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Comparative genomics and meta-quantitative trait loci (MQTLs) analysis are important

tools for the identification of reliable and stable QTLs and functional genes controlling

quantitative traits. We conducted a meta-analysis to identify the most stable QTLs

for grain yield (GY), grain quality traits, and micronutrient contents in wheat. A total

of 735 QTLs retrieved from 27 independent mapping populations reported in the last

13 years were used for the meta-analysis. The results showed that 449 QTLs were

successfully projected onto the genetic consensus map which condensed to 100

MQTLs distributed on wheat chromosomes. This consolidation of MQTLs resulted in

a three-fold reduction in the confidence interval (CI) compared with the CI for the

initial QTLs. Projection of QTLs revealed that the majority of QTLs and MQTLs were

in the non-telomeric regions of chromosomes. The majority of micronutrient MQTLs

were located on the A and D genomes. The QTLs of thousand kernel weight (TKW)

were frequently associated with QTLs for GY and grain protein content (GPC) with

co-localization occurring at 55 and 63%, respectively. The co- localization of QTLs for

GY and grain Fe was found to be 52% and for QTLs of grain Fe and Zn, it was found to

be 66%. The genomic collinearity within Poaceae allowed us to identify 16 orthologous

MQTLs (OrMQTLs) in wheat, rice, and maize. Annotation of promising candidate genes

(CGs) located in the genomic intervals of the stable MQTLs indicated that several

CGs (e.g., TraesCS2A02G141400, TraesCS3B02G040900, TraesCS4D02G323700,

TraesCS3B02G077100, and TraesCS4D02G290900) had effects on micronutrients

contents, yield, and yield-related traits. The mapping refinements leading to the

identification of these CGs provide an opportunity to understand the genetic mechanisms

driving quantitative variation for these traits and apply this information for crop

improvement programs.
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INTRODUCTION

Most agricultural systems focus on increasing crop productivity
and grain yield (GY) and fewer efforts have been devoted to the
grain yield–quality tradeoff. However, a shift from prioritizing
yield to more emphasis on quality, such as nutrient content
is gaining ground in breeding programs (Khush et al., 2012).
Extending the existing concepts for a simultaneous selection of
GY, quality traits, and micronutrient contents seems necessary
to facilitate the development of varieties with an effective
combination of yield potential and end-use quality (Michel et al.,
2019). A rapid increase inmicronutrient deficiency in food grains
has resulted in micronutrient malnutrition among consumers.
Fe and Zn deficiencies are serious and prevalent sources of
malnutrition in developing countries with high consumption of
cereals, such as wheat (Black et al., 2013; Shahzad et al., 2014;
Kumar et al., 2019). Diets based on staple food crops with Zn
and Fe deficiency have been widely recognized as a major global
health problem that affects almost three billion people (Murray
and Lopez, 2013). Breeding crops through biofortification is
a practical approach to cope with Fe and Zn deficiencies by
increasing the grain Fe content (GFeC) and grain Zn content
(GZnC) within the edible parts of staple food crops, especially
cereals (Stein, 2010; Liu et al., 2019; Shariatipour and Heidari,
2020).

Wheat biofortification through breeding methods is a
promising strategy to ameliorate Fe and Zn deficiencies in
developing countries (Liu et al., 2019). One of themost important
challenges in breeding for micronutrients are negative genetic
trade-offs between yield and micronutrient traits (Flatt and
Heyland, 2011; Fabian and Flatt, 2012). At the genetic level, such
trade-offs are thought to be caused by alleles with antagonistic
pleiotropic effects or by linkage disequilibrium between loci
(Fabian and Flatt, 2012). While GFeC and GZnC biofortification
is an important objective in wheat breeding programs, other
important traits, such as GY and grain protein content (GPC)
typically cannot be compromised. The wheat quality is measured
by its rheological traits, such as GPC (Goel et al., 2019) since
wheat is a major source of protein accounting for 19% of human
protein intake in the developing countries (Braun et al., 2010).
The genetic control of quality traits and GY is complex (Zilic
et al., 2011; Velu et al., 2018; Giancaspro et al., 2019; Liu
et al., 2019). A high priority of breeders is to develop high-
quality genotypes that balance acceptable yield potential while
maintaining quality characteristics, both of which are highly
dependent on the co-variance between GY and the major quality
(i.e., GZnC, GFeC, and GPC) criteria (Michel et al., 2019).
However, a negative correlation between the GY and quality
traits is challenging (Simmonds, 1995; Velu et al., 2016; Michel
et al., 2019). In addition to this, our research indicates that
protein concentration in grain decreases under elevated air CO2

Abbreviations:AIC, akaike information criterion; AICc, corrected AIC; AWE, the

average weight of evidence; BIC, Bayesian information criterion; CI, confidence

interval; GCs, candidate genes; GO, gene ontology; GWAS, genome wide

association studies; LOD, the logarithm of odds; MQTL, meta- quantitative

trait loci; MTP, metal tolerance proteins; OrMQTL, orthologous MQTL; QTL,

quantitative trait loci; SNP, single-nucleotide polymorphism.

concentrations of 550 µmol/mol (Fernando et al., 2012). By the
end of the twenty-first century, it is predicted that the global
temperature will rise from 1.1 to −3.1◦C and the atmospheric
CO2 concentration will reach above 550 ppm under intermediate
scenarios (Pachauri et al., 2014) and that heat waves will occur
with a higher frequency and longer duration (Pachauri et al.,
2014). Given these future climate scenarios, it is critical to
anticipate the effects of future growing environments and focus
on breeding strategies that compensate for changes in grain
quality. Likewise, it is important to have an inclusive breeding
objective that tracks a portfolio of indirect traits responsible
for grain quality and productivity, such as the assessment of
dry matter accumulation, photosynthesis, coleoptile growth,
carbon isotope discrimination, plant senescence, and rheological
properties (Rebetzke et al., 2008; Liang et al., 2010; Vijayalakshmi
et al., 2010; Goel et al., 2019).

Because of the large genome size and limited genome sequence
information in wheat, the typical mapping intervals are quite
large in most studies especially for the complex quality traits (Li
Q. et al., 2020) and so further refinement is needed to narrow
down theQTL intervals. Developing a statistically derived catalog
of relevant loci is critical for developing marker-assisted selection
(MAS) approaches in breeding programs. These markers can
be applied to the quantitative trait loci (QTLs) that regulate
the accumulation of high mineral nutrient concentration in
grain along with QTLs for GY and grain quality traits. The
QTL mapping method involves creating a QTL continuity map
to identify genomic regions associated with quantitative traits
(Mohan et al., 1997). Although QTL mapping is a powerful
approach for detecting the genomic regions associated with
complex traits, the genetic effects of QTL identified in different
studies may not be present or are simply not tested in different
genetic backgrounds and environments (Zhang L. Y. et al., 2010).
In addition, the number of traits that can be measured in any
single study is always resource limited (Acuña-Galindo et al.,
2015). Overall, biparental populations are strongly influenced
by different factors consisting of parents, the size and type
of population, the choice of marker sets, and environmental
conditions (Li et al., 2013; Izquierdo et al., 2018; Lei et al., 2018;
Zhao et al., 2018).

In the last decade, an efficient approach called meta-QTL
(MQTL) analysis has emerged in order to circumvent these
restrictions. The MQTL method was initially developed by
Goffinet and Gerber (2000) and was then improved by Veyrieras
et al. (2007) is a method that gathers QTL data from independent
experiments, years, location, and genetic backgrounds to detect
stable QTLs (Goffinet and Gerber, 2000; Arcade et al., 2004;
Hanocq et al., 2007; Sosnowski et al., 2012). The meta-QTL
analysis integrates the information of QTLs from different
population types and sizes identified in different environmental
conditions to find stable MQTLs in a narrower genomic region
with small CI (Goffinet and Gerber, 2000; Hanocq et al., 2007; Li
et al., 2013).

The MQTL analysis allows for the dissection of genetic
correlation among different traits (Truntzler et al., 2010; Danan
et al., 2011; Xiang et al., 2012; Badji et al., 2018; Delfino et al.,
2019). Hence, the MQTL analysis helps to enquire co-location
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of QTLs relying on dense marker maps that are responsible for
different desirable traits including micronutrient contents, GY,
and quality traits (Delfino et al., 2019). Currently, the MQTL
analysis has become popular research in most studies (Goffinet
and Gerber, 2000) related to micronutrients content (Raza et al.,
2019), yield (Zhang L. Y. et al., 2010; Avni et al., 2018), and quality
traits (Quraishi et al., 2017) to overcome the inconsistent QTL
information reported for GZnC, GFeC, GPC, and yield traits.
Further, MQTL analysis helps to identify the candidate genes
(CGs) and refine genomic regions for yield and quality traits
(Raza et al., 2019). However, little is known about the relation of
micronutrients and quality-relatedMQTLs with agronomic traits
in wheat.

The transferability of QTLs between cereals based on the
analysis of syntenic regions and genomic collinearity helps to
identify stable and important QTLs for use in breeding programs.
The aims of this study were to perform a QTL meta-analysis
to (1) identify QTLs that are consistently associated with grain
quality, yield traits, and micronutrient content (2) explore the
co-localized QTLs controlling GY, GPC, GZnC, and GFeC in the
wheat genome, and (3) assess the transferability of QTLs between
wheat, rice, and maize based on the comparative genomics and
the orthologous MQTL (OrMQTS) mining. The outcome of this
study will aid plant breeders in refining micronutrients, GY,
and quality traits for crop improvement through marker-assisted
breeding. Refining our understanding of the genetic architecture
of micronutrients, GY, and quality traits often leads to the
interrelationship between the regions of the genome that may
be more challenging to breed independently. The MQTL is an
analytic procedure that helps refine these relationships between
CGs by providing for precision and statistical power.

MATERIALS AND METHODS

QTL Database Development
A database consisted of 735 quantitative trait loci (QTLs) derived
from 27 independent mapping populations (assessed between
2006 and 2019) assigned to 70 traits (Table 1) was used for
the meta-QTL (MQTL) analysis. The independent populations
consisted of 20 recombinant inbred lines (RILs) and 7 double
haploids (DH) populations, with population sizes ranging from
92 to 485 lines (Supplementary Table 1). The reported position,
the proportion of the phenotypic variance (R2), and the logarithm
of odds (LOD score) of the initial QTLs were used for the analysis
ofmeta-QTLs. ForQTLs withmissing LODorR2, the values were
estimated by the following equation (Nagelkerke, 1991):

R2
= 1− 10(−2LOD/n)

where n represents the size of the population.

Constructing Consensus Genetic Map and
QTL Projection
The data files of the 27 maps were integrated with the Somers
(Somers et al., 2004) reference map for the construction of
a consensus genetic map. Attempts to use other mapping
studies consisting of single-nucleotide polymorphism (SNP)

were unsuccessful due to the lack of SNP density in the
regions for the meta-QTL analysis. The constructed map file
for each population consisted of information on cross-type,
population size, map function, map units, and the position of
different markers in different linkage groups. The individual
QTLs derived from independent populations were projected onto
the consensus genetic map consisted of 3,394markers with a total
length of 3,412.5 cM.

Meta-QTL Analysis
Meta-QTL analysis was performed in BioMercator v4.2 (Arcade
et al., 2004; Sosnowski et al., 2012). For n QTLs, the BioMercator
tests the most likely assumption based on Akaike information
criterion (AIC), corrected AIC (AICc), AIC 3 candidate models
(AIC3), Bayesian information criterion (BIC), and an average
weight of evidence (AWE) criteria in which the prevalent value
among them was considered as the best fit. The consensus QTL
from the optimal model was reported as MQTL. Consequently,
the MQTL position and distribution on each linkage group were
presented as a heatmap using pheatmap R package (Kolde, 2013).
Moreover, the initial QTLs with 95% confidence interval (CI),
QTL density in the identified MQTL, and the distribution of
MQTLs were drawn on the linkage groups using shinyCircos web
tool based on the R program (Yu et al., 2017). The variation
of QTL density for different traits toward centromeric and
telomeric genomic regions was estimated following the approach
by Martinez et al. (2016). The QTL density was determined by
counting the number of QTLs for each trait on 50 cM intervals
across the wheat genome, starting from the centromere region
of a linkage group at position 0. The centromere position was
retrieved from the study by Wan et al. (2017).

Functional Candidate Genes in MQTLs
Intervals
The MQTLs containing more than five trait-QTLs from different
experiments were considered as the most stable consensus
regions and were analyzed for the detection of functional
candidate genes (CGs). To identify the functional CGs, the
sequences of the flanking markers for each MQTL were
retrieved from “Grain Genes” database (https://wheat.pw.usda.
gov/browse?class=probe;query=BARC%2A;begin=351) for the
simple sequence repeat (SSR) flanking markers and “Diversity
Array Technology” (https://www.diversityarrays.com/) (DArT)
flankingmarkers. For flankingmarkers lacking a definite position
on the wheat genome, the closest markers on the genetic
consensus map were selected to determine the MQTL position.
Additionally, for those flanking markers lacking sequence
information in databases, the forward and reverse sequences were
retrieved from the “Grain Genes” database and were used for
the Basic Local Alignment Search Tool (BLAST) analysis against
the newest wheat reference genome (IWGSC RefSeq v2.0) for
detecting the genomic position of each MQTL. The annotation
and gene ontology (GO) of genes lying at the MQTL interval
were retrieved from EnsemblPlants (http://plants.ensembl.org/
index.html) using the new wheat genome (IWGSC v2.0). Finally,
the orthologous of genes located at each MQTL interval were
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TABLE 1 | The list of assessed traits in meta-quantitative trait loci (MQTL) analysis.

Trait Abbreviation Trait Abbreviation

200KW 200-kernel weight GY Grain yield

25%G 25% green leaf area GZnC Grain Zn content

50%G 50% green leaf area HI Harvest index

75%G 75% green leaf area HW Hectoliter weight

AGB Above ground biomass KH Kernel hardness

BDT Break down time KL Kernel length

BM Biomass KW Kernel width

BY Biological yield LDMA Leaves dry matter accumulation

CDMA Culm dry matter accumulation LL Leaf length

CID Carbon isotope discrimination LS Lodging score

DA Days to anthesis LW Leaf width

DDT Dough development time LY Leaf yellowing

DGC Dry gluten content MDR Maturity date

DH Days to heading MRS Maximum rate of senescence

DPM Days to physiological maturity MTI Mixing tolerance index

DST Dough stability time NG Number of grain per spike

DTF Days to flowering PDMA Plants dry matter accumulation

FFD Factor form density PGMS Percent green at maximum senescence

FLH Flag leaf height PH Plant height

FWA Flour water absorption PLH Penultimate leaf height

GAS Grain area size PT Productive tillers/m2

GCuC Grain Cu content SD Seed diameter

GFD Grain filling duration SDS Sedimentation rate

GFeC Grain Fe content SHS Shattering score

GFR Grain filling rate SHZnC Shoot Zn content

GL Grain length SL Spike length

GL/GW Grain length/grain width ratio SN Spike number

GMnC Grain Mn content SNS Spikelet number per spike

GN Grain number SW Spike weight

GPC Grain protein content TKW Thousand kernel weight

GPL Grain perimeter length TMRS Time to maximum rate of senescence

GSeC Grain Se content TN Tiller number/m2

GW Grain width UIH Uppermost internode height

GWe Grain weight/ear WGC Wet gluten content

GWs Grain weight/spike ZnE Zn efficiency

investigated in rice to describe the functional CGs based on their
reported functions in wheat or rice.

Identification of Traits Within MQTLs
To analyze traits within the MQTL regions, the MQTL results
were converted into binary scores (0 or 1) on the basis of the
absence/presence of an individual trait-QTL within an MQTL
region. We tabulated the number of times a trait was present
within an MQTL, the number of QTLs for a trait present
within an MQTL (implying confirmation of the QTL), and the
number of times the traits were able to be co-localized within
an MQTL. A chi-squared test with one degree of freedom was
performed to determine traits showing significant co-localization
with grain protein content (GPC), grain zinc content (GZnC),
grain Fe content (GFeC), and grain yield (GY) beyond what

would be expected for a random distribution of QTL within
MQTL throughout the genome. The expected number of MQTL
associated with a trait and each GPC, GZnC, GFeC, and GY
were separately calculated bymultiplying the number of observed
MQTL for a trait by the proportion of MQTL containing
GPC, GZnC, GFeC, and GY QTL(s). Traits within the MQTL
regions were also analyzed using IBM SPSS Statistics v.24. The
simple regression analysis was performed using Minitab v. 18 to
determine the effect of MQTLs on the association of GY, GPC,
GFeC, and GZnC.

MQTLs and GWAS Comparison
The detected MQTLs were compared with the significant
loci associated with different quantitative traits identified in
wheat genome-wide association studies (GWAS). The mapped
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FIGURE 1 | Distribution of quantitative trait loci (QTLs) for traits on all chromosomes represented as the number of QTLs per distance (50 cM), starting from the

centromeric region of each chromosome where it was considered at the position 0 cM. Each dot represents the exact location of each QTL.

coordinates of the identified significant loci through GWAS were
compared to those found with the MQTL analysis.

Orthologous MQTL
Due to the high synteny among genes in Poacaea, the most stable
and promising wheat MQTLs were evaluated for the detection of
the orthologous MQTLs (OrMQTL) in rice (Lei et al., 2018; Raza
et al., 2019; Khahani et al., 2020), and maize (Semagn et al., 2013;
Wang et al., 2013, 2016). A set of orthologous genes at theMQTLs
regions was considered as a criterion of a syntenic region using
EnsemblPlants (http://plants.ensembl.org/index.htmldatabase).

RESULTS

Genomic Quantitative Trait Loci
Distributions
The individual traits of quantitative trait loci (QTLs) used in
this study are listed in Supplementary Table 2. The QTLs for
thousand kernel weight (TKW) (18.03%), grain yield (GY),
(13.11%), and a number of grains per spike (NS) (13.11%)
were the most frequently reported agronomic QTLs identified in
the tested mapping populations. The grain Fe content (GFeC)
(33.33 %) and grain Zn content (GZnC) (28.21 %) of QTLs for
micronutrient traits and grain protein content (GPC) (64.00 %)
and sudden death syndrome (SDS) (10.00 %) of QTLs for quality
traits were frequent.

Our results suggest a non-random distribution of QTLs within
the wheat genome. Distribution of QTLs on the basis of physical
size [χ2

(2) = 60.17, P = 8.58E−14] showed that 254, 326, and
155 QTLs were located on the A, B, and D genomes, respectively.
The QTL distribution was significantly different among the seven
chromosome groups [χ2

(6)
= 47.12, P = 1.77E−8], ranging from

as few as 76 QTLs on group 6 to as many as 165 QTLs on Group
2. Chromosome 3B with 75 QTLs had the highest number of
QTLs, followed by chromosome 2B (62 QTLs) and 2A (61 QTLs),
while chromosome 3A with 10 QTLs had the lowest QTL. The
distribution of QTL over the genetic linkage map with respect
to centromeric and telomeric regions was distinctly non-random
(Figure 1). The non-telomeric region of each chromosome (−50
up to + 50 cM intervals) had the highest number of QTLs
(Figure 1).We did not detect QTLs at 100 cM for the tested traits.

The distribution of meta QTLs (MQTLs) indicated that a
cluster of MQTLs was mapped to the non-telomeric regions.
Besides, MQTL_5B_4 and MQTL_6B_1 were located near the
centromeric region of chromosomes 5B and 6B, respectively
(Figure 2). There was a significant correlation between the
number of initial QTLs and MQTLs (r = 0.46, P < 0.03).
The number of MQTLs per chromosome varied from two
(chromosomes 3A and 5D) to eight (chromosomes 1B, 2A,
and 6B).

Meta-QTL Analysis
Of the 735 initial QTLs, 449 were successfully projected onto
the genetics consensus map and used in the meta-QTL analysis
(Figure 3). A total of 100 MQTLs were detected and the number
of individual QTL per MQTL ranged from 1 to 43 (Figures 4,
5; Supplementary Figure 1). The number of traits present per
MQTL region ranged from 1 to 18. Among the identified
MQTLs, MQTL_3B_1 that contained 43 QTLs had the highest
number of initial QTLs followed by MQTL_7A_3 with 29
initial QTLs (Supplementary Table 3). These twoMQTLs can be
considered as the most stable QTLs under different experimental
conditions. The detailed information of MQTLs consisted of the
chromosome number, position, confidence interval (CI), flanking
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FIGURE 2 | Distribution of meta-quantitative trait loci (MQTLs) for assessed traits on all chromosomes represented as a number of MQTLs per distance (50 cM),

starting from the centromeric region of each chromosome where it was considered at position 0 cM. Each dot represents the exact location of each MQTL.

markers, and traits which are shown in Table 2. The higher
marker density of the consensus map compared with the lower
marker density in the independent linkagemaps helped to reduce
the CI of QTLs up to three-fold with an average of 4.63 cM in
MQTLs compared with the mean CI of 13.73 cM for the original
QTLs. Among the detected MQTLs, the CI of 11 MQTLs was
reduced up to <1 cM (Table 2).

Functional Identification of Candidate
Genes
The genomic positions of the stable MQTLs and the number
of functional candidate genes (CGs) in their intervals are
reported in Table 3. The range for the number of the
CGs annotated in the tested meta-QTLs was between 20
and 802. The MQTL_4D_1, MQTL_4B_3, MQTL_3B_1,
and MQTL_5A_4 harbored the greatest number of CGs.
Among the detected CGs on MQTL regions, several well-
known genes including psbL (21.896318-21.896434Mb), psbT
(21.905522-21.905638Mb), rpl33 (21.899696-21.899896Mb),
and rps4 (24.160684-24.161289Mb) genes were located in
the MQTL_3D_4 region. In addition, the miR166 gene was
detected in the MQTL_4D_1 (450.196302-450.196403Mb)
and MQTL_7A_4 (561.152174-561.152339Mb) regions.
Furthermore, several CGs with unknown annotation
in wheat and were orthologous to genes in rice were
identified (Supplementary Tables 4, 5). Overall, some
CGs, such as TraesCS2A02G141400, TraesCS3B02G040900,
TraesCS4D02G323700, TraesCS3B02G077100, and
TraesCS4D02G290900 were uncovered with a possible role
in micronutrient contents, yield, and yield-related traits.

Traits Analysis Within MQTLs
Our data show the unequal contribution of individual QTL across
the detected MQTLs (Figure 6 and Supplementary Table 3).
Individual QTL for TKW were present in 41 of the 100 MQTL
regions, the most for any agronomic trait, followed by GY (38
MQTL). Among quality traits, QTLs for GPC was the most
distributed QTLs which were located among 19 MQTLs. The
GFeC and GZnC QTLs were presented in 19 and 12 MQTLs,
respectively (Supplementary Table 3).

Analysis for the co-localization of QTLs revealed that QTLs
for GY and TKW were frequently co-localized with QTLs
of the target traits (GPC, GFeC, and GZnC). The QTLs
for TKW showed 52% co-localizations with QTLs for GPC
(Supplementary Table 6). The GY QTLs showed 52% co-
localization with the QTLs for GFeC. Results also indicated
66% co-localization between grain Fe and grain Zn QTLs. Co-
localization frequency for GY (R2 = 80.81%) was strongly
associated with the total number of MQTL for a trait. The
association of co-localization frequency with the overall number
of MQTL for a trait was relatively strong for GPC (R2

=

65.58%), GFeC (R2
= 58.74%), and GZnC (R2

= 56.00%). For
most traits, association with target traits (GPC, GZnC, GFeC,
and GY) did not differ from the expected on the basis of chi-
squared analysis. However, the association of traits with GY,
GPC, GFeC, and GZnC as target traits was more than expected
(Supplementary Table 6).

Comparison of the Identified MQTLs and
QTL Mapping in the Wheat GWAS
The comparison of the MQTL locations with genome-wide
association studies (GWAS) QTL regions showed that 21
significant signals (SNPs-linked QTLs) of the available wheat
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FIGURE 3 | Distribution of projected quantitative trait loci (QTLs) across the wheat (Triticum aestivum L.) chromosomes. The numbers inside each parenthesis

represent the number of QTLs.

GWAS map were co-located with MQTLs of seven of the 35
traits tested in our study (Table 4). The results indicated the
co-localization of significant single-nucleotide polymorphisms
(SNPs) for GY (6 SNPs), a number of grains per spike (NG) (1
SNPs), plant height (PH) (4 SNPs), spike length (SL) (2 SNPs),
spike number (SN) (1 SNPs), spike number per spike (SNS)
(4 SNPs), and thousand kernel weight (TKW) (3 SNPs) traits
in the wheat GWAS with the identified MQTLs in our study.
For instance, the MQTL_4A_3, MQTL_4A_4, and MQTL_4B_3
identified for TKW in our study were positioned in the genomic
regions of themajor signal reported for TKW in the wheat GWSA
map. Overall, the co-located MQTLs and significant GWAS
signals were distributed on chromosomes 1B, 2B, 3B, 4A, 4B, 4D,
5A, 7A, and 7B (Table 4).

Orthologous MQTL Mining of Wheat in
Rice and Maize
The comparative analysis for QTLs in wheat, rice, and maize
resulted in the identification of orthologous MQTL (OrMQTL).

Nine OrMQTLs were detected for wheat and rice including
five OrMQTL for GY and two for PH, and GFeC/GZnC,
respectively. Moreover, seven OrMQTL were identified in
wheat and maize consisting of six and one OrMQTL for
GY and PH, respectively. Among the uncovered OrMQTLs,
the OrMQTL_10 was a cross-species QTL in wheat, rice,
and maize (Figure 7; Table 5). The MQTL_7B_2, MQTL_3B_4,
MQTL_4D_1, and MQTL_5A_4 for GY in wheat were in
the co-linear regions for rice GY MQTLs on chromosome
6 (MQTL6-2), 1 (MQTL-YLD3), 3 (MQTL-YLD9), and 11
(MQTL-YLD19), respectively (Table 5). The wheat MQTL_4B_1
and MQTL_7B_5 were in the co-linear region of MQTLs
for PH on chromosome 3 (MQTL-PH11) and 10 (MQTL-
PH26) in rice (Table 5). In addition, wheat MQTL_2A_1,
MQTL_4D_1 and MQTL_4D_1 were in the co-linear regions
of MQTLs of GFeC and GZnC on chromosome 7 (rMQTL7.1),
6 (rMQTL6.3) and 7 (rMQTL7.2) in rice (Table 5). The
MQTL_1B_1, MQTL_2A_1, MQTL_4A_3, MQTL_4B_2, and
MQTL_4B_3 on wheat chromosomes 1B, 2A, 4A, and 4B
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were in located in the co-linear regions of the MQTLs of GY
on chromosomes 1 (MQTL7), 5 (MQTL29), 1 (MQTL10), 8
(MQTL44), and 2 (MQTL23) in maize (Table 5). Furthermore,
an OrMQTL for MQTL_3D_3 on wheat chromosome 3D
was detected on chromosome 10 (MQTL107) harboring the
MQTL for PH in maize (Table 5). One of the wheat MQTLs
(MQTL_7B_3) on chromosome 7B was located in the syntenic
region of maize MQTLs chromosome 5 (MQTL5.5) and 6
(MQTL66), respectively, as well as rice MQTLs on chromosome
6 (MQTL-YLD14) for GY (Figure 7; Table 5). The genes located
at the OrMQTL regions and their annotations were reported
in Supplementary Table 7. Interestingly, the well-known and

proved orthologous genes including OsCYP72A18, OsFbox146,
NAC22, SD37, BRD2, OsMAPK4, and ZmMPK5 were identified
in rice and maize OrMQTLs.

DISCUSSION

Quantitative Trait Loci and
Meta-Quantitative Trait Loci Distribution
Over the Wheat Genome
Analysis of the genetic control of quantitative traits is a challenge
in plant breeding that is due to the complexity and the

FIGURE 4 | Position of detected meta-quantitative trait loci (MQTLs) on the wheat genome associated with micronutrient content, grain quality, and quantitative traits

with 95% confidence interval (CI). Each color in a different linkage group indicates the number of initial QTLs involved in each MQTL. The flanking markers for each

MQTL are presented on the left side of the linkage groups.
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FIGURE 4 | Continued

difficulty of stacking numerous alleles for their control (Izquierdo
et al., 2018). Meta-quantitative trait loci (MQTL) analysis made
possible the consolidation of individual QTL intoMQTL regions.
The MQTL analysis and the comparative genomic approaches
help to identify consensus QTLs and conserved genes across
genomes and species. In the current MQTL analysis, we used
information from over 60% of the individual QTLs to identify
MQTLs that showed the statistical power of MQTL analysis for
combining wheat QTLs that were in the range of 54–84% that
have been reported in the previous studies of MQTL in wheat

(Löffler et al., 2009; Acuña-Galindo et al., 2015; Soriano and
Alvaro, 2019). In this study, we narrowed down the confidence
interval (CI) of the detected MQTL regions compared to the
initial QTLs used in our MQTL analysis. The efficacy of MQTL
analysis in refining the CI for previously known QTLs as well as
for validating their effects across different genetic backgrounds
and environments is well-demonstrated (Goffinet and Gerber,
2000; Wu and Hu, 2012).

The results showed that QTLs and MQTLs had higher density
in the non-telomeric and near-centromeric regions. The QTL
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FIGURE 5 | Circus plot showing distribution of QTLs and MQTLs on 21 linkage group of wheat. The outermost circle indicates the length of each linkage map on the

consensus genetic map. The second circle indicates the initial QTLs with 95% confidence intervals. The third circle displays the density of QTLs in each MQTLs. The

fourth circle displays the position of detected MQTL related to assessed traits based on heatmap illustration. The last inner circle demonstrated common markers links

between different genome (A, B, and D) of each linkage groups.

result from the genetic segregation of sequence polymorphisms
at functional elements, such as regulatory sequences upstream
of genes and/or coding sequences (Flint and Mackay, 2009; Salvi
and Tuberosa, 2015). Therefore, it is expected that QTL density
on a genetic map is driven by gene density, polymorphism
rate at functional sites in genetic regions, and the frequency

of recombination. This finding was in line with the result of
Martinez et al. (2016), which illustrated higher QTLs densely
mapped to the near centromeres on the genetic maps.

In the quality traits category, QTLs for grain protein
content (GPC), grain Fe content (GFeC), and grain Zn content
(GZnC) traits were the most observed QTLs in the identified
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TABLE 2 | Description of detected meta-quantitative trait loci (MQTL).

MQTL name Chromosome Flanking markers Position (cM) CI (cM) Individual QTL present in MQTL*

MQTL_1A_1 1A BE470613.3–cwem0012 74.13 3.6 GWe

MQTL_1A_2 1A barc176–wPt-7726 83.88 2.9 SNS

MQTL_1A_3 1A barc0350–cfa2226 105.4 1 GY, SD, SL, SNS, TKW

MQTL_1A_4 1A Xcfe257.2–Xpsp3151 113.51 2.1 DA, GY, NG, SD, SL, SW, TKW

MQTL_1A_5 1A wPt-2855–wPt-663949 169.72 8.6 GMnC, SL

MQTL_1B_1 1B gwm608–barc0008 15.34 4.31 DA, DPM, GFD, HW, SD, SDS, TKW

MQTL_1B_2 1B barc8–wPt-0705 27.06 2.98 BDT, DA, DPM, GFD, GPC, HW, SDS, SL, TKW

MQTL_1B_3 1B wmc813–

LTR6150/ISSR3.380

35.00 2.75 BDT, GFD, GY, HW, NG, SDS, TKW

MQTL_1B_4 1B barc80–wmc728 48.11 3.2 BDT, DDT, DST, FWA

MQTL_1B_5 1B gwm140–aac/gac-10 53.01 3.19 DDT, DST, FWA, GY

MQTL_1B_6 1B agt/ctg-1–act/gcg-2 61.31 2.49 DDT, DST, FWA, LS, SW

MQTL_1B_7 1B act/cagt-1–ctcg/gtg-8 66.96 2.39 DDT, DST, FWA, MDR

MQTL_1B_8 1B aag/cag-4–acc/cag-5 82.21 0.42 DDT, DST, FWA, NG, SL

MQTL_1D_1 1D gwm147–Xcfe78.1 19.18 9.09 GFD, GPC, SDS, SNS

MQTL_1D_2 1D Xbarc62.1–Xcwm70.2 34.03 2.94 DPM, GPC, SDS, TKW

MQTL_1D_3 1D Xbarc240y–gwm0642 40.35 6.75 CDMA, DPM, GPC, PDMA, SDS

MQTL_1D_4 1D Xcwm63.1–ww127.1 50.36 4.12 NG, PDMA

MQTL_1D_5 1D Xcfd27.2–gwm337 59.23 2.18 CDMA, PDMA, TKW

MQTL_2A_1 2A Xgwm382.1–wmc382 22.80 1.4 50%G, 75%G, GFeC, GPC, GY, GZnC, MRS, SNS, TKW, TMRS

MQTL_2A_2 2A wmc149–gwm497.1 36.87 3.35 50%G, 75%G, GCuC, GFeC, GMnC, GPC, GWs, GY, MRS, NG,

SNS, TMRS

MQTL_2A_3 2A XPsr666–gdm101 54.37 3.09 25%G, 50%G, 75%G, DDT, DTF, GFD, GWs, GY, MRS, NG, TKW

MQTL_2A_4 2A barc5–wPt-3114 68.17 6.85 BY, GFD, GY, MRS, NG

MQTL_2A_5 2A Xswes940.2–aca/cta-11 93.68 3.15 GFR, GPC, LDMA, TKW

MQTL_2A_6 2A wmc612–gwm4c 118.53 4.94 GFR, SN, TKW

MQTL_2A_7 2A gwm311–wPt-799664 146.19 3 GMnC, NG

MQTL_2A_8 2A Xbarc122–gwm122 170.28 0.39 GFR, GWs, GY, NG, KW

MQTL_2B_1 2B cfd188–barc13 48.48 0.42 GFD, GY, KL, KW, NG, PH, SNS, TKW

MQTL_2B_2 2B gwm114 -Xmag3478 54.01 2.68 GY, KL, KW, NG, SN, SNS, TKW

MQTL_2B_3 2B Xwmc617.1–Xmag3798 79.57 4.22 GPC, HI, SNS, TKW

MQTL_2B_4 2B Xbarc160–Xwmc344.4 133.37 1.29 GY, NG

MQTL_2D_1 2D wms102–gwm515 60.77 3.82 PH, SL, SW

MQTL_2D_2 2D cfd233–aca/cta-2 74.48 1.97 NG, LY, PH

MQTL_2D_3 2D agc/gcg-3.5–wmc445 85.6 3.58 PH

MQTL_3A_1 3A Xbarc310–Xbarc321 1.00 3 LDMA

MQTL_3A_2 3A Xwmc264–Xbarc1165 111.77 7 DA, PGMS, SNS

MQTL_3B_1 3B wmc754–wPt-1191 81.11 1.99 BM, CID, DA, DTF, GN, GPC, GY, HI, LY, NG, PH, SL, SN, SNS,

SW, TKW, TN

MQTL_3B_2 3B wPt-664724–P39/M31-2 92.92 2.65 GY, HI, LY, NG, PH, SL, SN, SNS, TKW, TN

MQTL_3B_3 3B P39/M50-2–cfb3059 109.1 2.07 75%G, SNS, TKW

MQTL_3B_4 3B barc176–wmc632 114.03 2.38 75%G, GY, NG, SNS, TKW, TMRS

MQTL_3B_5 3B cgt/ctcg-146–wPt-666764 119.72 0.38 75%G, DH, GY, SL, SNS, TKW, TMRS

MQTL_3D_1 3D cfd223–wPt-743340 32.58 9.44 GZnC, SN, TKW

MQTL_3D_2 3D Xgwm892–wPt-8914 66.11 14.3 PH

MQTL_3D_3 3D wPt-733972–wPt-666681 121.94 3.88 BM, GCuC, GFeC, GPC, GY, HI, PH

MQTL_3D_4 3D wPt-664771–wPt-742685 140.91 13.53 BM, GFeC, GPC, GY, HI, PH

MQTL_3D_5 3D wPt-741976–wPt-740544 218.00 9.27 GSeC, GZnC

MQTL_4A_1 4A wPt-664971–BE399880 54.58 1.71 GL, GPC, GPL, GY, GZnC, NG, SNS

MQTL_4A_2 4A tgc/agc-166–cfd30 73.07 1.94 DH, GL, GPL, GY, GZnC, HW, NG, SDS, SN, SNS, TKW

(Continued)
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TABLE 2 | Continued

MQTL name Chromosome Flanking markers Position (cM) CI (cM) Individual QTL present in MQTL*

MQTL_4A_3 4A wPt-3374–wmc0258 88.37 0.3 FWA, GL, GPC, GPL, HW, MDR, NG, SDS, TKW

MQTL_4A_4 4A wmc776–wPt-9305 105.92 1.62 FWA, GCuC, GL, GPL, HW, LDMA, NG, SDS, SNS, TKW

MQTL_4A_5 4A Xgwm832–Xmag3733 135.87 0.71 FWA, GCuC

MQTL_4B_1 4B wPt-0037–wmc0047 9.07 4.66 DA, DPM, HW, MTI, PH, SD, SDS

MQTL_4B_2 4B wPt-3608–wmc125 11.84 3.76 DA, DPM, HW, MTI, PH, SD, SDS

MQTL_4B_3 4B gwm0149–Xcfd222 19.71 7.9 GN, GY, HW, KW, MTI, PH, SD, SDS, TKW

MQTL_4B_4 4B wmc710–Xbarc1096 28.20 0.01 GN, HW, KW, MTI, PDMA, PH, SD, SDS, TKW

MQTL_4D_1 4D Rht-D1–wmc285 17.98 1.87 GCuC, GFeC, GMnC, GY, SN, SNS

MQTL_4D_2 4D wPt-732586–Xsrap11a 41.00 2.06 GFeC, GMnC, GZnC, SN

MQTL_4D_3 4D cfd65–gwm609 100.02 5.4 GFeC, GMnC, GSeC, SD

MQTL_4D_4 4D barc108–Xbarc1183 172.97 6.6 GFeC, GZnC

MQTL_5A_1 5A wPt-6048–barc10 1.87 4.02 DA, DPM, PT

MQTL_5A_2 5A Xcwem32.2–wmc59 46.08 5.03 DPM, LDMA

MQTL_5A_3 5A Xbarc358.2–barc40 69.46 3.35 75%G, DA, DPM, GFD, MRS, PH, SHS, SW

MQTL_5A_4 5A wPt-9834–gwm126 78.56 3.22 75%G, DA, DPM, GFeC, GWe, GY, LS, LY, MRS, SHS

MQTL_5A_5 5A gwm595–Xbarc247 88.51 5.49 GFeC, GZnC

MQTL_5B_1 5B cfd5–BE404594-175 0.00 1.65 DPM

MQTL_5B_2 5B BE404594-175–wmc773 2.20 1.07 GY

MQTL_5B_3 5B wPt-6135–gwm540 16.10 4.55 DH, GY, SL, TKW

MQTL_5B_4 5B gdm116–gwm271 40.43 0.28 DH, GFD, GY, LDMA

MQTL_5D_1 5D Xgdm99.2–Xbarc286 40.43 4.17 25%G, KL, PGMS, SNS

MQTL_5D_2 5D cfa2104–ww152 47.41 0.34 25%G, DST, GPC, HW, GY, KH, KL, NG, PGMS, SN, WGC

MQTL_6A_1 6A wPt-1381–wPt-0938 16.14 5.04 GWe, PH, TKW

MQTL_6A_2 6A agg/cat-6–wPt-2636 26.8 2.68 NG, PDMA, SNS

MQTL_6A_3 6A Xgwm82–wmc807 58.75 5.2 BM, NG, SNS

MQTL_6A_4 6A Xgwm732–Xswes123.3 72.28 2.11 SNS

MQTL_6A_5 6A wmc206–cwem49f 108.86 3.32 SNS, TKW

MQTL_6B_1 6B gctg/ctt-1–agc/tgc-3 48.00 7 GY, MDR

MQTL_6B_2 6B Dupw216–aca/ctga-7 77.00 5.1 DH

MQTL_6B_3 6B act/gcg-11–agc/tgc-7 93.87 2.71 SHS, SW

MQTL_6B_4 6B wPt-7662–gwm613 120.97 4.47 DA, PH

MQTL_6B_5 6B wmc486–wmc487 130.30 5.1 PGMS, PH, TKW

MQTL_6B_6 6B wPt-2786–barc0045 138.66 4.87 GY, PGMS, TKW

MQTL_6B_7 6B cfa2110–agc/ctc-6 159.43 5.9 GY, PGMS, TKW, TMRS

MQTL_6B_8 6B barc0247–wPt-1325 184.32 15.62 NG, PGMS

MQTL_6D_1 6D cfd0049–Xswes123.6 8.23 19.83 PT, SN

MQTL_6D_2 6D Xswes123.7–Xcft3103 43.93 15.84 GY, SN

MQTL_6D_3 6D wmc749–barc175 65.91 6.6 GY, NG, SN

MQTL_6D_4 6D Xcfa2114–gpw95010 85.38 21.45 GY, SN

MQTL_7A_1 7A wmc497–wPt-6217 45.93 1.82 CID, DA, DGC, DPM, GFD, GFeC, GPC, GZnC, KH, NG, PH, PT,

SDS, SL, SNS, TKW

MQTL_7A_2 7A cfd13–gwm4 51.07 1.48 CID, DA, DGC, DPM, GFD, GFeC, GPC, GZnC, KH, LS, NG, PH,

PT, SDS, SHS, SNS, TKW, TMRS

MQTL_7A_3 7A Xwmc475.1–cfa2257 59.28 0.75 CID, DA, DGC, DPM, GFD, GFeC, GPC, GY, GZnC, KH, NG, PH,

PT, SDS, SHS, SL, SNS, TKW

MQTL_7A_4 7A wPt-1259–Xmag2931.3 74.58 3.1 DGC, GPC, KH, PH, SDS, TKW

MQTL_7B_1 7B U260–gwm569 61.32 4.04 50%G, DH, DPM, GFeC, GL/GW, GPL, NG, SL

MQTL_7B_2 7B wPt-4342–wPt-7813 72.66 0.89 50%G, DH, DPM, GFD, GFeC, GFR, GL/GW, GPL, GY, GZnC,

KH, NG, PH, SD, SL, TKW, TMRS

(Continued)
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TABLE 2 | Continued

MQTL name Chromosome Flanking markers Position (cM) CI (cM) Individual QTL present in MQTL*

MQTL_7B_3 7B wPt-6372–barc176 83.18 2.37 50%G, DH, DPM, GCuC, GFeC, GFR, GL/GW, GPL, GY, KH, NG,

PH, SL, TKW

MQTL_7B_4 7B Xcau12.3–barc126 98.82 8.22 50%G, DPM, GFeC, GL/GW, GPL, GY, KH, PH, TKW

MQTL_7B_5 7B Xbarc1073.2–wmc10 121.38 3.87 GFeC, GL/GW, GPL, KH, NG, SN, SNS, TKW

MQTL_7B_6 7B Xgwm3036–gwm146 132.26 2.72 GFeC, GL/GW, GPL, NG, SNS, TKW

MQTL_7D_1 7D wmc121–wmc489 89.41 4.94 50%G, SD, TMRS

MQTL_7D_2 7D wmc473–wmc94 98.52 5.16 GY, SD

MQTL_7D_3 7D gtg/cagt-4–wmc824 121.60 3.82 LY, PH

MQTL_7D_4 7D barc53–cfd0083 149.45 35.94 SHS

* The full name of assessed traits are displayed in Table 1.

MQTLs (Supplementary Table 2). In agronomic traits, QTLs for
thousand kernel weight (TKW), grain yield (GY), and number of
grains per spike (NG) were the most frequent QTLs identified
in the MQTLs regions. The outcome of a MQTL analysis in
tetraploid wheat revealed that more than 10 loci were associated
with TKW (Avni et al., 2018). Besides, in another MQTL analysis
in wheat, individual QTLs for TKW, GY, and kernel number
had the highest number of individual QTLs in MQTL regions.
This result shows the importance of these QTLs for tested traits.
The probable assumptions for a higher frequency of QTLs for
agronomic traits are easy to measure and frequent data for these
traits in different genetic mapping studies. On the other hand,
the TKW, GY, NG, GPC, GFeC, and GZnC traits are multi-genic,
highly heritable, and relatively insensitive to the environment
(especially, TKW) which suggests a high likelihood of different
populations carrying different suites of relevant alleles (Cooper
et al., 1995; Bezant et al., 1997; Avni et al., 2018; Velu et al., 2018;
Zhang et al., 2020).

MQTLs and Functional Candidate Genes
Gene annotation analysis for the MQTL regions helps clarify
our understanding of their genetic architecture and refining the
targets of breeding for these traits. The results of functional
genomics for the identified MQTLs showed that several
well-known genes consisted of psbL for electron transfer in
photosystem II (PSII) (Ozawa et al., 1997), psbT encoding a
PSII subunit for maintaining optimal PSII activity under adverse
growth conditions (Monod et al., 1994), rpl33f or structural
constituent of ribosome and translation which confers tolerance
to cold stress (Rogalski et al., 2008; Moin et al., 2017), and the
rps4 gene for the regulation of translational fidelity in wheat
were located in the MQTl_3D_4 region. In addition, the miR166
gene was detected in theMQTL_4D_1 andMQTL_7A_4 regions.
Comparative genomic approaches start with making some form
of alignment of genome sequences and looking for orthologous
sequences in the aligned genomes and checking to what extent
those sequences are conserved. Based on these, genome and
molecular evolution are inferred and this may, in turn, be put
in the context of phenotypic evolution or population genetics.
Analysis of the conservation and diversification of the miR166
family have shown that miR166 members play a wide and
important regulatory role in seed development. More recently,

a short-tandem target mimic (STTM) method was used to
verify if miR166 regulates important agronomic traits in rice
(Zhang et al., 2017). In a study, transgenic STTM165/166 plants
showed significantly reduced seed number and sterile siliques in
Arabidopsis, suggesting that miR166 plays a vital role in seed
development and it might be useful evidence to improve inferior
grain size in wheat (Wang et al., 2018).

Among the detected and annotated genes in the MQTLs
regions in this study, the OsMED9 (TraesCS3B02G077100),
which is an orthologous gene of rice, was identified in the
MQTL_3B_1 region that was associated with GY and its
components. A diverse array of MED genes has been identified
for the regulation of GY and yield components in crop plants
(Malik et al., 2016). The results indicated that the MQTL_4D_1
of our study was located in the regions of the rice orthologous
BG1 (TraesCS4D02G290900), OsIDD1 (TraesCS4D02G262500),
and OsPAO (TraesCS4D02G309000) genes in wheat. These genes
are associated with metal ion binding, flowering time, days to
heading, senescence, gravitropism, yield, and yield-related traits
(Wu et al., 2008; Liu et al., 2015; Chen et al., 2016; Deng
et al., 2017; Mishra et al., 2017). Overexpression of BG1 leads
to larger grain size in rice (Liu et al., 2015) and manipulation
of BG1 increases plant biomass, grain size, and GY in rice and
Arabidopsis (Liu et al., 2015; Mishra et al., 2017). OsIDD1 could
rescue the never-flowering phenotype of rid1 by a transition
from vegetative to reproductive growth in rice (Deng et al.,
2017), and the PAOs protein-encoding genes (Chen et al.,
2016) regulate cellular polyamine levels which are critical for
embryogenesis (Bertoldi et al., 2004; De-la-Pena et al., 2008),
germination (Bethke et al., 2004; Liszkay et al., 2004), root
growth (Cona et al., 2005), flowering and senescence (Kakkar
and Sawhney, 2002), and mineral deficiency (Moschou et al.,
2008, 2009). The orthologous Ghd7 (TraesCS5A02G541200) that
was among 427 genes located in the MQTL_5A_4 region in
our study involves photoperiodism, flowering, days to heading,
plant height (PH), and yield traits. Enhanced expression of
Ghd7 under long-day conditions delays heading and increases
PH and panicle size in rice. The Ghd7 gene plays crucial
role in increasing the productivity and adaptability of rice
globally (Xue et al., 2008). The uncovered rice orthologous D27
(TraesCS7B02G319100) and BRD2 (TraesCS7B02G484200) genes
in wheat in chromosome 7B region are known to control tillering,
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TABLE 3 | The genomic position of most stable meta-quantitative trait loci (MQTLs) on the wheat genome and number of genes in their genomic intervals.

MQTL Chr. No Genomic position

on the wheat

genome (Mb¶)

Number of

initial trait

QTLs

Number of

genes laying at

the MQTL

interval

MQTL Chr. No Genomic position

on the wheat

genome (Mb¶)

Number of

initial trait

QTLs

Number of

genes laying at

the MQTL

interval

MQTL_1A_4 1A 508.04–511.15 8 48 MQTL_4B_1 4B 601.95–640.98 7 348

MQTL_1B_1 1B 16.23–27.30 7 170 MQTL_4B_2 4B 644.87–652.88 7 113

MQTL_1B_2 1B 564.78–571.06 9 53 MQTL_4B_3 4B 509.04–576.50 9 479

MQTL_1B_3 1B 678.45–681.00 7 30 MQTL_4B_4 4B 597.03–608.25 9 105

MQTL_2A_1 2A 77.88–91.56 10 160 MQTL_4D_1 4D 425.23–490.12 6 802

MQTL_2A_2 2A 38.75–56.93 12 189 MQTL_5A_3 5A 439.58–444.92 8 46

MQTL_2A_3 2A 504.28–507.77 11 23 MQTL_5A_4 5A 671.39–702.96 10 427

MQTL_2B_1 2B 686.82–707.65 8 223 MQTL_5D_2 5D 28.96–34.08 11 38

MQTL_2B_2 2B 760.14–762.08 7 28 MQTL_7A_1 7A 1.47–4.99 16 86

MQTL_3B_1 3B 16.67–50.54 18 457 MQTL_7A_2 7A 49.58–53.07 18 30

MQTL_3B_2 3B 784.63–788.79 11 58 MQTL_7A_3 7A 25.06–41.48 18 233

MQTL_3B_4 3B 822.58–830.11 6 112 MQTL_7A_4 7A 560.02–563.50 6 35

MQTL_3B_5 3B 814.18–826.25 7 221 MQTL_7B_1 7B 32.55–36.92 9 55

MQTl_3D_3 3D 31.87–38.29 7 63 MQTL_7B_2 7B 669.71–693.34 17 241

MQTl_3D_4 3D 16.88–30.37 6 250 MQTL_7B_3 7B 557.05–582.70 14 170

MQTL_4A_1 4A 474.79–488.25 7 66 MQTL_7B_4 7B 38.87–41.30 9 20

MQTL_4A_2 4A 151.24–182.24 11 116 MQTL_7B_5 7B 741.47–744.92 8 107

MQTL_4A_3 4A 632.62–656.77 9 204 MQTL_7B_6 7B 729.40–740.72 6 93

MQTL_4A_4 4A 732.61–734.94 10 59 – – – – –

¶ Mb, represents mega base pair.
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FIGURE 6 | Distribution of QTLs controlling different traits in detected MQTL regions.

heading date, PH, and yield traits in rice (Hong et al., 2005; Lin
et al., 2009; Liu et al., 2016).

The identified rice orthologous D18 (TraesCS2B02G570800),
OsRPK1 (TraesCS5D02G034200), DRUS1, and DRUS2
(TraesCS4A02G133800) genes within the MQTL_2B_2,
MQTL_4A_2, and MQTL_5D_2 regions of our MQTLs
were associated with PH in wheat (Itoh et al., 2002; Zou et al.,
2014; Pu et al., 2017). Manipulating these genes lead to varieties
with dwarf and semi-dwarf phenotype and such phenotypes
possess short and strong stalks, exhibit less lodging, and a greater
proportion of assimilation partitioned into the grain, resulting in
further yield increases (Hedden, 2003).

The identified rice orthologous OsRLCK189
(TraesCS1A02G317300), OsGH3-4 (TraesCS1A02G320200), FT-
L (TraesCS2B02G511400), OsRLCK57 (TraesCS3B02G600300),
OsHK1 (TraesCS2B02G495500), AIM1 (TraesCS3D02G077200),
andWOX11 (TraesCS2A02G100700) genes in wheat was located
in MQTL_1A_4, MQTL_2A_2, MQTL_2B_1, MQTL_3B_5,
and MQTl_3D_3 regions show a role in root growth and
inflorescence and floral development (Richmond and Bleecker,
1999; Izawa et al., 2002; Vij et al., 2008; Ogiso-Tanaka et al.,
2013; Zhao et al., 2015, 2020; Cheng et al., 2016; Xu et al., 2017;
Lehner et al., 2018; Kong et al., 2019). Inflorescence development
in cereals directly affects grain number and size which are key
determinants of yield (Yamburenko et al., 2017).

The rice orthologous OsMTP12 (TraesCS2A02G141400),
OsMTP9 (TraesCS3B02G040900), and OsMTP1
(TraesCS4D02G323700) belonging to the metal tolerance
protein (MTP) gene family were identified in the MQTL_2A_1,
MQTL_3B_1, and MQTL_4D_1 interval of the wheat genome
in the present study. The MTP gene family plays a critical role
in metal transport, mainly in Zn, Mn, Fe, Cd, Co, and Ni,
metal homeostasis, and tolerance (Gustin et al., 2011; Zhang
and Liu, 2017; Ram et al., 2019). The increased expression of
MTP genes during seed development and their potential role
in metal homeostasis during the seed filling stage had been
documented (Ram et al., 2019). The MTP1 and MTP12 genes
share a characteristic histidine-rich loop toward the c-terminal,
which is known to have a role in Zn-binding (Ram et al., 2019).

The MQTL_1A_4, MQTL_3B_5, MQTL_4B_1,
MQTL_4B_2, MQTL_4B_3, MQTL_4B_4, MQTL_7A_1,
and MQTL_7A_4 interval regions harbored rice orthologous
VAL1 (TraesCS4B02G314600), PROG1 (TraesCS4B02G354000),
D14 (TraesCS4B02G258200), LPL2 (TraesCS4B02G308000),
OsINV3 (TraesCS7A02G009100), and OsRLCK218
(TraesCS7A02G385300) genes with a role in diverse development
and growth traits including leaf development, PH, shoot
branching, panicle and tiller number, grain number, grain and
spikelet size, and GY (Vij et al., 2008; Zhou et al., 2016; Morey
et al., 2018; Wu et al., 2018; Yao et al., 2018; Zhang et al., 2018;
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TABLE 4 | The collinear meta-quantitative trait loci (MQTLs) with the significant loci in wheat genome-wide association studies.

Trait* Wheat MQTL Chromosome (genomic position in Mb) SNP marker name (genomic position in Mb) Wheat GWAS references

GY MQTL_3B_1 3B (16.67–50.54Mb) AX_109881378 (20.5–22.0) Li et al., 2019

MQTL_4A_2 4A (151.24–182.24Mb) M8680 (157.56) Mathew et al., 2019

MQTL_5A_4 5A (671.39–702.96Mb) AX-110458478 (692.17) Hu et al., 2020

AX-108839508 (692.16)

AX-109388349 (692.18)

AX-108829895 (692.39)

NG MQTL_7B_2 7B (669.71–693.34Mb) S7B_687521301 (687.52) Jamil et al., 2019

PH MQTL_4D_1 4D (425.23–490.12Mb) AX-95235641 (442.17) Hu et al., 2020

MQTL_7B_2 7B (669.71–693.34Mb) AX-110149206 (676.25) Hu et al., 2020

AX-95658823 (675.28)

AX-95149761 (680.08)

SL MQTL_1B_2 1B (564.78–571.06Mb) AX-109901032 (566.19) Li Q. et al., 2020

MQTL_7A_3 7A (25.06–41.48Mb) AX-109394807 (29.32) Hu et al., 2020

SN MQTL_4A_2 4A (151.24–182.24Mb) AX-109066809 (179.94) Li Q. et al., 2020

SNS MQTL_2B_1 2B (686.82–707.65Mb) AX-111551006 (706.93) Li Q. et al., 2020

MQTL_4D_1 4D (425.23–490.12Mb) AX-169338181 (433.00)

AX-111020167 (471.23)

MQTL_7A_1 7A (1.47–4.99Mb) AX-111542213 (4.55)

TKW MQTL_4A_4 4A (732.61–734.94Mb) S4A_733664972 (733.66) Jamil et al., 2019

MQTL_4A_3 4A (632.62–656.77Mb) AX-111600193 (642.37) Li Q. et al., 2020

MQTL_4B_3 4B (509.04–576.50Mb) AX-94402252 (564.39) Hu et al., 2020

*Full names of traits are displayed in Table 1.

Deng et al., 2020). These candidate genes (CGs) at the detected
MQTL regions can potentially have the same function as their
orthologous varieties in rice and therefore regulate various
developmental and growth-related traits in wheat. Identification
of these confines stable chromosomal regions and CGs that
influence economically important traits in wheat can help to
expedite wheat improvement in future breeding programs.

The MQTLs detected in this study will help identify CGs in
these regions responsible for desirable traits and generate allele-
specific markers through allele mining (Leung et al., 2015; Ogawa
et al., 2018) for marker-assisted selection (MAS) application in
pre-breeding population. Allele mining is a promising approach
to dissect naturally occurring allelic variation at QTLs/CGs
controlling desirable traits (e.g., yield, quality, and micronutrient
content) which has potential applications in crop improvement
programs (Kumar et al., 2010; Gokidi et al., 2017; Kumari et al.,
2018). The data raised from this MQTL study help to refine
genomic targets for validation and subsequent development of
haplotypic markers in breeding programs. Information of the
identified MQTLs can also be used for genetic transformation
or allele screening in germplasm collections (ecoTilling) for
finding new alleles capable of improving yield, quality, and
micronutrient traits (Izquierdo et al., 2018; Belzile et al.,
2020). Additionally, a promising application of the variation
within these MQTL regions might be their introduction as
fixed effects in genomic selection (GS) models to increase
the accuracy of the prediction models in their use in wheat
breeding programs (Spindel et al., 2016; Izquierdo et al.,
2018).

MQTL and Traits Analysis
The QTLs projection on a consensus map allows for the
inspection of co-location across traits and categories, which is
especially relevant for complex traits (Delfino et al., 2019). The
association between trait classes by analyzing the co-localization
frequency of individual trait-QTLs demonstrated that TKW
with 55% and 63% co-localization frequencies was frequently
associated with GY and GPC. In addition, GY and GFeC had the
highest co-localization frequency with GFeC (52%) and GZnC
(66%), respectively. The results of MQTL analysis of our study
confirmed correlations identified for QTLs of TKW and GY (An-
Ming et al., 2011; Azadi et al., 2014; Mahdi-Nezhad et al., 2019),
TKW and GPC (Wang L. I. et al., 2012; Goel et al., 2019), and
GFeC and GZn (Roshanzamir et al., 2013; Pu et al., 2014; Tiwari
et al., 2016; Liu et al., 2019) in other studies. Co-localization of
QTLs for correlated traits has been identified by Wang et al.
(2018). Co-localization of QTLs could be due to the pleiotropy or
the presence of different linked genes in the same regions that can
partly explain the correlation that exists between traits (Bhatta
et al., 2018). The tightly linked genomic regions or pleiotropy can
partly explain the correlation that exists between traits (Crespo-
Herrera et al., 2016). The result of co-localization frequency of
target traits (GY, GPC, GFeC, and GZnC) with the detected
MQTLs in our study showed interacting MQTLs which affects
the association of traits at the genomic level. Acuña-Galindo et al.
(2015) demonstrated that TKW was most frequently associated
with GY in MQTL regions, with 57% co-localization. The co-
localization of TKW and GPC QTLs has been observed in the
genetic analysis of wheat (Goel et al., 2019). The positive and
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FIGURE 7 | The syntenic region of meta-quantitative trait loci (MQTLs) among the wheat, rice, and maize. Orthologous MQTL (OrMQTL)_10 indicates syntenic regions

among identified MQTLs for grain yield (GY) control in wheat (MQTL_7B_3), rice (MQTL-YLD14), and maize (MQTL5.5 and MQTL66). The genomic position,

chromosome number, and common genes among the wheat, rice, and maize are indicated.

highly significant associations of GPC and TKW traits have been
reported in different wheat populations in other studies (Peleg
et al., 2009; Badakhshan et al., 2013; Krishnappa et al., 2017).
According to Liu et al. (2019), mineral nutrient concentrations
and yield components have shown commonQTLswhich is in line
with co-localized QTLs for grain Zn, Fe QTLs in the tetraploid
and hexaploid wheat in other studies (Peleg et al., 2009; Xu
et al., 2012; Crespo-Herrera et al., 2016; Krishnappa et al., 2017;
Velu et al., 2017). In a recent QTL analysis study on rice, grain
Fe and grain yield QTLs were found to be co-localized (Dixit
et al., 2019). Crespo-Herrera et al. (2016) suggested the possibility
of simultaneous breeding for GFeC and GZnC traits due to
their co-localized QTLs. The current co-localization analysis
within MQTLs regions indicates the possibility of simultaneous
breeding of micronutrient content, grain quality, and GY by
pyramiding the QTL regions through marker-assisted selection
(MAS). Using -MAS, the specific regions can be transferred to

the elite wheat genotypes to simultaneously increase the contents
of various traits (Saini et al., 2020). Therefore, an attempt to
pyramid QTLs responsible for GY, TKW, GPC, GZnC, and
GFeC may accelerate progress in wheat variety development.
The QTL pyramiding strategy has been used for simultaneous
improvement of traits through MAS in wheat (Wang P. et al.,
2012; Feng et al., 2018; Gautam et al., 2020; Muthu et al., 2020).
A clear understanding of the co-location of QTLs and their effect
on target traits, such as grain Fe and Zn concentrations and yield
is very important for using the major effect of QTLs in marker-
assisted breeding (Swamy et al., 2018). The results of MQTL
analysis in our study showed that the location of 18 MQTLs was
in agreement with the position of the QTLs in the meta-QTL
studies by Zhang A. et al. (2010), Acuña-Galindo et al. (2015),
and Kumar et al. (2020). However, our work adds to this body of
genomic mapping research by identifying newMQTL specific for
GY, grain quality, and micronutrient content.
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TABLE 5 | The OrMQTLs detected in rice and maize according to the syntenic region with MQTLs in wheat.

Trait Orthologous

MQTL (OrMQTL)

Wheat MQTL Wheat chr. no.

(genomic position in Mb)

Rice/Maize

original MQTL

name

Rice chr. no.

(genomic position in Mb)

Maize chr. no. (genomic

position in Mb)

Rice/Maize MQTL

reference

GY OrMQTL_1 MQTL_7B_2 7B (674.1981–674.2014) MQTL6-2 6 (3.1029–3.1075) – Lei et al., 2018

OrMQTL_2 MQTL_3B_4 3B (828.4199–828.7654) MQTL-YLD3 1 (25.0457–25.0494) – Khahani et al., 2020

OrMQTL_3 MQTL_4D_1 4D (459.6856–459.6870) MQTL-YLD9 3 (14.6804–14.6827) – Khahani et al., 2020

OrMQTL_4 MQTL_5A_4 5A (700.1772–700.1789) MQTL-YLD19 11 (10.4749–10.4777) – Khahani et al., 2020

OrMQTL_5 MQTL_1B_1 1B (27.1500–27.1501) MQTL7 – 1 (224.7216–224.7217) Wang et al., 2013

OrMQTL_6 MQTL_2A_1 2A (82.1848–82.1880) MQTL29 – 5 (19.2226–19.2254) Wang et al., 2013

OrMQTL_7 MQTL_4A_3 4A (647.0874–647.0936) MQTL10 – 1 (275.0211–275.0279) Wang et al., 2013

OrMQTL_8 MQTL_4B_2 4B (649.4698–649.4752) MQTL44 – 8 (47.1438–47.1520) Wang et al., 2013

OrMQTL_9 MQTL_4B_3 4B (518.0952–518.0999) MQTL23 – 2 (122.6755–122.6792) Wang et al., 2016

OrMQTL_10 MQTL_7B_3 7B (569.4388–582.6560) MQTL-YLD14 6 (28.8459–29.5240) – Khahani et al., 2020

7B (568.6510–582.6560) MQTL5.5 – 5 (55.3131–58.7190) Semagn et al., 2013

7B (568.1069–579.8265) MQTL66 – 6 (89.3129–90.9312) Wang et al., 2016

PH OrMQTL_11 MQTL_4B_1 4B (619.5886–635.8693) MQTL-PH11 3 (1.8624–2.2252) – Khahani et al., 2020

OrMQTL_12 MQTL_7B_5 7B (741.5702–741.5720) MQTL-PH26 10 (13.3596–13.3632) – Khahani et al., 2020

OrMQTL_13 MQTL_3D_3 3D (33.2949–33.2960) MQTL107 – 10 (69.4836–69.4849) Wang et al., 2016

GFeC, GZnC OrMQTL_14 MQTL_2A_1 2A (88.2949–88.2975) rMQTL7.1 7 (7.3945–7.3976) – Raza et al., 2019

OrMQTL_15 MQTL_4D_1 4D (484.6841–484.6880) rMQTL6.3 6 (21.3970–21.3993) – Raza et al., 2019

MQTL_4D_1 4D (461.4899–461.4930) rMQTL7.2 7 (19.9760–20.0812) – Raza et al., 2019

OrMQTL, orthologous MQTL; GY, grain yield; PH, plant height; GFeC, grain Fe content; GZnC, grain Zn content.
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Comparative Genomic Analysis and
Orthologous MQTL
The genome-wide association studies (GWAS) approach can
help in gene discovery and in the analysis of the genetic basis
of complex traits for the improvement of wheat. Comparative
analysis of the wheat GWAS with the identified current MQTLs
suggested the co-localization of 12 MQTLs (MQTL_1B_2,
MQTL_2B_1, MQTL_3B_1, MQTL_4A_2, MQTL_4A_3,
MQTL_4A_4, MQTL_4B_3, MQTL_4D_1, MQTL_5A_4,
MQTL_7A_1, MQTL_7A_3, and MQTL_7B_2) and significant
genomic regions of wheat traits that have been identified in the
wheat GWAS studies (Jamil et al., 2019; Li et al., 2019; Mathew
et al., 2019; Hu et al., 2020; Li X. et al., 2020). Some of the QTL
hotspots suggested common genetic markers for wheat traits
for further use in marker-assisted breeding that increase genetic
gain in breeding programs. The identified OrMQTLs in this
study can facilitate the detection of the underlying regulatory
genes with evolutionary history and conservative function. The
current MQTL analysis defines a genome-wide landscape on the
most stable genetic markers and CGs related to micronutrient
content, yield, and yield-related traits as the most economically
important traits in wheat. The straight-up comparative genomics
in our study indicated high synteny between wheat, rice, and
maize QTLs especially for GY suggesting possible corroborating
evidence of acting the same way in different species that was
in line with the results of other MQTL studies (Ahn et al.,
1993; Moore et al., 1995; Gale and Devos, 1998; Feuillet and
Keller, 1999; Minx et al., 2005). Despite the high interest in the
identification of genes involved in GY and yield-related traits
in maize and wheat as two economically important crops, the
responsible genes have largely remained unknown due to their
complex genomes. Given a close evolutionary relation among
grass genomes (Gaut, 2002), a synteny analysis of wheat, maize,
and rice through the identification of OrMQTLs enabled us
to broaden our genetic information and leads to uncover the
possible function of unknown CGs among these species. Here
we selected the most promising wheat MQTLs to explore their
conserved syntenic regions reported in similarMQTLs studies on
the same traits in rice and maize to identify OrMQTLs (Table 5).
For the wheat MQTL_3B_4 of our study, there is an MQTL in
the syntenic region in rice (Khahani et al., 2020) controlling
OrMQTL_2 containing a rice OsCYP72A18 orthologous gene
(TraesCS3B02G609400 and TraesCS3B02G609600) for grGY
(Swamy and Sarla, 2011). Moreover, the wheat MQTL_4D_1
and MQTL_7B_2 of our study were located in the syntenic
regions of the rice genome on chromosomes 3 (OrMQTL_3)
and 6 (OrMQTL_1), respectively. These two OrMQTLs
encompass OsFbox146 (TraesCS4D02G288900) and OsFbox297
(TraesCS7B02G405900) orthologous genes for genetic control of
GY in rice (Swamy and Sarla, 2011; Lei et al., 2018). Furthermore,
the syntenic region of wheat MQTL_4B_1 possessed the two
orthologous rice genes, NAC22 (TraesCS4B02G328600)
and CYP96B4/SD37 (TraesCS4B02G342400) located on
chromosome 3 (OrMQTL_11) which control plant growth
(Tamiru et al., 2015; Hong et al., 2016). In the syntenic regions
of the MQTL_2A_1 and MQTL_4D_1 of our study, there
was orthologous OsZIP1/OsZIP8 (TraesCS2A02G143400) and

OsFerroportin (TraesCS4D02G323100) genes on chromosomes
7 (OrMQTL_14) and 6 (OrMQTL_15) of rice which are related
to Zn and Fe transport/homeostasis (Morrissey and Guerinot,
2009; Bashir et al., 2011; Alagarasan et al., 2017) (Table 5).

More intriguingly, the syntenic regions of the wheat
MQTL_7B_3 on both chromosome 6 of rice (OrMQTL_10)
and chromosome 5 of maize, harbored the rice (OsMAPK4,
Os06g0699400) and maize (ZmMPK5, Zm00001d014658)
and orthologous gene in wheat (TraesCS7B02G322900). The
mitogen-activated protein kinase (MAPK) cascades play
important roles in regulating plant growth (PH), development,
and stress responses (Zhu et al., 2020). The maize ZmMPK5
is induced by various stimuli, involved in defense signaling
pathways in various abiotic/biotic stress, confers tolerance
to stresses (Zhang A. et al., 2010; Zhang et al., 2014), and
subsequently leads to enhancement of plant growth and
yield. Due to the key role of OsMAPK4 in plant growth,
grain development (Liu et al., 2018; Chen et al., 2021), and
subsequently in GY, the results of the current syntenic analysis
suggest the same function for TraesCS7B02G322900 and
Zm00001d014658 genes located in OrMQTL_10 interval
(Figure 7; Table 5; Supplementary Table 7).

CONCLUSION

The results of this study introduced several novel meta-
quantitative trait loci (MQTLs) for improving wheat in multi-
purpose breeding programs by identifying key genomic regions
associated with agronomic performance, grain quality traits, and
micronutrients content. The results of our MQTL analysis have
significantly increased the power and precision of our ability
to map wheat traits and will provide greater resolution for
future fine mapping and marker development. Importantly, our
data identify co-localization between grain yield (GY) QTLs
with grain Zn content (GZnC), grain Fe content (GFeC), and
grain protein content (GPC) QTLs that suggest an opportunity
for simultaneous breeding for these traits. This study also
provides an example for the value of comparative analysis
between evolutionarily close cereal species for the identification
of genomic regions and candidate genes (CGS) controlling
quantitative traits. Our finding shows the utility of MQTL
analysis for refining the location of genomic regions associated
with a variety of traits and helps understand how their relative
map positions can be exploited for crop improvement. Overall,
these findings can lead to both increased selection efficiency
and accuracy for breeding by providing the basis for marker
development in a marker-assisted selection (MAS) program
and for identifying a novel source of variation through allele
mining efforts in genetic resource collections. Lastly, these
refined MQTLs provide the basis for further focus on the genetic
mechanisms controlling micronutrients, GY, and quality traits.
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