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Genomic prediction is a promising approach for accelerating the genetic gain of

complex traits in wheat breeding. However, increasing the prediction accuracy (PA) of

genomic prediction (GP) models remains a challenge in the successful implementation

of this approach. Multivariate models have shown promise when evaluated using

diverse panels of unrelated accessions; however, limited information is available on

their performance in advanced breeding trials. Here, we used multivariate GP models

to predict multiple agronomic traits using 314 advanced and elite breeding lines of

winter wheat evaluated in 10 site-year environments. We evaluated a multi-trait (MT)

model with two cross-validation schemes representing different breeding scenarios (CV1,

prediction of completely unphenotyped lines; and CV2, prediction of partially phenotyped

lines for correlated traits). Moreover, extensive data from multi-environment trials (METs)

were used to cross-validate a Bayesian multi-trait multi-environment (MTME) model that

integrates the analysis of multiple-traits, such as G × E interaction. The MT-CV2 model

outperformed all the other models for predicting grain yield with significant improvement

in PA over the single-trait (ST-CV1) model. The MTME model performed better for all

traits, with average improvement over the ST-CV1 reaching up to 19, 71, 17, 48, and

51% for grain yield, grain protein content, test weight, plant height, and days to heading,

respectively. Overall, the empirical analyses elucidate the potential of both the MT-CV2

and MTME models when advanced breeding lines are used as a training population to

predict related preliminary breeding lines. Further, we evaluated the practical application

of the MTME model in the breeding program to reduce phenotyping cost using a

sparse testing design. This showed that complementing METs with GP can substantially

enhance resource efficiency. Our results demonstrate that multivariate GS models have

a great potential in implementing GS in breeding programs.
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INTRODUCTION

Global wheat production needs to be increased by 60% to meet
the demand of a projected population of 9 billion by 2050

(Tester and Langridge, 2010; Fischer et al., 2014). In the past
few decades, wheat breeding successfully achieved a significant

increase in grain yield owing to significantly improved genetic
resources, implementation of modern agronomic practices,
accurate experimental designs, and other improved technology
packages (Tadesse et al., 2019), which translates into an annual
increase of 1% in terms of genetic gain in grain yield. However,
this increase is still far from the expected yearly growth of 1.7%
to meet the future wheat demand (Oury et al., 2012; Tadesse
et al., 2019). Thus, new and innovative breeding technologies
are essential to achieve a 2-fold increase in annual yield to avoid
potential food crises in the coming decades.

Traditional wheat breeding involves creating novel genetic
variation with different methods, followed by extensive selection
and advancement of generations. The selection of progeny with
desirable agronomic and end-use quality traits is a resource-
intensive process and could take up to 10–15 years to develop
a new cultivar (Haile et al., 2020). Further, in traits with
complex genetic architecture such as grain yield, genotype-by-
environment interactions play a paramount role and impose
additional challenges in selection. In recent years, the deployment
of molecular markers for marker-assisted selection (MAS) has
been used to increase the selection accuracy and accelerate
genetic gain (Randhawa et al., 2013). Although MAS has shown
a good potential in wheat breeding for the deployment of
qualitative trait loci (QTLs) with large effects, its application has
been limited to improve complex traits governed by many QTLs
with small effects (Heffner et al., 2009).

Genomic selection (GS) is a recent approach that utilizes
genome-wide marker data to select individuals superior for
complex traits in the early breeding cycle to increase the genetic
gain per unit of time (Meuwissen et al., 2001; Heffner et al., 2009).
Unlike MAS, GS does not require prior identification of QTLs
for traits of interest; instead, it employs all available markers
across the genome to predict breeding values of individuals
(Bassi et al., 2015). Briefly, GS requires a training population
(TP), which is genotyped with genome-wide markers and for
a given trait(s) of interest. GS involves the calibration of a
prediction model using the TP to estimate marker effects and
evaluate the predictive ability of the model through cross-
validation. Finally, the developed model is used to calculate
genome-estimated breeding values (GEBVs) and rank the lines
from a breeding or testing population (BP) that consists of
lines with only genotypic information. Thus, the early selection
or culling of individuals based on GEBVs permits greater
genetic gain per breeding cycle, facilitating an increase in
the efficacy of breeding programs and resulting in reduced
varietal development costs. Several studies have reported the
successful implementation of GS in different crops resulting in
an accelerated rate of genetic gain compared with traditional
breeding (Bassi et al., 2015; Battenfield et al., 2016; Bhat et al.,
2016). Moreover, GS has shown to be particularly useful in traits
where phenotyping is cumbersome, such as quality traits and

complex resistance to diseases (Battenfield et al., 2016; Dong
et al., 2018).

The widespread availability of genome-wide markers
attributed to low-cost genotyping technologies has facilitated the
adaptability of GS in wheat breeding programs (Poland et al.,
2012b; Bhat et al., 2016). Thus, in recent years, there has been
a growing interest to complement phenotyping selection and
genomic selection in wheat breeding. GS has been evaluated for
many complex traits in wheat, including but not limited to grain
yield and yield-related traits (Rutkoski et al., 2016; Ward et al.,
2019; Guo et al., 2020; Haile et al., 2020; Juliana et al., 2020),
wheat resistance to rusts (Rutkoski et al., 2014; Juliana et al.,
2017), Fusarium head blight (Rutkoski et al., 2012; Arruda et al.,
2015; Dong et al., 2018), and end-use quality traits (Battenfield
et al., 2016; Lado et al., 2018; Ibba et al., 2020). Despite the
successful evaluations of GS in wheat breeding programs, there is
a continuous scope to improve the prediction accuracy/ability of
GS models for quantitative traits to achieve higher genetic gains
that will lead to the routine implementation of GS in various
wheat breeding schemes.

The predictive ability of the genomic selection model refers
to the correlation between estimated genome-estimated breeding
values and the actual phenotypic values of individuals in a
validation set and is generally calculated through a cross-
validation approach. Along with TP size, extent of linkage
disequilibrium (LD), and heritability of traits, predictive ability
also depends on the choice and optimization of statistical models
(de los Campos et al., 2013; Rutkoski et al., 2016; Guo et al.,
2020). In most studies, penalized genomic prediction models,
such as ridge-regression best linear unbiased prediction (rrBLUP)
and genomic best linear unbiased prediction (GBLUP), have
been standard GS approaches (VanRaden et al., 2009; Endelman,
2011). In addition, several Bayesian methods with different
prior distributions and relying on Markov-Chain Monte Carlo
(MCMC) for estimation of parameters have proven useful for
genomic prediction (Habier et al., 2011; Wang et al., 2018).
However, most of these models implement a univariate linear
mixed model and are helpful in predicting only one variable at
a time.

In recent years, multi-trait genomic prediction models have
been suggested to improve the PA for a primary trait when
secondary traits correlated to the primary trait are available
(Jia and Jannink, 2012). The use of genetically correlated traits
is of particular importance when the primary trait is difficult
or expensive to phenotype and has low heritability. Several
empirical studies have successfully evaluated multi-trait (MT)
approaches for different agronomic traits in wheat breeding
(Rutkoski et al., 2012; Hayes et al., 2017; Lado et al., 2018).
An improvement of 70% in PA for grain yield was observed by
including canopy temperature (CT) and normalized difference
vegetation index as secondary traits using the MT approach
(Rutkoski et al., 2016; Sun et al., 2017). Similarly, Hayes et al.
(2017) and Lado et al. (2018) observed an increase in PA using
multivariate approaches (MT) over single trait (ST) models in
end-use quality traits.

For complex traits, genotype-by-environment (G × E)
interactions necessitate the evaluation of breeding lines for
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multiple traits over multiple environments. Thus, the extension
of MT approaches to account for a G × E interaction
could improve the model for genomic prediction accuracy in
breeding programs. Montesinos-López et al. (2016) proposed a
Bayesian multi-trait and multi-environment (BMTME) model
that integrates the analysis of multi-traits recorded over multi-
environments in a unified approach. Recently, an improved
BMTME model has been introduced that estimates the variance-
covariance structure among traits, genotypes, and environments
to predict multiple traits evaluated in various environments
(Montesinos-López et al., 2019). Some studies using simulated
and empirical data found that the BMTME model outperforms
ST models in agronomic and end-use quality traits in wheat
(Montesinos-López et al., 2016; Guo et al., 2020; Ibba et al., 2020).
The better performance of multivariate GS approaches stimulates
us to evaluate these models in an actual breeding pipeline, where
several traits are evaluated over diverse environments.

Although different GS approaches have been tested for
predicting complex traits in wheat breeding programs, only few
studies have reported the application of GS in actual yield trials
where lines are evaluated over several environments (Belamkar
et al., 2018). GS has a great potential in the early selection or
culling in preliminary trials using information from advanced
trials and accelerates genetic improvement. Furthermore, GS
can complement phenotypic selection in practical scenarios
such as loss of complete/partial trials due to weather extremes.
In this study, we focused on the use of advanced breeding
lines evaluated over multiple environments as training sets to
predict untested genotypes using univariate and multivariate
GS approaches. The specific objectives of this study were to
(1) estimate the PA of various agronomic traits in advanced
breeding lines using univariate and multivariate GP models
and different cross-validation schemes, (2) assess the reliability
of multivariate GP models in predicting complex traits over
different years and locations, and (3) investigate the application
of multi-trait multi-environment GP models in sparse testing of
breeding lines.

MATERIALS AND METHODS

Plant Materials
The experiment was conducted for two growing seasons (2018–
19 and 2019–20) using a total of 314 winter wheat genotypes.
The genotypes included breeding lines from 2018 to 2019 and
2019 to 2020 wheat advanced yield trials (AYTs) and elite yield
trials (EYTs) from the South Dakota State University (SDSU)
winter wheat breeding program andwell-adapted check cultivars.
Most of the genotypes were either F4 : 7 or F4 : 8 filial generation.
Of the 314 genotypes, 157 were evaluated in the growing
season of 2019 and another 157 in that of 2020. Forty-four
genotypes were shared between the two sets of wheat materials,
leaving 270 unique genotypes in the study. We removed seven
genotypes from genomic prediction analyses because of low-
quality genotypic data. Thus, 151 and 156 genotypes were
used for further analyses in the 2018–19 and 2019–20 growing
seasons, respectively.

Experimental Design and Trait
Measurement
The experimental plots were planted under a no-till system at
five locations in South Dakota (Supplementary Table 1) in both
seasons. The experimental unit at each of the five locations
consisted of 1.5-m wide and 4-m long plots with seven rows
spaced 20 cm apart. The seeding rate for plots was 300 seeds
m−2 at all the locations. Recommended agronomic practices were
followed for proper growth and yield.

Five agronomic traits were measured in this study, namely,
grain yield (YLD) (bushels acre−1), grain protein content (PROT)
(%), test weight (TW) (kg hL−1), plant height (HT) (cm), and
days to heading (HDs) (Julian days). YLD was determined after
harvesting the plots upon maturity using a plot combine (Zurn,
Westernhausen Germany). PROT, TW, and moisture content
were measured using InfratecTM 1241 Grain Analyzer (FOSS
North America, Eden Prairie, MN, United States). YLD from plot
and PROT were adjusted to 13% moisture content equivalence.
HT was recorded as the distance from the soil surface to the tip of
the fully emerged spike, excluding any awns if present. HDs were
recorded as the Julian days required for 50% of heads to emerge
from the boot in each plot.

Phenotypic Data Analysis
The phenotypic data for all the five agronomic traits were
analyzed using best linear unbiased estimates (BLUEs) for
individual environments. The model used for estimation of the
genotypic BLUEs for individual environments was as follows:

yij = µ + Ri + Gj + eij (1)

where yij is the trait of interest, µ is the overall mean, Ri is the

effect of the ith replicate, Gj is the effect of the j
th genotype, and eij

is the residual error effect associated with the ith replication and
jth genotype. The replicates correspond to the complete blocks.

For the across environment estimation of best linear unbiased
estimates (BLUEs) and best linear unbiased predictions (BLUPs),
the statistical model was modified, as shown below:

yijk = µ + Ei + Rj(i) + Gk + GEik + eijk (2)

where yijk is the trait of interest, µ is the overall mean,

Ei is the effect of the ith environment, R j(i) is the effect of

the jth replicate nested within the ith environment, Gk is the
effect of the kth genotype, GEik is the effect of the genotype
× environment (G × E) interaction, and eijk is the residual

error effect associated with the ith replication and jth genotype.
The environment corresponds to the individual locations and
replicates correspond to the complete blocks. The genotype was
assumed as a fixed effect, whereas the environment and block
nested within the environment were assumed as random effects.

The broad-sense heritability (H2) of a trait of interest in an
independent environment was assessed as follows:

H2
=

σ 2
g

σ 2
g + σ 2

e / nRep
(3)
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where σ 2
g and σ 2

e are the genotype and error variance
components, respectively. The BLUEs and variance components
were estimated using META-R (Alvarado et al., 2020), which
employs the LME4 R-package (Bates et al., 2015) for linear
mixed model analysis. The Pearson correlations among traits
and environments were estimated based on the BLUEs and
BLUPs using the “psych” package in the R environment (R Core
Team, 2018). The genetic correlations between the five traits were
estimated for individual years using the “BMTME” R package
(Montesinos-López et al., 2019).

SNP Genotyping
Fresh leaf tissues were collected from each line for DNA isolation
using the hexadecyltrimethylammonium bromide (CTAB)
method (Doyle and Doyle, 1987). Genotyping-by-sequencing
(GBS) was performed following double digestion with HF-
PstI and MspI restriction enzymes for library preparation
(Poland et al., 2012a). GBS libraries were sequenced using an
IonProton sequencer (Thermo Fisher Scientific, Waltham, MA,
United States) at the USDA Central Small Grain Genotyping
Lab, Manhattan, KS, United States. TASSEL v5.0 was used to
call single-nucleotide polymorphisms (SNPs) using the GBS v2.0
discovery pipeline (Bradbury et al., 2007). The reads were aligned
to the Chinese Spring wheat genome reference RefSeq v1.1
(IWGSC, 2018) using the default settings of Burrows–Wheeler
Aligner v0.6.1. For quality control, SNPs with more than 20%
missing data points and minor allele frequency (MAF) of
<0.05 were removed. Finally, we obtained 10,290 high-quality
SNPs after removing the SNPs that were unmapped on any
wheat chromosome. The missing data points in the selected
SNP set were imputed using BEAGLE v4.1 (Browning and
Browning, 2007). The additive relationship matrix for GP
models was estimated using the A.mat function in the “rrBLUP”
package in R (Endelman, 2011). The Kinship (K)-based marker
matrix was estimated using the Centered IBS (identity by state)
method (Endelman and Jannink, 2012) implemented through
Genomic Association and Prediction Integrated Tool (GAPIT)
(Tang et al., 2016).

Genomic Prediction Models and
Cross-Validation
We evaluated one univariate and two multivariate GP models
for predicting five agronomic traits. Different cross-validation
schemes that mimic actual scenarios in a breeding program
were used to estimate the PA of these traits and compare the
performance of different models.

Single-Trait Model
Ridge regression best linear unbiased prediction (Endelman,
2011) is the commonly used GS model in plant breeding. Similar
to the genomic best linear unbiased prediction (GBLUP) model,
rrBLUP assumes the normal distribution of marker effects with
equal variance. We used rrBLUP as a baseline GS model for all
the traits to evaluate the performance of multivariate models. The
within-environment trait BLUEs were calculated and then used
as input to perform rrBLUP within each environment. A linear

mixed model was implemented using the following model:

y = 1µ + Zu+ ε (4)

where y is the vector (n × 1) of adjusted means (BLUEs)
from n genotypes for a given trait; µ is the overall mean; Z is
the design matrix (n × p) with known values of p markers for
n genotypes; u is a genotypic predictor with u ∼ N(0, Gnxnσ

2
g ),

where G is positive semi-definite matrix, obtained from markers
using “A.mat,” which is an additive relation matrix function
and σ 2

g is the additive genetic variance; ε is the residual error

with e∼ N(0, σ 2
e ).

Multi-Trait Model
A Bayesian Multivariate Gaussian model with an unstructured
variance-covariance matrix was used for the multi-trait model
(MT) (Lado et al., 2018). The MT model can be described as

y = 1µ + Zu+ ε (5)

where y is the vector with a length of n × t (n genotypes
and t traits); µ is the means vector; Z represents the incidence
matrix of order [(n × t)p]; u[(n×t)p] is a genotypic predictor for
all individuals and traits with u ∼ N(0,

∑
⊗ G). The matrix

G represents the positive semi-definite matrix obtained from
markers. The residuals of the MT model are represented by
the vector ε, with ε ∼ N(0, R ⊗ I). The matrices

∑
and R

are the variance-covariance matrices for depicting the genetic
and residual effects, respectively, for each individual in all traits,
estimated with the Gibbs sampler with 5,000 burn-in and 25,000
iterations in R package “MTM” (de los Campos and Grüneberg,
2016). The

∑
was estimated as an unstructured matrix and R as

a diagonal matrix following Lado et al. (2018).

Bayesian Multi-Trait Multi-Environment Model
The Bayesian multi-trait multi-environment model for genomic
predictions (Montesinos-López et al., 2016, 2019) can be briefly
described as

y = Xβ + Z1b1 + Z2b2 + ε (6)

where y is the response matrix of order j × t (where t is the
number of traits and j= n × l, where n denotes the number
of genotypes and l denotes number of environments); X is the
design matrix for environmental effects of order n × l, whereas
β is the matrix of beta coefficients of order l × t. Z1 is the
incidence matrix of genotypes of order j × n, and b1 is the
matrix of genotypic random effects of order n × t. Z2 is the
incidencematrix of genotype× environment interaction of order
j × ln and b2 is the random effect of genotype × environment
× traits of order ln × t. We assume that b1 is distributed
under a matrix variate normal distribution as b1 ∼ MN(0, G,∑

t), where G is of order n × n, obtained from SNP markers
using “A.mat,” which is an additive relation matrix function in
rrBLUP, and

∑
t is the unstructured variance-covariance matrix

of traits of order t × t. The b2 is assumed to be distributed
under a matrix variate normal distribution as b2 ∼ MN(0,∑

E⊗G,
∑

t), where ⊗ denotes a Kronecker product and
∑

E
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is the unstructured variance-covariance matrix of l × l. The
matrix ε is the matrix of residuals of order j × t distributed
as ε ∼ MN(0, lj, Re). A detailed account of this model and
prior distributions can be found in Montesinos-López et al.
(2019). Model simulations were carried out using the R package
“BMTME” (Montesinos-López et al., 2019) with 5,000 burn-in
and 25,000 iterations.

Assessment of Prediction Ability
Predictive ability was estimated as Pearson correlation coefficient
between genome-estimated breeding values and observed
phenotypes for the testing set of breeding lines. The PA for
the rrBLUP model was estimated using cross-validation scheme
1 (CV1), where the population was equally divided into five
subpopulations, with four subpopulations (80%) as the training
population (phenotyped and genotyped) to train the model and
one subpopulation (20%) as the testing population (genotyped
only) for prediction. The single-trait model with cross-validation
scheme 1 (designated as ST-CV1 hereafter) was implemented in
the “rrBLUP” R package (Endelman, 2011) for one trait at a time.
The cross-validation process was repeated 1,000 times, and each
iteration included different lines in the training and testing sets.

The prediction accuracy (PA) of the MT model was estimated
using two cross-validation schemes, as described in Lado
et al. (2018) (Supplementary Figure 1). Similar to the ST-CV1
scheme, the first cross-validation scheme (MT-CV1) used a
random set of lines (80%) as a training set and the remaining lines
(20%) as a testing set. The model was trained using genotypic
and phenotypic data of these lines in the training set, and only
genotypic data were used to predict the performance of the
testing set lines based on the model built from the training set.
This process of splitting the data into training and testing sets
was repeated 50 times. Hence, a different set of lines were selected
into the training and testing datasets for each iteration. The
CV1 scheme mocks the breeding situation where a set of lines
that are evaluated for given traits could be used to predict an
unphenotyped set of lines that only have genotypic information.
In the second cross-validation scheme (MT-CV2), the lines were
randomly split into a training set (80%) and a testing set (20%).
To train themodel, MT-CV2 used genotypic data and phenotypic
data of secondary traits from both the training and testing sets,
but the phenotypic data of the target trait (primary trait) only
from the training set. The BMTMEmodel used a cross-validation
scheme similar to MT-CV1 to estimate the PA of the model by
randomly splitting the lines into an 80% training set and a 20%
testing set. Since the BMTME model employs a Gibbs sampler
with multiple iterations and is computationally expensive, the
cross-validation scheme was repeated only 25 times.

Application of MTME Genomic Prediction
in the Breeding Program
As the multi-trait multi-environment model showed a potential
in predicting different agronomic traits the using cross-validation
approach, we evaluated the possible application of this method
in the breeding program to reduce phenotyping efforts and per
plot costs. As discussed earlier, we evaluated ∼40 elite lines and
∼110 advanced lines each year in multiple environments. Per

plot costs and phenotyping efforts could be reduced if we can
successfully determine the genomic estimation of breeding values
(GEBVs) of the advanced lines in fewer locations rather than
testing these lines in all available locations. TheMTMEmodel can
estimate the environmental effect based on elite lines evaluated in
all locations and the genotypic effect of advanced lines from fewer
locations. To test this, we used the MTMEmodel in an allocation
design where we used the phenotypic data of elite lines from five
testing environments; however, we used phenotypic records of
advanced lines from three environments only. We predicted five
traits in the remaining two environments in both the growing
seasons. The model was fitted using the R package “BMTME”
(Montesinos-López et al., 2016, 2019) with 5,000 burn-in and
15,000 iterations. The observed phenotypic records from the
remaining two environments were used to assess the predictive
accuracy of the design.

RESULTS

Descriptive Statistics
The phenotypic BLUEs for grain yield, grain protein content,
test weight, plant height, and days to heading varied significantly
among the different environments (Table 1). HYS produced
the highest mean grain yield in both years, where BRK and
WIN produced the lowest grain yield in 2018–19 and 2019–20,
respectively. Broad-sense heritability (H2) was estimated for
all the five agronomic traits in each environment (Table 1).
Differences in heritability estimates (0.63–0.96) describe
the different genetic architecture of traits and contrasting
environmental effects. Among the five traits evaluated in the
study, TW, HT, and HDs had moderate to high heritability
values in most of the environments and over both years.
Relatively, YLD (0.64–0.84) and PROT (0.63–0.96) had
comparatively lower heritability than other traits. Among the
five environments, the heritability for all the traits was high in
both the experimental years in DL. For YLD heritability, HYS
(2019–20) had the highest (0.84), whereas BRK (2019–20) had the
lowest (Table 1).

Pearson correlations among agronomic traits were
calculated using BLUEs by combining phenotypic data from all
environments in each of the two growing seasons (Figure 1).
As expected, significant negative correlation values (−0.28 and
−0.54) were observed between YLD and PROT in both years.
YLD was also negatively correlated with HDs (in both years)
and HT (2019–20) (Figure 1). Similarly, TW was positively
correlated with PROT and HT in both growing seasons.
Overall, higher correlation values were observed between the
agronomic traits in the 2019–20 growing season than in 2018–19
(Supplementary Figures 2, 3). Furthermore, genetic correlations
among the five traits are estimated by fitting the BMTME
model for individual growing seasons and are presented in
Supplementary Tables 2, 3. Similar to the phenotypic correlation
estimates, we observed a higher genetic correlation in 2019–20
as compared to 2018–19.

We further estimated the Pearson correlations among the
five environments in 2018–19 and 2019–20 using the data
of all the five agronomic traits (Supplementary Figure 4).
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TABLE 1 | Trait descriptive statistics and broad-sense heritability estimate for individual site-year environments of lines grown over five locations (Env) in 2018–19 and

2019–20 growing seasons.

Year Enva Yield

(bu ac−1)

Protein content

(%)

Test weight

(kg hL−1)

Plant height

(cm)

Days to heading

(julian days)

GMb CV H2 GM CV H2 GM CV H2 GM CV H2 GM CV H2

2018-19 BRK 64.69 8.96 0.80 12.16 5.45 0.69 72.51 1.42 0.91 94.78 4.25 0.89 163.22 0.48 0.92

DL 77.44 6.48 0.77 14.25 1.55 0.94 77.09 1.35 0.78 86.06 3.99 0.89 164.65 0.76 0.92

HYS 81.98 6.46 0.73 12.04 3.66 0.72 76.55 1.06 0.92 99.12 3.18 0.90 163.84 0.70 0.74

OND 71.21 7.27 0.76 13.25 3.30 0.85 78.21 1.27 0.82 89.91 3.62 0.91 168.73 0.65 0.87

WIN 81.27 5.89 0.79 13.17 4.27 0.63 79.12 1.00 0.88 93.63 2.90 0.95 164.19 0.80 0.89

2019-20 BRK 84.26 6.25 0.64 12.49 3.65 0.80 77.39 0.90 0.89 86.67 4.42 0.75 156.18 0.63 0.89

DL 93.31 4.14 0.78 13.55 1.40 0.96 79.10 0.64 0.95 85.80 3.45 0.83 155.74 0.40 0.94

HYS 96.64 4.66 0.84 13.87 2.02 0.90 77.26 1.30 0.91 102.8 3.95 0.82 159.36 0.51 0.85

OND 92.21 4.40 0.81 11.99 4.97 0.59 78.65 1.08 0.87 92.53 3.59 0.85 157.09 0.63 0.87

WIN 84.16 4.73 0.80 13.24 2.99 0.84 78.24 0.90 0.89 92.70 3.47 0.85 158.75 0.63 0.91

BRK, Brookings; DL, Dakota Lakes; HYS, Hayes; OND, Onida; and WIN, Winner.
aEnv, refers to different trial location. BRK, Brookings; DL, Dakota Lakes; HYS, Hayes; OND, Onida; and WIN, Winner.
bGM, general mean for respective trait; CV, coefficient of variation; H2, broad sense heritability.

FIGURE 1 | Scatter plot matrix with phenotypic distributions and Pearson correlations between agronomic traits using best linear unbiased predictions (BLUPs) by

combining five experimental sites (BRK, DL, HYS, OND, and WIN) (A) from the growing season of 2018–19 and (B) from the growing season of 2019–20. YLD, grain

yield; PROT, grain protein content; TW, test weight; HT, plant height; and HD, days to heading. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.

Significantly higher correlation values were observed for YLD
among the five environments in 2019–20 than those in
2018–19. A similar trend was observed for PROT, TW, and
HDs; however, correlations were comparable for HT between
the two growing seasons (Supplementary Figure 4). Moreover,
the principal component analysis (PCA) on YLD validated
strong correlations among the testing locations, in particular

between HYS and OND and between DL and WIN, in the
2019–20 growing season (Figure 2). However, only a weak
correlation was observed between DL and BRK in the 2018–19
growing season. The varying degrees of correlation among the
locations in different growing seasons provide an opportunity
to compare the performance of the MTME model in different
growing environments.
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FIGURE 2 | Principal component analysis to determine the association of the observed grain yield among five different experimental sites in the (A) 2018–19 growing

season and the (B) 2019–20 growing season. BRK, Brookings; DL, Dakota Lakes; HYS, Hayes; OND, Onida; and WIN, Winner.

Genetic Relationship Among Lines
The kinship-based marker relationship matrix was derived
using 10,290 SNPs from 151 lines evaluated in the 2018–19
growing season and 156 lines evaluated in the 2019–20 growing
season (Supplementary Figure 5). The positive values of the
relationship matrix signify an increased likelihood of the allele
from one line being detected in other lines. The heatmaps of
both the relationship matrices elucidate several small groups of
closely related individuals over both the growing seasons. Most
of the lines seem genetically related to several others. However,
the heatmaps did not reveal any large genetically structured
sub-populations in either set of 151 or 156 lines, respectively.
Thus, the absence of a strong structure suggests no advantage
of performing stratified sampling for cross-validation schemes
to estimate PA. Furthermore, the density of heatmaps revealed
a closer relationship among the 156 lines evaluated in 2019–20
(Supplementary Figure 5A) than among the 151 lines evaluated
in 2018–19 (Supplementary Figure 5B).

Genomic Prediction Using 2018–19 and
2019–20 Datasets
We compared the predicted performance of five traits among
four different approaches using two data sets (2018–19 and 2019–
20). The PA of various models for the five traits is presented
in Supplementary Tables 4, 5. ST-CV1 was used as a baseline
model to compare the performance of different multivariate
models. In 2018–19, the mean PA using ST-CV1 was 0.31,
0.35, 0.36, 0.35, and 0.36 for YLD, PROT, TW, HT, and HDs
(Figure 3). Slightly better performance was observed in 2019–
20 where ST-CV1 yielded an average PA of 0.36, 0.35, 0.54,
0.33, and 0.35 for these traits, respectively. The multi-trait model

was tested using two prediction scenarios, MT-CV1 and MT-
CV2. The MT-CV1 model did not show improvement in the PA
over ST-CV1 for any of the five traits in either growing season
(Supplementary Tables 4, 5).

The multi-trait model MT-CV2, which includes phenotypic
data for secondary agronomic traits from individuals to be
predicted, showed an overall higher prediction accuracy for
YLD in both growing seasons. In 2018–19, the PA for
YLD using the MT-CV2 model ranged from 0.15 to 0.56,
outperforming the single-trait (ST-CV1) model by an average
of 26% (Supplementary Tables 4, 5). Similarly, the mean PA
for YLD in 2019–20 using MT-CV2 was 0.59, showing 63%
improvement over the ST-CV1 model. The best PA for YLD in
2019–20 was observed in HYS (0.71), followed by WIN (0.67)
and DL (0.57). The improvement in PA over ST-CV1 reached up
to 148% in WIN and 80% in BRK in 2019–20.

Likewise, we observed a marginal to moderate improvement
in PA for other agronomic traits using MT-CV2 model in both of

the growing seasons (Figures 3, 4 and Supplementary Tables 4,
5). In 2018–19, the mean PA using MT-CV2 was 0.4, 0.42,

0.34, and 0.38 for PROT, TW, HT, and HDs, exhibiting an

improvement of 14, 19, 36, and 8%, respectively. In comparison,
the PA using MT-CV2 was higher in 2019–20, with an average

PA of 0.54, 0.59, 0.43, and 0.38 for PROT, TW, HT, and HDs with
an improvement of 54, 9, 30, and 8%, respectively. Overall, the

better performance of theMT-CV2model can be attributed to the
higher genetic correlation among the traits evaluated in 2019–20
over the 2018–19 season (Supplementary Tables 2, 3).

The multi-trait multi-environment MTME model generalizes
the multi-trait model to consider the correlation among the
environments on top of the genetic correlation between the
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FIGURE 3 | Prediction accuracy (PA) for five agronomic traits evaluated in five environments in the growing season of 2018–19. Boxplots compare the PA using a

single-trait prediction model with one cross-validation scheme (ST-CV1), a multi-trait prediction model with two cross-validation schemes (MT-CV1 and MT-CV2), and

a Bayesian multi-trait multi-environment prediction model (MTME). Traits include YLD, grain yield; PROT, grain protein content; TW, test weight; HT, plant height; and

HD, days to heading.
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FIGURE 4 | Prediction accuracy (PA) for five agronomic traits evaluated in five environments in the growing season of 2019–20. Boxplots compare the PA using a

single-trait prediction model with one cross-validation scheme (ST-CV1), a multi-trait prediction model with two cross-validation schemes (MT-CV1 and MT-CV2), and

a Bayesian multi-trait multi-environment prediction model (MTME). Traits include YLD, grain yield; PROT, grain protein content; TW, test weight; HT, plant height; and

HD, days to heading.
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traits. In 2018–19, the MTME model did not show a significantly
different PA over the ST-CV1 model for YLD (0.18–0.36) and
PROT (0.13–0.46). The performance of the MTME model for
these two traits likely relates to the lower genetic trait correlations
and lower correlation among the environments for these traits
in 2018–19 (Supplementary Figure 4). Analogous to YLD and
PROT, theMTMEmodel resulted in a higher prediction accuracy
than the ST-CV1 model for TW, HT, and HDs in 2018–19
(Figure 3). For instance, the average PA using MTME for TW,
HT, and HDs was 0.42, 0.42, and 0.36, respectively, which
translates to an improvement of 19, 68, and 12%, respectively.
Furthermore, the PA using the MTMEmodel outstripped the ST-
CV1 model in all the five environments for TW (0.32–0.52) and
HT (0.41–0.54), and in four environments for HDs (Figure 3).

In contrast to 2018–19, we observed higher genetic
correlations among the five traits and higher environmental
correlations in 2019–20 (Supplementary Tables 2, 3 and
Supplementary Figure 4). As a result of high correlation values,
we observed a consistent improvement in the PA of MTME
in all the environments for all the five traits (Figure 4 and
Supplementary Table 4). For YLD, the MTME model also
performed better than the single-trait model in most of the
environments, except HYS. The average PA for YLD using
the MTME model was 0.43, which was 22% better than the
ST-CV1 model. Furthermore, the MTME model appeared
to be superior for predicting PROT and TW (Figure 4). For
PROT, the MTME model performed best in all the locations,
with a PA ranging from 0.52 to 0.67 (Supplementary Table 5).
We achieved an improvement in PA of up to 100% (OND)
using the MTME model (0.52) over the single-trait model
(0.26) with 71% improvement on average. The PA for TW
was higher using the MTME model than the other models,
ranging from 0.53 to 0.67, with a mean improvement of 17%
over the ST-CV1 model (Supplementary Table 5). Similarly,
the average PA of the MTME model was the highest for HT
(0.49) and HDs (0.53), which outstrips the ST-CV1 model by
48 and 51%, respectively.

Application of MTME Model in the
Breeding Program
Based on the cross-validation results, we evaluated the efficacy
of the MTME model in reducing phenotypic efforts in the
breeding program. We used the MTME model to estimate
the GEBV of advanced lines in environments where only
elite lines are evaluated. In the tested allocation design, we
used phenotypic data of EYTs from five environments and
AYTs from three environments to predict GEBVs of AYTs
in remaining environments (Figure 5). Two environments,
OND and WIN, were used as testing environments for
predicting AYTs. For 2018–19, we predicted the performance
of 96 AYT lines, whereas 2019–20 comprised a prediction
of 114 AYT lines in two environments. Table 2 elucidates
the predictive ability for the five agronomic traits using
MTME in an independent prediction scenario. Moderate
PA was observed for all the traits in both environments
except for WIN in 2019–20. For OND, the results showed

FIGURE 5 | Testing design for the independent prediction of agronomic traits

using the MTME model. Each year, a set of elite and advanced lines is

evaluated over multiple locations. The sparse testing design proposes

phenotyping of elite lines in all the environments (five in this scenario) and

advanced lines in fewer environments (three in this scenario). For independent

prediction, the dataset from 2018–19 comprised 55 elite lines with checks and

96 advanced lines. The 2019–20 dataset comprised 42 elite lines with checks

and 114 advanced lines. Five environments: BRK, Brookings; DL, Dakota

Lakes; HYS, Hayes; OND, Onida; and WIN, Winner.

a better prediction accuracy than WIN for YLD and TW.
Overall, the results suggest that the MTME model could be
used by evaluating an overlapping set of lines over multiple
environments and lines in early testing could be tested in
fewer environments.

DISCUSSION

In recent years, genomic prediction has been intensively

evaluated in wheat breeding programs to select and advance lines

for several traits of interest (Rutkoski et al., 2014, 2016; Haile
et al., 2020; Juliana et al., 2020). However, improving the PA of

complex traits remains a challenge for successfully implementing

GS in breeding programs. The choice and optimization of
statistical models are crucial to improve the performance of
GS. Most plant breeding programs currently rely on univariate
genomic prediction models to target a single trait at a time. An
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TABLE 2 | Predictive ability for the independent prediction of advanced breeding lines (AYTs) in new environments using the MTME model.

Year Enva Predictive abilityb

Grain yield Grain protein Test weight Plant height Days to heading

2018–19 OND 0.44 0.37 0.43 0.49 0.27

WIN 0.30 0.25 0.38 0.30 0.46

2019–20 OND 0.36 0.27 0.44 0.22 0.41

WIN 0.15 0.32 0.25 0.18 0.24

Tables shows Pearson correlation between the observed and predictive values of agronomic traits in the AYTs in two different environments over two growing seasons.
aEnv refers to different trial location. BRK, Brookings; DL, Dakota Lakes; HYS, Hayes; OND, Onida; and WIN, Winner.
bThe predictive ability for five agronomic traits using the MTME model in independent prediction of advanced lines. Refer to Figure 5 for the design of the prediction scheme.

advantage of multivariate prediction approaches over single-trait
models that have been demonstrated in some recent studies is
utilizing correlations between multiple traits and environments
(Jia and Jannink, 2012; Sun et al., 2017; Lado et al., 2018;
Ward et al., 2019; Ibba et al., 2020). This study evaluated
the application of multi-trait and multi-environment prediction
models to predict five key traits of varying genetic architecture
across diverse environments in a breeding program.

The ridge-regression best linear unbiased prediction (rrBLUP)
is one of the most often used single-trait prediction models. The
rrBLUP has an advantage over Bayesian models in predicting
complex traits governed by several loci with small effects (Lorenz
et al., 2011). We used rrBLUP as a baseline model (ST-CV1)
for comparison with different multivariate approaches. The PA
for agronomic traits using ST-CV1 was comparable with other
studies using the same model (Pérez-Rodríguez et al., 2012;
Charmet et al., 2014; He et al., 2016; Maulana et al., 2021). For
instance, the PA for YLD was between 0.13 and 0.43 for 2018–19
and 0.27 and 0.5 for 2019–20. The PA for TW in both growing
seasons was higher than the PA for other traits because of the
highly heritable nature of this trait (Figures 3, 4).

We evaluated the multi-trait model using two cross-validation
schemes. The first scheme (MT-CV1) conducts multi-trait
prediction for new un-phenotyped individuals, and the testing
set has not been phenotyped for any of the traits. In the second
cross-validation scheme (MT-CV2), phenotype information for
the predicted trait is missing, whereas phenotype information
for the secondary traits is available in the testing set (Lado
et al., 2018; Bhatta et al., 2020). In this study, the PA of
the MT-CV1 model was found similar to that of the ST-CV1
model for most of the trait-environment combinations in both
growing seasons (Supplementary Tables 4, 5). Several studies
have reportedmarginal or no improvement withMT-CV1, where
information from secondary traits is limited to the training set
(Calus and Veerkamp, 2011; Lado et al., 2018; Schulthess et al.,
2018; Arojju et al., 2020; Bhatta et al., 2020). However, other
studies reported an improvement in GP when the MT-CV1
model included secondary traits with moderate-high heritability
(Jia and Jannink, 2012; Rutkoski et al., 2012; Guo et al., 2014). Jia
and Jannink, 2012 suggested that theMT-CV1 approachmight be
more useful when the primary trait has very low heritability (H2

< 0.2). In this study, the similarity in performance of the MT-
CV1 and ST-CV1 models might be contributed by the moderate

to high heritability estimated for most of the traits and the small
size of the training population.

In contrast to MT-CV1, the MT-CV2 model significantly
improved the PA for all agronomic traits in all the environments,
suggesting that the inclusion of secondary traits in the training
and testing sets improves the predictive performance of complex
traits (Supplementary Tables 4, 5). Several studies have reported
a similar improvement in prediction using the MT-CV2 model
for agronomic and end-use quality traits in wheat (Rutkoski
et al., 2016; Sun et al., 2017; Lado et al., 2018), rice (Wang et al.,
2017), barley (Bhatta et al., 2020), sorghum (Fernandes et al.,
2018), and ryegrass (Arojju et al., 2020). The MT-CV2 model
outperformed the single-trait model for YLD prediction in all
environments. However, the extent of improvement using the
MT-CV2 model varied with traits and environments tested. As
multi-trait models rely on the genetic correlation between traits
(Calus and Veerkamp, 2011; Jia and Jannink, 2012), differences
in prediction improvements due to the MT-CV2 model can
be attributed to the varying degrees of genetic correlations
observed in different environments. We observed a high genetic
correlation among the traits in 2019–20 that resulted in a higher
prediction accuracy for the different traits in this growing season
(Figure 1 and Supplementary Tables 2, 3). The results suggest
that MT-CV2 could likely be very useful if we can include
data for HT, HDs, and other spectral indices recorded using
a high throughput method for predicting YLD. In addition,
the MT-CV2 approach could be really useful to predict hard-
to-phenotype end-use quality traits by the inclusion of already
available agronomic data for the testing set.

We also evaluated the BMTME model (referred to as MTME)
that generalizes a multi-trait model to consider the correlations
among multiple environments. Recently, two studies reported
an increase in the PA of agronomic and end-use quality traits
in wheat using the BMTME approach (Guo et al., 2020; Ibba
et al., 2020). Because of the different training process, we
did not directly compare the MTME model with the MT-
CV2 model but compared both with the ST-CV1 model. In
2018–19, the MTME model proved to be better than the
ST-CV1 and MT-CV1 models for all the traits except YLD
and PROT. However, the MTME model outperformed the
ST-CV1 and MT-CV1 models in 2019–20 for all the traits
in all the environments (Supplementary Table 5). The mean
improvement in PA (across five environments) using MTME
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model over the ST-CV1 reached up to 19, 71, 17, 48, and 51%
for YLD, PROT, TW, HT, and HDs, respectively. The differences
in performance of the MTME model in 2019–20 compared with
2018–19 relate to the observed genetic correlations among the
traits as well as among the environments in these growing seasons
(Supplementary Figure 2A). As discussed earlier, the genetic
correlations between traits and correlation among environments
were higher in 2019–20 compared with those in 2018-19
Thus, a higher PA was observed for the traits showing a high
correlation among the different environments. For example, the
five environments were highly correlated for PROT (0.56–0.76)
compared with YLD (0.23–0.65) (Supplementary Figures 3, 4),
explaining the difference in the improvement of PA for these
traits. Overall, the results suggest that the MTME model could
be successfully applied in a program if there is a moderate to high
correlation for a trait between environments and overcome the
effect of a small training population.

Apart from the statistical model, the heritability (H2) of
a trait is another crucial factor for improving PA (Lorenz
et al., 2011; Combs and Bernardo, 2013). Several studies have
found that low heritability often results in lower prediction
accuracy in single-trait genomic prediction (Heffner et al., 2009;
Jannink et al., 2010). The application of multi-trait models can
improve the PA of low-heritability traits using the information
from correlated traits with high heritability (Jia and Jannink,
2012; Jiang et al., 2015; Lado et al., 2018; Bhatta et al., 2020).
The heritability estimates for most of the traits in different
environments were moderate to high in this study, with few
exceptions. The use of theMT-CV2model significantly improved
the predictive ability for PROT in WIN (0.15 to 0.29) and TW
in DL (0.23 to 0.39), where highly heritable and moderately
correlated traits were included in the model. In contrast, the MT-
CV2 model did not improve the PA for HDs in HYS (0.23 to
0.25), as the primary trait was weakly correlated to the highly
heritable secondary traits in the model. The results suggest
that the inclusion of highly heritable but weakly correlated
secondary traits in the multi-trait model may not improve
the PA.

Genomic prediction has been suggested to implement sparse
testing in multi-environment trials and reduce the resources
involved in phenotyping (Jarquin et al., 2020). Based on the
promising cross-validation results using MTME models, we
evaluated the application of this model in the breeding program
to reduce phenotyping resources. At the SDSU winter wheat
breeding program, we evaluate a set of elite (EYTs) and advanced
(AYTs) lines each year in multiple environments. However, the
results suggest that GP models developed using phenotypic data
from all locations of EYTs and limited locations of AYTs can
predict AYTs in remaining environments (Table 2). This strategy
could be useful as we evaluate ∼40 EYTs and ∼110 AYTs each
year in replicated nurseries and testing the AYT plots at two/three
locations instead of five can save substantial resources. Though
we used this strategy to predict AYTs at two locations, further
improved GP models assisted with environics data can help to
predict more environments with better accuracy. Moreover, this
strategy can be expanded to predict preliminary breeding lines at
earlier testing stages.

In conclusion, this study evaluated the PA of univariate and
multivariate GP models for five agronomic traits in advanced
winter wheat breeding lines. We compared two different
cross-validation strategies mocking practical breeding scenarios.
Overall, the results supported the practical implementation of
multivariate GS models in predicting complex traits. We found
a significant advantage of using MT and MTME models when
correlated traits and/or environments are included in the models.
The results suggest that the inclusion of correlated traits and
environments in prediction models can offset the limitation of a
small training population, allowing the use of advanced breeding
lines to predict preliminary breeding lines in the same year or
the following one. It will be interesting to further study the
inclusion of different combinations of secondary traits in the
MT model to increase the PA of YLD. We envision that the
evaluation of secondary traits such as plant height, tillers/m2,
spike length, and spike density that have high correlations
with YLD using an unmanned aerial system (UAS) in winter
wheat yield trials could help predict YLD. This would permit
trials on a large number of locations (e.g., >10) but harvesting
only in a limited number (e.g., 2–3) of locations. Similarly,
evaluating secondary traits (grain protein, flour protein, water
absorption, gluten content, and quality) could facilitate the
prediction of other complex traits such as end-use quality.
Finally, GS holds a tremendous potential for improving the
selection accuracy of complex traits in wheat breeding; however,
we believe GEBVs will complement phenotyping efforts rather
than replacing them. Future breeding strategies should focus on
increasing the efficiency of breeding programs by maximizing
genetic gain.
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