide lowest p-values were recorded in the
GWAS. To declare the significant associations, a threshold of
−log10 p (1e−05) was set using Wald test criteria. To visualize
the association results, the quantile–quantile (Q–Q) plots of
observed p-values were constructed against expected p-values,
and Manhattan plots were constructed with the chromosome
position on the X-axis against−log10 (p-values) of all SNPs using

the package qqman in R v3.6.2 (Turner, 2014). After the GWAS
run, all the SNPs with −log10 > 1e−05 were considered highly
significant. The highly significant SNPs associated with PL and
NSP in the Combined, Indica, and Japonica populations based on
their extent of LD were used to scan the reference rice genome to
identify candidate genes.

Allelic Effect and Phenotypic Variance
Explained by SNP Estimation
Using the differences in means of PL and NSP between accessions
under HNT stress in the Combined, Indica, and Japonica
populations, GEMMA, an LMM model, was used to estimate
SNP effects as the allelic effect. The SNP effect was expressed as
a positive value if the allelic effect increased PL and NSP in the
Combined, Indica, and Japonica populations, otherwise showing
a negative value when the allelic effect decreased.

Using several variance components of the GWAS results, we
estimated the proportion of variance in the phenotype explained
by each SNP (PVE) using the information described by Shim et al.
(2015) in equation:

PVE (SNP) =
2× (beta2)×MAF× (1−MAF)

2× (beta2)×MAF× (1−MAF)+(
(SE (beta))2)

× 2×N×MAF× (1−MAF)

Where, N represents the sample size of the panel, beta is
the effect for the genetic variant (SNP) of interest, SE (beta)
is the standard error of effect for the genetic variant (SNP) of
interest, MAF is the minor allele frequency for the genetic variant
(SNP) of interest.

Network Analysis
Statistically significant SNPs (p < 0.001) from the PL and NSP
GWAS datasets were mapped to the rice genome (MSU v7).
The SNPs that mapped within the defined genic regions for
the reference genome were selected, with the rest being filtered.
Note that we did not use any LD to associate genes with SNPs.
This allowed us to keep the gene-list to a minimum size for
downstream network analysis. Both of the trait-associated gene-
lists were then used as two different queries to probe the rice
regulatory network we recently created (Gupta et al., 2020). All
edges that were found between the query genes were retained and
grouped along with their module annotations, depicting enriched
pathway annotations from Mapman, riceGYC, KEGG, and Gene
Ontology Biological Processes. The resulting networks along with
all the attributes were visualized in Cytoscape v3.1.

RESULTS

Phenotypic Variation, Heritability
Analysis, and Trait Correlation
In this study, to investigate the effects of HNT stress compared
to control treatment in the panel (Figure 1A), the phenotypic
variation in the Indica, Japonica, Combined, and Admixture
populations were analyzed for PL and NSP yield components.
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The phenotypic variation in PL and NSP under HNT stress
compared to control treatment is shown in Figure 1B. A wide
range of the values for PL and NSP were observed in the Indica,
Japonica, Combined, and Admixture populations under control
and HNT stress treatments. The means, standard deviations
(SDs), minimum values, maximum values, and coefficients of
variation (CV) of PL and NSP in all the rice populations are
summarized in Table 1. A large range of variation, explained by
the PGV, was observed in the Combined population, showing
109.02% genetic variation in PL and 211.31% genetic variation
in NSP under HNT stress, with 89.815% genetic variation in PL
and 185.078% genetic variation in NSP in the control treatment.
For PL, the Japonica population showed the highest PGV, which
contained 102.42% genetic variation under HNT stress and
97.02% genetic variation under the control treatment, compared
to the Indica population, which exhibited 86.42% genetic
variation under HNT stress and 63.48% genetic variation under
the control treatment. The Admixture population exhibited the
lowest PGV, expressing 73.28% genetic variation under HNT
stress and 58.21% genetic variation under control treatment
(Table 1). Comparing the natural genetic variation for NSP in
all the rice populations, the Japonica population showed the
highest PGV containing 199.30% genetic variation under HNT
stress and 175.71% genetic variation under the control treatment,
followed by the Indica population exhibiting 163.19% genetic
variation under HNT stress and 173.94% genetic variation under
the control treatment; in comparison, the Admixture population
showed 93.29% genetic variation under HNT stress and 103.89%
genetic variation under the control treatment (Table 1).

For the broad sense heritability (H2) analysis in PL, the
Combined population showed an H2 of 0.689 under HNT
stress and 0.8 under the control treatment, while the Japonica
population exhibited the highest H2 of 0.823 under HNT
stress and 0.701 under control when compared with the Indica
population under both treatments (Table 1). For NSP, the
Combined population showed an H2 of 0.703 under HNT stress
and 0.827 for the control treatment, while the Indica population
showed a higher H2 of 0.719 under HNT stress and 0.839 under
control when compared to the Japonica population (Table 1).

To evaluate the effects of HNT stress in the experiment,
we analyzed the variation of the average PL, average NSP, and
their percent reductions in the Combined, Indica, Japonica, and
Admixture populations. The HNT stress showed a significant
effect on all populations (Supplementary Figures 2A–D)
compared to the control treatment. In the study, the Japonica
population showed the least reduction (8.66%) in PL, followed
by the Combined (11.8%), Indica (13.72%), and Admixture
(15.33%) populations (Figure 2A). Moreover, HNT stress
exhibited a significant effect on NSP in all the populations
(Supplementary Figures 3A–D), where the Japonica population
showed the least reduction in NSP (26.36%), followed by the
Combined (32.97%), Indica (36.59%), and Admixture (42.83%)
populations (Figure 2B).

The Pearson’s correlation coefficient was determined to
evaluate the relationship between PL and NSP in each of the
subpopulations under the HNT stress and control treatments
(Figure 3). As shown in Figures 3A–D, strong positive

correlations were observed between PL and NSP under the HNT
stress and control treatments in the panel, while the Indica
population showed the highest correlation (r = 0.67 for HNT,
and 0.58 for control) between PL and NSP, followed by the
Combined (r = 0.54 for HNT and r = 0.51 for control), Japonica
(r = 0.39 for HNT and r = 0.4 for control), and Admixture
(r = 0.68 for HNT, and r = 0.51 for control) populations. The
results revealed that PL showed strong positive correlation with
NSP under the HNT stress and control treatments in all the
populations. As expected, there was enormous natural genetic
variation in the panel (the Combined, Indica, Japonica, and
Admixture populations), suggesting a strong potential impact on
PL and NSP for the improvement of rice cultivars in rice-growing
regions under climate change conditions.

Genetic Structure and Linkage
Disequilibrium Analyses
To dissect and characterize the global genetic variation, we
applied principal component analysis (Price et al., 2006) in the
URMC panel (Figure 4). The first three principle components
(PCs) explained 41.97% of the global genetic variation in
the panel, where the first PC split the Indica and Japonica
populations in groups explaining 26.74% of the genetic variation.
The second PC separated the aus and Indica subpopulations
explaining 11.19% of the genetic variation (Figure 4A). The
third PC separated the three Japonica populations into tropical
Japonica (TRJ), temperate Japonica (TEJ), and aromatic (ARO)
subpopulations with 4.04% of the genetic variation in the
panel (Figure 4A).

Using a set of 6.5 million SNPs, we analyzed the population
structure of the panel using fastSTRUCTURE (Raj et al., 2014).
This method has been used with large sample sizes, showing
a strong capability to categorize individual populations into
subpopulations. For population structure analysis, the optimum
number of subpopulations was determined to be K = 5 and the
delta marginal likelihood revealed by the population structure
showed optimum K values that categorized the panel of the
URMC into the five subpopulations: Indica, AUS, tropical
Japonica, temperate Japonica, and aromatic (Figure 4B). In the
analysis, the Indica and aus accessions were represented in
the Indica population, while the tropical Japonica, temperate
Japonica, and aromatic accessions were included in the Japonica
population. The results showed that the highest delta marginal
likelihood was obtained when the K value of the panel was 1.
Using the ancestry information, seven accessions were assigned
into the Admixture population showing a mixture of O. sativa
ssp. Indica (Indica and aus) with O. sativa ssp. Japonica
(tropical Japonica, temperate Japonica, and aromatic) populations
(Supplementary Table 1). The population structure analysis
indicated that the panel of the URMC could be used for
association analysis, as the results revealed that the natural
genetic variation in the panel was widely distributed among
the populations.

Linkage disequilibrium, the non-random association of alleles
at different loci, indicated that genetic forces structure the
genome (Slatkin, 2008). Investigations of genetic structure and

Frontiers in Plant Science | www.frontiersin.org 6 September 2021 | Volume 12 | Article 712167

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-712167 September 28, 2021 Time: 12:3 # 7

Kumar et al. Rice High Nighttime Temperature Response

TABLE 1 | Natural variation and broad sense heritability (H2) in the panel of 190 diverse rice accessions of the USDA rice mini-core collection (URMC) comprising
Combined, Indica, Japonica, and Admixture populations for panicle length (PL-cm) and number of spikelets per panicle (NSP) under high nighttime temperature (HNT)
stress and control treatments.

Trait Population Na Treatment Minb Maxc Mean SDd CVe PGVf H2

PL (cm) Combined 190 Control 14.38 36.25 24.35 1.55 6.36 89.81 0.809

HNT 10.56 33.02 20.6 2.00 9.70 109.02 0.698

Indica 102 Control 15.74 30.92 23.91 1.46 6.10 63.48 0.778

HNT 10.84 28.66 20.62 1.97 9.55 86.42 0.689

Japonica 81 Control 14.38 36.25 22.54 1.68 7.45 97.02 0.823

HNT 11.94 33.02 20.58 2.03 9.86 102.42 0.701

Admixture 7 Control 14.44 28.5 24.15 1.36 5.63 58.21 0.907

HNT 10.56 25.54 20.44 2.02 9.88 73.28 0.806

NSP Combined 190 Control 41.8 247.2 110.98 14.16 12.75 185.07 0.827

HNT 15.0 172.2 74.39 14.05 18.88 211.31 0.703

Indica 102 Control 41.8 247.2 118.08 14.18 12.00 173.94 0.839

HNT 15.0 137.2 74.88 13.45 17.96 163.19 0.719

Japonica 81 Control 49.0 228.6 102.21 14.09 13.78 175.71 0.794

HNT 22.2 172.2 75.26 15.41 20.47 199.30 0.675

Admixture 7 Control 60.0 165.2 101.26 14.4 14.22 103.81 0.84

HNT 32.2 86.2 57.88 8.31 14.35 93.29 0.821

aPopulation size, bMinimum values, cMinimum values, dStandard deviation, eCoefficient of variation, fPercent genetic variation (described in section
“Materials and Methods”).

FIGURE 2 | The effect of HNT stress on PL in cm and NSP in the panel of 190 diverse rice accessions of the URMC. (A) Percent reduction in PL in the Admixture,
Combined, Indica, and Japonica subpopulations under HNT stress. (B) Percent reduction in NSP in the Admixture, Combined, Indica, and Japonica subpopulations
under HNT stress.

LD decay patterns in the populations were the main requirements
for the GWAS, with these prerequisites strengthening the
interpretation of GWAS results. To maintain disequilibrium in
the populations, the LD analysis was crucial to understand the
decay patterns, which provide the scope for the mapping of
complex traits through marker-trait associations. To determine
the extent of the LD decay in all the subpopulations of the panel

representing the Combined, Indica, and Japonica populations, we
estimated the pairwise LD index (r2) based on the SNPs across
the genome. Genome-wide LD decay patterns, along with the
distance in all the populations (Combined, Indica, and Japonica
populations), are shown in Supplementary Figure 4, where
the Indica population exhibited the most rapid LD decay to
0.4 at 30 kb, followed by the Combined population LD decay

Frontiers in Plant Science | www.frontiersin.org 7 September 2021 | Volume 12 | Article 712167

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-712167 September 28, 2021 Time: 12:3 # 8

Kumar et al. Rice High Nighttime Temperature Response

FIGURE 3 | Phenotypic correlations between PL (cm) and NSP under HNT stress and control treatments in the panel of 190 diverse rice accessions consisting of
the (A) Japonica population, (B) Indica population, (C) Combined population, and (D) Admixture population.

to 0.4 at 120 kb, while the Japonica population showed the
longest or most extended LD decay to 0.4 at 460 kb because
of the smaller size of the Japonica population compared to the
other populations.

Genome-Wide Association Studies, PVE
Analysis, and Putative Candidate Genes
Identification
To identify genomic regions associated with the mapped PL and
NSP traits, GWAS was carried out for the Combined population
and, then, for the Indica and Japonica populations under HNT

stress. To cope with false positive associations, we used a LMM,
estimated the relatedness matrix as a covariate, and further
controlled population structure using the first four principal
components as covariates (Zhou and Stephens, 2012) in all the
populations of the panel. In the Q–Q plots of PL (Supplementary
Figure 5) and NSP (Supplementary Figure 6) in the Combined,
Indica, and Japonica populations, the observed p-values followed
a uniform distribution and deviated from the expected p-values
distribution, indicating that false positives and negatives were
adequately controlled. The results of the GWAS for PL and NSP
in the Combined, Indica, and Japonica populations are plotted
in Manhattan plots in Figures 5, 6 respectively, showing the
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FIGURE 4 | Genetic structure analysis of the panel of 190 diverse rice accessions of the URMC. (A) Principal component analysis (PCA) revealing global genetic
variation in the panel. Left: first and second principal components (PCs); right: second and third PCs. Three PCs visualized six subpopulations in the panel. The six
subpopulations, Indica (IND), aus (AUS), aromatic (ARO), temperate Japonica (TEJ), tropical Japonica (TRJ), and Admixture (ADM)-mixed subpopulations, are
colored as indicated. (B) Population structure of the panel of 190 diverse rice accessions of the URMC; single vertical lines represent each accession and each color
represents a subpopulation cluster as designated by fastSTRUCTURE. Right: the number of populations (K = 5) using delta marginal likelihood provided by
fastSTRUCTURE and the delta marginal likelihood values are plotted against the number of populations (K = 5).

highly significant associated SNPs above the threshold of −log10
p (1e−05).

The GWAS related to PL identified 83 highly significant SNPs
(Figure 5C) showing MAF that ranged from 0.05 to 0.483 and the

percent phenotypic variation explained by SNPs (% PVE) ranging
from 1.39 to 12.26% in the Combined population. Of these,
60 significant SNPs (Figure 5B) exhibiting MAF ranging from
0.05 to 0.5, and % PVE ranging between 0.83 and 8.92% were
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FIGURE 5 | Manhattan plots showing genome-wide single nucleotide polymorphisms (SNPs) associated with PL (cm) in the Japonica (A), Indica (B), and Combined
(C) populations, respectively, under HNT stress across the rice genomes. The red line represents the association threshold –log10 p ≥ 1e–05. The right-hand side
scale of each plot indicates the distribution of genome-wide SNPs across the rice genomes that were used in this study.
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FIGURE 6 | Manhattan plots showing genome-wide SNPs associated with NSP in the Japonica (A), Indica (B), and Combined (C) populations, respectively, under
HNT stress across the rice genomes. The red line represents the association threshold –log10 p ≥ 1e–05. The right-hand side scale of each plot indicates the
distribution of genome-wide SNPs across the rice genomes that were used in this study.
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in the Indica population and 804 significant SNPs (Figure 5A)
showing MAF ranging from 0.05 to 0.5 with % PVE ranging
from 0.24 to 6.93% were in the Japonica population (Table 2
and Supplementary Table 2). For NSP, the association analysis
identified 31 highly significant SNPs (Figure 6C) with MAF
ranging from 0.056 to 0.454, and % PVE ranging from 0.045 to
0.242% in the Combined population, 31 highly significant SNPs
(Figure 6B) showing MAF ranging from 0.074 to 0.5 and %
PVE ranged from 0.027 to 0.21% in the Indica population, and
11 highly significant SNPs (Figure 6A) with MAF ranging from
0.051 to 0.333, and % PVE ranging between 0.004 to 0.082% in
the Japonica population (Table 2 and Supplementary Table 3).

The allelic effects for 83 highly significant SNPs in the
Combined population, 60 significant SNPs in the Indica
population, and 804 significant SNPs in the Japonica population
for PL ranged from −4.22 to 4.55, from −5.91 to 5.74, and
from −3.3 to 11, respectively (Table 2 and Supplementary
Table 2). On other hand, for NSP, the allelic effect for the 31
significant SNPs in the Combined population, 31 significant SNPs
in the Indica population, and 11 significant SNPs in the Japonica
population ranged from −18.4 to 24.51, −32.22 to 30.69, and
18.86 to 82.59, respectively (Table 2 and Supplementary Table 3).

Based on the LD analysis, the extents of LD were 30 kb in
the Combined, 120 kb in the Indica, and 460 kb in the Japonica
populations. For the identification of putative candidate genes,
we scanned the reference Nipponbare (O. sativa ssp. Japonica)
rice genome2 using LD intervals of ±30, ±120, and ±460 kb of
each significant SNP for PL and NSP in the Combined, Indica,
and Japonica populations, respectively. For PL, we identified 945,
443, and 9,945 putative candidate genes in the Combined, Indica,
and Japonica populations, respectively. On the other hand, for
NSP, 384, 185, and 1,326 putative candidate genes were identified
in the Combined, Indica, and Japonica populations, respectively.
A Venn diagram analysis was conducted for the identification
of common putative candidate genes for PL and NSP in the
Combined, Indica, and Japonica populations. For PL, three sets
in Figure 7A represent 419, 246, and 9,246 genes unique to the
Combined, Indica, and Japonica populations. The Combined and
Indica population sets shared 12 common putative candidate
genes, the Indica and Japonica populations sets shared 173 genes,
the Japonica and Combined population sets shared 502 genes, and
the three sets together (Combined, Indica, and Japonica) shared
12 common putative candidate genes. For NSP, the three sets
shown in Figure 7B represent 281, 165, and 1,243 genes unique
to the Combined, Indica, and Japonica populations, with no genes
common to all three populations. There were, however, 83 genes
shared between the Combined and Japonica populations and 20
genes shared between the Combined and Indica populations.

Co-localization of Significant GWAS
SNPs With Previously Reported QTLs
To validate the GWAS-identified SNPs associated with the HNT
responsive traits, we investigated the co-localization of all the
identified highly significant SNPs and individually associated
them with PL and NSP in the rice population subsets in the panel

2http://rice.plantbiology.msu.edu/

and with previously reported QTLs related to GY components
under heat stress. So far, there has been no mapping study under
HNT stress reported. However, several mapping studies in bi-
parental populations for GY components under HDT stress have
been reported (Xiao et al., 2011; Ye et al., 2012; Buu et al., 2014;
Zhao et al., 2016; Shanmugavadivel et al., 2017; Zhu et al., 2017;
Li et al., 2018; Cao et al., 2020; Nubankoh et al., 2020; Chen et al.,
2021). The publicly available datasets of these 10 independent
mapping studies published between 2011 and 2021 reported 32
major effect QTLs of GY components, such as daily flowering
time (DFT), FGP, flag leaf length (FLL), GY, HD, NSP, plant height
(PH), PL, panicle neck length (PNL), pollen shedding (PS), SF,
and spikelet sterility (SS) under HDT stress, were downloaded
and used for extraction of the genome position information of
the QTL for a co-localization analysis with the significant GWAS
SNPs from our analysis (Supplementary Table 4). Among all the
highly significant GWAS SNPs, 140 putative candidate SNPs in
the Combined, Indica, and Japonica populations associated with
PL and NSP were found coincident with the genomic regions of
the previously reported 32 QTLs of DFT, FGP, FLL, GY, HD, NSP,
PH, PL, PNL, PS, SF, and SS GY components under HDT stress
(Supplementary Figure 7 and Supplementary Table 4). Out of
the 140 SNPs, 11 SNPs of the Indica, and 119 SNPs of the Japonica
populations for PL were aligned over the genomic regions of
these related QTLs in the rice genome, while three SNPs of
the Combined, four SNPs of the Indica, and three SNPs of the
Japonica populations for NSP were coincident with the genomic
regions of QTLs of NSP, FGP, SF, and DFT (Supplementary
Figure 7) in the rice genome.

Network Analysis of GWAS
Next, we sought to investigate the pathways and biological
processes that were potentially enriched in our GWAS study. We
mapped the statistically significant SNPs to the genic regions of
the reference rice genome (MSU v7) and extracted 5,265 putative
candidate genes for the PL loci (Supplementary Table 5) and
3,136 putative candidate genes for the NSP loci (Supplementary
Table 6). Since the rice gene ontology was incomplete and
annotated only a fraction of the rice genome at the time the
study was conducted, we resorted to the use of functional
annotation provided by the rice regulatory network GRAiN
(Gupta et al., 2020), which was developed in our lab for the
network-based functional analysis and annotation of the GWAS
candidate gene datasets.

We initiated our analysis by selecting the top 100 SNPs
(sorted based on the significant p-values) from both GWAS
datasets. These gene-lists were then used as inputs to the GRAiN
web-application3 for the identification of modules containing
co-regulated and potentially functionally related genes. For
the PL gene-list, GRAiN reported 11 modules of co-regulated
genes significantly enriched within our query (Supplementary
Figure 8A) (corrected p-value < 0.1). Co-regulated modules in
the GRAiN platform indicated groups of functionally related
genes that were potentially regulated by the same sets of
transcription factors (Gupta et al., 2020). The GRAiN output

3http://rrn.uark.edu/shiny/apps/GRAiN/
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TABLE 2 | Genome-wide highly significant SNPs associated with panicle length (PL-cm) and number of spikelets per panicle (NSP) in in the panel of 190 diverse rice
accessions of the USDA rice mini-core collection (URMC) comprising the Combined, Indica, and Japonica populations under high nighttime temperature (HNT) stress.

Trait Population Na No of High Signif SNPsb MAFc Allelic Effect %PVEd

PL (cm) Combined 190 83 0.050–0.483 (−4.22)–4.55 1.39–12.26

Indica 102 60 0.050–0.500 (−5.91)–5.74 0.83–8.92

Japonica 81 804 0.050–0.500 (−3.30)–11.00 0.24–6.93

NSP Combined 190 31 0.056–0.454 (−18.40)–24.51 0.045–0.242

Indica 102 31 0.074–0.500 (−32.22)–30.69 0.027–0.21

Japonica 81 11 0.051–0.333 18.86–82.59 0.004–0.082

aPopulation size, bNumber of highly significant SNPs, cMinor allele frequencies, dPercent phenotypic variation explained by SNPs.

FIGURE 7 | The Venn-diagram showing the number of putative candidate genes identified by highly significant genome-wide association studies (GWAS) SNPs
associated with PL (A) and NSP (B) under HNT stress across the rice populations; the Combined (yellow), Indica (pink), and Japonica (green) populations. The
reference rice genome was scanned for the identification of putative candidate genes based on the extent of linkage disequilibrium (LD) of each highly significant
GWAS SNP in all the rice populations (described in “Materials and Methods”).

showed that at least 4 of these 11 PL modules were comprised
of stress-related genes, signaling kinases and genes involved
in post-translational modifications according to the Mapman
pathway annotations and the electron transport chain according
to the Gene Ontology annotations of rice. In contrast, on
querying the top 100 genes from the NSP gene-list, GRAiN
reported only four enriched modules, but none of them
were found to be enriched with any pathway or biological
processes as seen in the PL GWAS query (Supplementary
Figure 8B). On expanding the input NSP query to include
additional genes (n = 200), we found six NSP modules
consisting of genes involved mainly in different categories
of the carbohydrate metabolism, signaling, and DNA repair
pathways. The GRAiN also reported that the promoters of
the genes in the PL and NSP modules were enriched with
several stress- and development-related plant cis-regulatory
(Tables 3, 4).

The network enrichment analysis described above required
working with small lists of genes in order to perform reliable
statistical analyses. However, our GWAS identified several other
genes with nominal p-values that could also potentially play
role in other pathways and processes perturbed by HNT stress.
Considering that the rice functional gene annotations were
not complete during the time the study was conducted, we

suspected that these pathways might not show enrichment within
the statistical thresholds by GRAiN. Therefore, we probed the
network with the full set of significant SNPs and extracted the
subnetworks induced by all significant SNPs on both GWAS-
derived datasets. On visualizing these PL and NSP subnetworks
along with their attributes in Cytoscape, we observed that
the PL subnetworks (Figure 8A) were considerably denser
(more connections between query genes) compared to the NSP
network (Figure 8B). We also observed that the subnetworks
consisted of several modules enriched with genes involved in the
various primary and secondary metabolism pathways relevant
to the context of the GWAS. For example, we observed that
a considerable number of SNPs in the PL subnetwork were
involved in homogalacturonan degradation, a pathway that is
believed to be modulated in stress responses. The PL subnetwork
was also characterized by the presence of several biosynthetic
pathways, such as for cellulose and xylose biosynthesis, fatty
acid elongation, and jasmonic acid biosynthesis. These processes
have been evidently linked to stress responses in plants. It
must be noted, however, that some of these modules were not
observed when only the highly significant SNPs were considered
in the enrichment analysis, indicating that SNPs with nominal
significance revealed biologically meaningful roles in the GWAS
for PL determination.
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FIGURE 8 | Subnetworks of PL and NSP. All statistically significant SNPs
were mapped to the genic regions of the rice reference genome and the
resulting genes were used as input to query the rice regulatory network.
(A) The subnetwork induced by the PL gene-list and (B) the subnetwork
induced by NSP gene list. In both the panels, genes are represented by
ellipses and are color coded according to the module they are a part of. Gray
ellipses represent genes that are part of modules with no functional
annotations yet. The functional annotations of colored modules are shown in
the key on the right. Note that some of these modules were not significantly
enriched within the query genes.

DISCUSSION

High nighttime stress is a major environmental stress factor that
negatively affects GY components and ultimately reduces GY
in rice. The rice crop is highly sensitive to heat stress at every
growth stage; however, the reproductive stage beginning with the
early panicle development phase is extremely sensitive to such,
causing a reduction in PL and NSP and subsequently reducing
total GY (Shi et al., 2017; Kumar et al., 2018; Chen et al., 2021).
Like other abiotic stress tolerances (drought and salinity), HNT
stress tolerance is also controlled by a large number of genes
and related traits. So far, only a few studies have been conducted
to characterize the genetic variation in mapping populations
and map the genome regions conferring GY components in
rice under HDT stress (Buu et al., 2014; Adriani et al., 2016;
Shanmugavadivel et al., 2017; Xu et al., 2020). Furthermore, a
large genome-wide scale genetic analysis of the diverse natural
genetic variation has not yet been done for GY components in
rice under HNT stress (Kumar et al., 2020; Xu et al., 2020).
Therefore, we first chose to survey the broad natural genetic
variation in diverse rice populations and use the power of GWAS

to map and compare the loci/SNPs affecting GY components in
rice under HNT stress from diverse sources.

To investigate and quantify the natural genetic variation
in rice, a panel of 190 diverse accessions consisting of 102
Indica (Indica and aus), 81 Japonica (tropical Japonica, temperate
Japonica, and aromatic), and 7 Admixture (a mixture of
Indica and Japonica) accessions were phenotyped for the GY
components PL and NSP under HNT stress. The effects of
HNT stress compared to the control treatment in PL and
NSP were observed and quantified in the panel (Figure 1B),
where the PL and NSP phenotypes of the panicles after HNT
stress compared to control treatment was visually evident and
efficiently quantifiable. The phenotypic variation in PL and NSP
under HNT stress compared to the control treatment varied
extensively among the rice accessions in the panel, which was
important for genetic dissection by association mapping analysis.
For PL and NSP, the Combined population revealed a wide
range of genetic variation under HNT stress compared to the
control treatment, with the Japonica population showing the
highest genetic variation followed by the Indica and Admixture
populations under HNT stress, when compared to the control
treatment (Table 1). Along with the highest percentage of
genetic variation, the Japonica population also showed the
least reduction in PL and NSP under HNT stress compared
to the Indica populations, demonstrating significantly better
HNT stress tolerance. The Admixture population, on the other
hand, showed the highest reduction in PL and NSP under
HNT stress. This may be due to the ecosystem origins of
the Japonica population collected from around the world, in
which approximately more than 50% of the accessions were
from tropical/sub-tropical regions of the globe. The broad sense
heritability for PL and NSP in the Japonica population was
moderate to higher than the Combined and Indica populations,
while the Admixture population had even more than the other
populations, which was expected because the sample size of the
Admixture population was very small (seven accessions) and
contained mixed genetic backgrounds representative of different
ecosystems. Strong positive correlations between PL and NSP
and a higher broad sense heritability for PL and NSP were
found in the Japonica population when compared to the other
rice populations in the panel, showing trait stability under
HNT stress environments. This could be a good prospect for
selecting the Japonica population to develop pure-line material
for testing in multiple replications with a high frequency and
the magnitude of heat stress environments. Furthermore, the
identified putative candidate SNPs/loci and insights derived from
the genetic dissection of the URMC panel for GY components
in this study may also facilitate rapid progress in rice breeding
compared to traditional approaches.

To understand and dissect the genetic architecture of the
panel, the structure analysis and PCA with three first components
explained approximately 42% of the global genetic variation
in the panel of the URMC (Figure 4A). Similarly, McCouch
et al. (2016) reported that the rice diversity panel (RDP) 1
showed 40% global genetic variation using the high-density array
(HDRA) of 700K SNPs, which grouped all the individuals of
each subpopulation together and separated them from other
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TABLE 3 | Gene ontology enrichment analysis of top 100 putative candidate genes identified using significant GWAS SNPs (p < 0.001) associated with panicle length
(cm) in the panel under HNT stress.

Modulea APVb GO processc Mapman pathway CREd

M0135 1e-05 NA NA abre3hva22, sure2stpat21, gt1gmscam4,
pyrimidineboxhvepb1, minus314motifzmsbe1

M0187 1e-04 NA NA abre3hva22, sure2stpat21, aciipvpal2,
gt1gmscam4, mybcoreatcycb1, pyrimidineboxhvepb1,
minus314motifzmsbe1

M0203 2e-04 NA Stress abiotic pr proteins abre3hva22, sure2stpat21, gt1gmscam4,
mybcoreatcycb1, pyrimidineboxhvepb1,
wbboxpcwrky1

M0360 0.00088 NA Protein posttranslational modification,
Signaling receptor kinases legume lectin

abre3hva22, sure2stpat21, gt1gmscam4,
mybcoreatcycb1, pyrimidineboxhvepb1,
23bpuasnscycb1, mybcoreatcycb1,
minus314motifzmsbe1, l1boxatpdf1, polasig1

M0144 0.00481 NA Protein posttranslational modification,
Kinase receptor like cytoplasmatic kinases,
RNA regulation of transcription myB domain

abre3hva22, sure2stpat21, gt1gmscam4,
pyrimidineboxhvepb1, minus314motifzmsbe1

M0026 0.02313 Electron
transport chain

Stress abiotc pr proteins, signaling receptor kinases
leucine rich repeat xi, Protein degradation ubiquitin

abre3hva22, sure2stpat21, gt1gmscam4, pyrimidineboxhvepb1

M0358 0.03403 NA NA abre3hva22, sure2stpat21, gt1gmscam4, mybcoreatcycb1,
pyrimidineboxhvepb1, up2atmsd, up2atmsd, arelikeghpgdfr2

M0361 0.03403 NA NA abre3hva22, sure2stpat21, aciipvpal2, gt1gmscam4,
aciipvpal2, mybcoreatcycb1, pyrimidineboxhvepb1,
23bpuasnscycb1, lrebox2psrbcs3, aciipvpal2, ce3ososem,
mybcoreatcycb1, minus314motifzmsbe1, sp8bfibsp8bib,
boxcpsas1_3, boxcpsas1_2, wbboxpcwrky1, arelikeghpgdfr2

M0087 0.03736 NA NA abre3hva22, sure2stpat21, gt1gmscam4, pyrimidineboxhvepb1

M0303 0.07648 NA NA abre3hva22, sure2stpat21, gt1gmscam4,
pyrimidineboxhvepb1, 23bpuasnscycb1,
minus314motifzmsbe1, boxcpsas1-2, up2atmsd

M0391 0.07648 NA NA abre3hva22, sure2stpat21, aciipvpal2, gt1gmscam4,
gcbp2zmgapc4, aciipvpal2, mybcoreatcycb1, gcbp2zmgapc4,
pyrimidineboxhvepb1, gcbp2zmgapc4, minus314motifzmsbe1

aModule ID, bAdjusted p-values, cGene ontology process, dCis-regulatory element.

subpopulations in clusters. The findings of this study suggest
that the panel demonstrated extensive natural genetic variation
within the rice populations, which can provide opportunities
for rice breeders and geneticists to utilize the strength of the
natural genetic variation that has been well maintained in gene
banks worldwide. To exploit the enormous natural genetic
variation for candidate gene discovery (Garris et al., 2003) and
infer evolutionary forces (Rakshit et al., 2007), it has been
of intense interest to dissect the LD levels and patterns in
rice populations. To investigate the LD patterns and levels in
the panel, the Combined population exhibited the most rapid
LD decay, followed by the Indica population. However, the
Japonica population with a highly extended LD decay showed
the longest extent of LD in the genome, which was possible
because of the small size of the Japonica population in the panel.
Furthermore, to contribute to the emergence and maintenance
of the extents of LDs and patterns, there are several forces that
can be utilized, including mutation drift, population bottlenecks,
population structure and Admixture, population size, and levels
of inbreeding and selection (Mather et al., 2007). In several
crops and their subpopulations, LD has been characterized, in
which maize exhibited the most rapid LD decay (to 0.3 at 2 kb)

because of it being an out crosser (Remington et al., 2001;
Tenaillon et al., 2001), while barley, a self-pollinated crop species,
showed approximately 90 kb LD decay (Caldwell et al., 2006).
Furthermore, Hyten et al. (2007) reported that soybean, a self-
pollinated crop species, could extend from 90 to >500 kb in
landrace material, even though the extent of LD depends on
the population size. Like our study in rice, McCouch et al.
(2016) reported that LD decayed rapidly with distance in all
rice populations, with Indica exhibiting the most rapid LD decay
and Japonica showing the most extended LD. Thus, insights on
LD levels and patterns in rice populations determined that a
modest number of SNPs could provide genome-wide coverage for
association analyses.

In order to understand the origin and distribution of natural
genetic variation in the rice subspecies, GWAS was performed
in the Combined population and individually in the Indica
and Japonica subpopulations for PL and NSP under HNT
stress. The association analysis found the highest number
(804 SNPs) of highly significant SNPs associated with PL in
Japonica when compared to the Combined (83 SNPs) and Indica
(60 SNPs) populations (Table 2 and Figures 5A–C), which
explained a larger range of % PVE (from 0.24 to −6.93%)
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TABLE 4 | Gene ontology enrichment analysis of top 200 putative candidate genes identified using significant GWAS SNPs (p < 0.001) associated with number of
spiekelets in the panel under HNT stress.

Modulea APVb GO processc Mapman pathway CREd

M0043 0 Cellular amide metabolic process, Peptide
metabolic process, cellular component biogenesis,
cellular response to stress, Cellular response to
DNA damage, Ribosome biogenesis, RNA
metabolic process, organelle assembly,
Cytoplasmic translation,

DNA repair abre3hva22, sure2stpat21, aciipvpal2, gt1gmscam4,
gcbp2zmgapc4, mybcoreatcycb1,
gcbp2zmgapc4, pyrimidineboxhvepb1,
gcbp2zmgapc4, minus314motifzmsbe1,
gcbp2zmgapc4

M0080 0 Cell localization establishment, Intracellular
transport, Vesicle mediated transport,
Carbohydrate metabolic processes

Signaling g proteins abre3hva22, sure2stpat21, gt1gmscam4,
mybcoreatcycb1, pyrimidineboxhvepb1,
minus314motifzmsbe1

M0093 0 NA NA abre3hva22, sure2stpat21, gt1gmscam4,
pyrimidineboxhvepb1

M0450 7e_05 NA Signalling receptor
kinases

abre3hva22, sure2stpat21, gt1gmscam4,
mybcoreatcycb1, pyrimidineboxhvepb1,
dre2corezmrab17, minus314motifzmsbe1,
pyrimidineboxosramy1a, mycaterd1, arelikeghpgdfr2

M0256 0.00268 NA NA abre3hva22, sure2stpat21, gt1gmscam4,
pyrimidineboxhvepb1, minus314motifzmsbe1

M0207 0.00504 NA NA abre3hva22, sure2stpat21, gt1gmscam4,
pyrimidineboxhvepb1

M0046 0.0176 Cellular catabolic process, defense response, cell
death, programmed cell death

Signalling receptor
kinases

abre3hva22, sure2stpat21, gt1gmscam4,
mybcoreatcycb1, pyrimidineboxhvepb1

M0070 0.0176 NA NA abre3hva22, sure2stpat21, gt1gmscam4,
mybcoreatcycb1, pyrimidineboxhvepb1

M0112 0.08524 Membrane lipid metabolic process, Sphingolipid
metabolic process

NA abre3hva22, sure2stpat21, gt1gmscam4,
mybcoreatcycb1, pyrimidineboxhvepb1,
23bpuasnscycb1, minus314motifzmsbe1,
sp8bfibsp8bib

M0432 0.0941 NA NA abre3hva22, sure2stpat21, gt1gmscam4,
pyrimidineboxhvepb1, 23bpuasnscycb1, wboxhviso1

aModule ID, bAdjusted p-values, cGene ontology process, dCis-regulatory element.

compared to other populations. This is due to the large number
of polymorphic SNPs that contributed to the natural genetic
variation in the population. Moreover, these highly significant
SNPs of the Japonica population demonstrated the highest
allelic effect, ranging from −3.3 to 11, compared to the other
populations (Combined and Indica), suggesting that the Japonica
population contained a larger repertoire of favorable variant
alleles contributing to panicle development and stress tolerance
under HNT stress conditions. Along with PL, the variation for
NSP in the Japonica population showed the largest allelic effect,
which was governed by highly significant SNPs that may, in turn,
increase the number of spikelets in the population compared to
other populations, as the development of NSP in rice directly
or indirectly depends on the PL/size (Li et al., 1998). Using the
extents of the LDs of these populations for each highly significant
SNP associated with PL and NSP, we scanned the reference
rice genome (Nipponbare) for the identification of putative
candidate genes. The Japonica population contained the highest
number of putative candidate genes (9,257 genes for PL and 1,326
genes for NSP) compared to other populations (Figures 7A,B).
Interestingly, the Venn diagram analysis revealed remarkable
findings, in which 12 putative potential candidate genes identified
through highly significant SNPs associated with PL were found to
be common in all the three rice populations (Combined, Indica,

and Japonica), 173 putative candidate genes were common in the
Indica and Japonica populations, and 83 putative candidate genes
identified by GWAS SNPs associated with NSP were common in
the Indica and Japonica populations. These common genes could
be potential candidate genes for further analysis and validation
in rice accessions with extreme phenotypes for high and low
scores for GY components under HNT stress using transcriptome
analysis and followed up by genome editing in elite rice cultivars.

The identification of highly significant SNPs co-localized with
the genomic regions of earlier reported/published QTLs for
GY components in rice under heat stress provided strength
and evidence for true marker trait associations in rice. All
the highly significant SNPs associated with PL and NSP under
HNT stress were found to overlap with genomic regions of
previously reported QTLs for GY components under HDT
stress. Out of these, 140 highly significant SNPs associated with
PL and NSP were coincident with the genomic regions of 32
previously reported QTLs related to potential GY components
across the rice genome (Supplementary Table 4). The significant
SNPs on chromosomes 1 and 4 showed the strongest evidence
of co-localization with independently derived data from the
earlier reported QTLs related to GY components, which suggests
that these chromosomal regions bear useful gene targets to
understand the phenomenon of heat stress in rice. There were

Frontiers in Plant Science | www.frontiersin.org 16 September 2021 | Volume 12 | Article 712167

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-712167 September 28, 2021 Time: 12:3 # 17

Kumar et al. Rice High Nighttime Temperature Response

several highly significant SNPs associated with PL and NSP that
directly overlapped the QTLs regions related to PNL, PL, and
number of spikelets under heat stress in rice. Chen et al. (2021)
reported a fine mapping study of qHTT8 on chromosome 8
related to heat tolerance leading to spikelet fertility in rice, and
they mapped the genomic region from 3,555,000 to 4,520,00 bp
(on chromosome 8 where, interestingly, three highly significant
SNPs from our GWAS were overlapped in a 76-bp interval region
of this QTL). In summary, the data from the comparison of
140 highly significant SNPs for the effect of HNT on rice GY
and quality components and previously reported QTLs have
revealed very useful information, which can be implemented
in rice breeding using SNP-based marker-assisted selection and
introgression of the co-localized genomic regions with these
QTLs of GY into elite rice cultivars for the development of
high-yielding rice cultivars under heat stress environments. In
addition, a follow-up search for the SNPs we found in other
germplasms might enable the selection of the trait phenotypes for
other novel elite alleles.

By using the global genetic variation (approximately 42%
genetic variation) and validation of GWAS results of the
Combined population in the panel, GO enrichment and network
analysis, with the 5,265 associated genes identified by all the
GWAS SNPs associated with PL and 3,136 genes identified by
all GWAS SNPs associated with NSP at p < 0.001, identified
two modules (M028 and M023) in the rice gene network.
The potential functions of these modules (programmed cell
death, response to abiotic stress, and signaling kinase receptor
pathways) and related CREs are all well-known stress response
mechanisms of plants. The recovery of these modules by our
GWAS testified for the accuracy of our study and led to new
functional insights on the potential functions of the candidate
genes that were selected. For instance, some of the putative
candidate genes are yet to be unannotated but lie within the
network modules annotated as cellular metabolic, response to
stress, and carbohydrate derivative metabolism. These processes
are relevant for spikelet/grain development and carbohydrate
metabolism. Within the CREs, abre3hva22 is a well-known
ABA-response element involved in abiotic stress responses and
sure2stpat21 is a sucrose-dependent element involved in plant
growth and development. Insights from GO enrichment and
network analysis, thus, show the potential to enhance our
understanding of the basis of mechanisms involved in heat
tolerance, subsequently contributing to increases GY in rice
under heat stress conditions.

CONCLUSION

This is the first integrated study to screen a panel of diverse rice
accessions at the panicle initiation stage for GY components such
as PL and NSP under HNT stress and dissect the panel in subsets
of Indica, Japonica, Admixture, and Combined subpopulations at
the phenotypic and genetic level. Phenotypic screens indicated
that the Japonica population showed the least reduction in PL
and NSP under HNT stress compared to the Combined and
Indica populations, while the Admixture population exhibited

the highest reduction. In addition, the highest percentage of
genetic variation and higher broad sense heritability in the
Japonica subpopulation suggested that the Japonica population,
as an exotic gene pool, could be used in rice breeding programs,
especially since the United States generally grows Japonica rice.
Trait correlation analysis determined that PL was positively
correlated with NSP in the Combined, Indica, and Japonica
populations under HNT stress, and, like other important GY
components, panicle size and NSP were crucial components
contributing to GY enhancement in rice. Using the global natural
genetic variation in the populations, we found highly significant
SNPs associated with PL in the Combined (83 SNPs), Indica
(60 SNPs), and Japonica (804 SNPs) populations. For NSP, there
were 31 highly significant SNPs in the Combined, 31 highly
significant SNPs in the Indica, and 11 highly significant SNPs in
the Japonica populations. Using these SNPs, we confirmed that
140 significant SNPs associated with PL and NSP were coincident
with previously reported genomic regions of the QTLs of major
GY components in rice under heat stress. The SNPs that were
coincident with previously reported QTLs and all significant
GWAS SNPs, in all the populations, could be important resources
for introgression or the pyramiding of favorable alleles to
improve rice cultivars for heat tolerance and GY. Enrichment and
network analyses provided additional insights into the biological
processes involved in pathways and CREs, which are involved in
responses to abiotic stress and plant growth and development.
Therefore, all the findings from this study are noteworthy, with
the phenotypic and genetic dissection of the panel providing deep
insights into the phenotypic and genetic variations in different
subpopulations, which are also accessible to rice breeders and
geneticists, to understand the mechanisms related to heat stress
tolerance contributing to the stability of GY in rice.
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