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We investigate the predictive performance of two novel CNN-DNN machine learning
ensemble models in predicting county-level corn yields across the US Corn Belt (12
states). The developed data set is a combination of management, environment, and
historical corn yields from 1980 to 2019. Two scenarios for ensemble creation are
considered: homogenous and heterogenous ensembles. In homogenous ensembles,
the base CNN-DNN models are all the same, but they are generated with a bagging
procedure to ensure they exhibit a certain level of diversity. Heterogenous ensembles
are created from different base CNN-DNN models which share the same architecture
but have different hyperparameters. Three types of ensemble creation methods were
used to create several ensembles for either of the scenarios: Basic Ensemble Method
(BEM), Generalized Ensemble Method (GEM), and stacked generalized ensembles.
Results indicated that both designed ensemble types (heterogenous and homogenous)
outperform the ensembles created from five individual ML models (linear regression,
LASSO, random forest, XGBoost, and LightGBM). Furthermore, by introducing
improvements over the heterogenous ensembles, the homogenous ensembles provide
the most accurate yield predictions across US Corn Belt states. This model could make
2019 yield predictions with a root mean square error of 866 kg/ha, equivalent to 8.5%
relative root mean square and could successfully explain about 77% of the spatio-
temporal variation in the corn grain yields. The significant predictive power of this model
can be leveraged for designing a reliable tool for corn yield prediction which will in turn
assist agronomic decision makers.

Keywords: yield prediction, CNN-DNN, homogenous ensemble, heterogenous ensemble, US Corn Belt

INTRODUCTION

Accurate crop yield prediction is essential for agriculture production, as it can provide insightful
information to farmers, agronomists, and other decision makers. However, this is not an easy
task, as there is a myriad of variables that affect the crop yields, from genotypes, environment,
and management decisions to technological advancements. The tools that are used to predict crop
yields are mainly divided into simulation crop modeling and machine learning (ML).

Although these models are usually utilized separately, there have been some recent studies
to combine them toward improving prediction. The outputs of crop models have served as
inputs to multiple linear regression models in an attempt to make better crop yield predictions
(Mavromatis, 2016; Busetto et al., 2017; Pagani et al., 2017). Some other studies have made
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additional advancement and created hybrid crop model-ML
methodologies by using crop model outputs as inputs to a
ML model (Everingham et al., 2016; Feng et al., 2019). In a
recent study, Shahhosseini et al. (2021) designed a hybrid crop
model-ML ensemble framework, in which a crop modeling
framework (APSIM) was used to provide additional inputs to
the yield prediction task (For more information about APSIM
refer to https://www.apsim.info/). The results demonstrated that
coupling APSIM and ML could improve ML performance up to
29% compared to ML alone.

On the other hand, the use of more complex machine learning
models with the intention of better using numerous ecological
variables to predict yields has been recently becoming more
prevalent (Basso and Liu, 2019). Although there is always a
tradeoff between the model complexity and its interpretability,
the recent complex models could better capture all kinds of
associations such as linear and nonlinear relationships between
the variables associated with the crop yields, resulting in more
accurate predictions and subsequently better helping decision
makers (Chlingaryan et al., 2018). These models span from
models as simple as linear regression, k-nearest neighbor, and
regression trees (González Sánchez et al., 2014; Mupangwa
et al., 2020), to more complex methods such as support vector
machines (Stas et al., 2016), homogenous ensemble models
(Vincenzi et al., 2011; Fukuda et al., 2013; Heremans et al.,
2015; Jeong et al., 2016; Shahhosseini et al., 2019), heterogenous
ensemble models (Cai et al., 2017; Shahhosseini et al., 2020,
2021), and deep neural networks (Liu et al., 2001; Drummond
et al., 2003; Jiang et al., 2004, 2020; Pantazi et al., 2016; You
et al., 2017; Crane-Droesch, 2018; Wang et al., 2018; Khaki and
Wang, 2019; Kim et al., 2019; Yang et al., 2019; Khaki et al.,
2020a,b). Homogeneous ensemble models are the models created
using same-type base learners, while the base learners in the
heterogenous ensemble models are different.

Although deep neural networks demonstrate better predictive
performance compared to single layer networks, they are
computationally more expensive, more likely to overfit, and may
suffer from vanishing gradient problem. However, some studies
have proposed solutions to address these problems and possibly
boost deep neural network’s performance (Bengio et al., 1994;
Srivastava et al., 2014; Ioffe and Szegedy, 2015; Szegedy et al.,
2015; Goodfellow et al., 2016; He et al., 2016).

Convolutional neural networks (CNNs) have mainly been
developed to work with two-dimensional image data. However,
they are also widely used with one-dimensional and three-
dimensional data. Essentially, CNNs apply a filter to the input
data which results in summarizing different features of the input
data into a feature map. In other words, CNN paired with pooling
operation can extract high-level features from the input data that
includes the necessary information and has lower dimension.
This means CNNs are easier to train and have fewer parameters
compared to fully connected networks (Goodfellow et al., 2016;
Zhu et al., 2018; Feng et al., 2020).

Since CNNs are able to preserve the spatial and temporal
structure of the data, they have recently been used in ecological
problems, such as yield prediction. Khaki et al. (2020b) proposed
a hybrid CNN-RNN framework for crop yield prediction. Their

framework consists of two one-dimensional CNNs for capturing
linear and nonlinear effects of weather and soil data followed
by a fully connected network to combine high-level weather
and soil features, and a recursive neural network (RNN) that
could capture time dependencies in the input data. The results
showed that the model could achieve decent relative root mean
square error of 9 and 8% when predicting corn and soybean
yields, respectively. You et al. (2017) developed CNN and LSTM
models for soybean yield prediction using remote sensor images
data. The developed models could predict county-level soybean
yields in the U.S. better than the competing approaches including
ridge regression, decision trees, and deep neural network (DNN).
Moreover, Yang et al. (2019) used low-altitude remotely sensed
imagery to develop a CNN model. The experimental results
revealed that the designed CNN outperformed the traditional
vegetation index-based regression model for rice grain yield
estimation, significantly.

Another set of developed models to capture complex
relationships in the input raw data are ensemble models. It has
been proved that combining well-diverse base machine learning
estimators of any types, can result in a better-performing model
which is called an ensemble model (Zhang and Ma, 2012). Due
to their predictive ability, ensemble models have also been used
recently by ecologists. Several heterogenous ensemble models
including optimized weighted ensemble, average ensemble, and
stacked generalized ensembles were created using five base
learners, namely LASSO regression, linear regression, random
forest, XGBoost, and LightGBM. The computational results
showed that the ensemble models outperformed the base models
in predicting corn yields. Cai et al. (2017) combined several
ML estimators to form a stacked generalized ensemble. The
back-testing numerical results demonstrate that their model’s
performance is comparable to the USDA forecasts.

Although these models have provided significant advances
toward making better yield predictions, there is still a need to
increase the predictive capacity of the existing models. This can
be done by improving the data collections, and by the means
of developing more advanced and forward-thinking models. The
ensemble models are excellent tools that have the potential to turn
very good models to outstanding predictor models.

Motivated by the high predictive performance of CNNs and
ensemble models in ecology (Cai et al., 2017; You et al., 2017;
Yang et al., 2019; Khaki et al., 2020b; Shahhosseini et al., 2020,
2021), we propose a set of ensemble models created from multiple
hybrid CNN-DNN base learners for predicting county-level corn
yields across US Corn Belt states. Building upon successful studies
in the literature (Khaki et al., 2020b; Shahhosseini et al., 2020), we
designed a base architecture consisting of two one-dimensional
CNNs and one fully connected network (FC) as the first layer
networks, and another fully connected network that combined
the outputs of the first-layer networks and made final predictions,
as the second-layer network. Afterwards, two scenarios are
considered for base learner generation: heterogenous and
homogenous ensemble creation. In the heterogenous scenario,
the base learners are neural networks with the same described
architecture, but with different hyperparameters. On the
contrary, the homogenous ensembles are created with bagging
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the same architecture and forming diverse base learners. In
each scenario, the generated base learners are combined by
several methods including simple averaging, optimized weighted
averaging, and stacked generalization.

MATERIALS AND METHODS

The designed ensemble framework uses a combination of
historical yield and management data obtained from USDA
NASS, historical weather and soil data as the data inputs. The
details of the created data set and the developed model will be
explained below.

Data Preparation
Data Sources
The main variables that affect corn yields are environment,
genotype, and management. Although genotype information are
not publicly available, other pieces of information including
environment (soil and weather) and some of the management
decisions data could be accessed publicly. To this end, we created
a data set from environment and management variables that
could be used to predict corn yields. This data includes county-
level weather, soil, and management data considering 12 US Corn
Belt states (Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota,
Missouri, Nebraska, North Dakota, Ohio, South Dakota, and
Wisconsin). It is also noteworthy that since only some of the
locations across US Corn Belt states are irrigated, to keep the
consistency across the entire developed data set, we assumed
that all farms are rainfed and didn’t consider irrigation as a
feature. The variables weekly planting progress per state and
corn yields per county were downloaded from USDA National
Agricultural Statistics Service (NASS, 2019). The weather was
obtained from a reanalysis weather database based off of NASA
Power1 and Iowa Environmental Mesonet.2 Finally, the soil data
was created from SSURGO, a soil database based off of soil survey
information collected by the National Cooperative Soil Survey
(Soil Survey Staff [SSS], 2019). These variables are described
below. Across 12 states, on average the data from 950 counties
in total were used per year.

- Planting progress (planting date): 52 features explaining the
weekly cumulative percentage of corn planted within each
state. Each of these state-level weekly features represents the
cumulative percentage of corn planted until that particular
week (NASS, 2019).

- Weather: Five weather features accumulated weekly
(52 × 5 = 260 features), obtained from NASA Power and
Iowa Environmental Mesonet.
◦ Daily minimum air temperature in degrees Celsius.
◦ Daily maximum air temperature in degrees Celsius.
◦ Daily total precipitation in millimeters per day.
◦ Shortwave radiation in watts per square meter.
◦ Growing degree days.

1https://power.larc.nasa.gov
2https://mesonet.agron.iastate.edu

- Soil: The soil features wet soil bulk density, dry bulk
density, clay percentage, plant available water content,
lower limit of plant available water content, hydraulic
conductivity, organic matter percentage, pH, sand
percentage, and saturated volumetric water content. All
variables determined at 10 soil profile depths (cm): 0–5,
5–10, 10–15, 15–30, 30–45, 45–60, 60–80, 80–100, 100–120,
and 120–150 (Soil Survey Staff [SSS], 2019).

- Corn Yield: Yearly corn yield in bushel per acre, collected
from USDA-NASS (2019).

Data Pre-processing
The following pre-processing tasks were performed on the
created data set to make it prepared for training the designed
ensemble models.

- Imputing missing planting progress data for the state
North Dakota before the year 2000 by considering
average progress values of two closest states (South
Dakota and Minnesota).

- Removing out-of-season planting progress data before
planting and after harvesting.

- Removing out-of-season weather features before planting
and after harvesting.

- Aggregating weather features to construct quarterly and
annually weather features. The features solar radiation and
precipitation were aggregated by summation, while other
weather features (minimum and maximum temperature)
were aggregated by a row-wise average.

- The observations with the yield less than 10 bu/acre were
considered as outliers and dropped from the data set.

- Investigating the historical corn yields over the time
reveals an increasing trend in the yield values. This could
be explained as the effect of technological advances,
like genetic gains, management progress, advanced
equipment, and other technological advances. Hence, a
new input feature was constructed using the observed
trends that enabled the models to account for the
increasing yield trend.
◦ yield_trend: this feature explained the observed trend in

corn yields. A linear regression model using the training
data was built for each location as the trends for each site
tend to be different. The year (YEAR) and yield (Y) features
served as the predictor and response variables of this linear
regression model, respectively. Then the predicted value for
each data point (Ŷ) is added as a new input variable that
explains the increasing annual trend in the target variable.
The corresponding value for the observations in the test
data set was estimated by plugging in their corresponding
year in the trained linear regression models (Ŷi,test b0i +

b1iYEARi,test). The following equation shows the trend
value (Ŷi) calculated for each location (i), that is added to
the data set as a new feature.

Ŷi b0i + b1iYEARi (1)

- All independent variables were scaled to be ranged between
0 and 1.

Frontiers in Plant Science | www.frontiersin.org 3 August 2021 | Volume 12 | Article 709008

https://power.larc.nasa.gov
https://mesonet.agron.iastate.edu
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-709008 July 27, 2021 Time: 15:39 # 4

Shahhosseini et al. Yield Prediction With Ensemble CNN-DNN

Base Models Generation
We propose the following CNN-DNN architecture as the
foundation for generating multiple base learners that serve as the
inputs to the ensemble creation models. The architecture consists
of two layers of deep neural networks.

First Layer
Due to the ability of CNNs in capturing the spatial and temporal
dependencies that exist in the soil and weather data, respectively,
we decided to build two separate set of one-dimensional CNNs
for each of the weather (W-CNN) and soil (S-CNN) groups
of features. Such networks have been used before in different
studies and have been proved to be effective in capturing linear
and nonlinear effects in the soil and weather (Ince et al., 2016;
Borovykh et al., 2017; Kiranyaz et al., 2019). In addition, a fully
connected network (FC1) was built that took planting progress,
and other constructed features as inputs and the output is
concatenated with the outputs of the CNN components to serve
as inputs of the second layer of the networks.

Specifically, the first layer includes three network types:

1 Weather CNN models (W-CNN):
CNN is able to capture the temporal effect of weather data
measured over time. In the case of the developed data
set, we will use a set of one-dimensional CNNs inside the
W-CNN component.

2 Soil CNN models (S-CNN):
CNN can also capture the spatial effect of soil data which is
measured over time and on different depths. Considering
the data set, we will use a set of one-dimensional CNNs to
build this component of the network.

3 Other variables FC model (FC1):
This fully connected network can capture the linear and
nonlinear effect of other input features.

Second Layer (FC2)
In the second layer we used a fully connected network (FC2) that
aggregates all extracted features of the first layer networks (W-
CNN, S-CNN, and FC1), and makes the final yield prediction.

The architecture of the proposed base network is depicted
in Figure 1. As it is shown in the figure, the W-CNN and
S-CNN components of the network each are comprised of a
set of CNNs that are in charge of one data input type and
their outputs are aggregated with a fully connected network.
For the case of W-CNN component, there are five CNNs for
each weather data type (precipitation, maximum temperature,
minimum temperature, solar radiation, and growing degree
days). Similarly, 10 internal CNNs are designed inside S-CNN
component for each of the 10 soil data types. The reason we
decided to design one CNN for each data type is the differences
in the natures of different data types and our experiments showed
that separate CNNs for each data type could extract more useful
information and will result in better final predictions. The two
inner fully connected networks (FC_W and FC_S) both have one
hidden layer with 60 and 40 neurons, respectively.

We used VGG-like architecture for the CNN models
(Simonyan and Zisserman, 2014). The details about each of the

designed CNN networks are presented in Table 1. We performed
downsampling in the CNN models by average pooling with a
stride of size 2. The feed-forward fully connected network in
the first layer (FC1) has three hidden layers with 64, 32, and 16
neurons. The final fully connected network of the second layer
(FC2) is grown with two hidden layers with 128 and 64 neurons.
In addition, two dropout layers with dropout ratio of 0.5 are
located at the two last layers of the FC2 to prevent the model from
overfitting. We used Adam optimizer with the learning rate of
0.0001 for the entire model training stage and trained the model
for 1,000 iterations considering batches of size 16. Rectified linear
unit (ReLU) was used as the activation function of all networks
throughout the architecture except the output layer that had a
linear activation function.

To ensure that the ensemble created from a set of base learners
performs better than them, the base learners should have a
certain level of diversity and prediction accuracy (Brown, 2017).
Hence, two scenarios for generating diverse base models are
considered which are systematically different: homogenous and
heterogenous ensemble base model generation.

Homogenous Ensembles
The homogenous ensembles are the models whose base learners
are all the same type. Random forest and gradient boosting
are examples of homogenous ensemble models. Their base
learners are decision trees with the same hyperparameter values.
Bootstrap aggregating (Bagging) is an ensemble framework
which was proposed by Breiman (1996). Bagging generates
multiple training data sets from the original data set by sampling
with replacement (bootstrapping). Then, one base model is
trained on each of the generated training data sets and the final
prediction is the average (for regression problems) or voting
(for classification problems) of the predictions made by each
of those base models. Basically, by sampling with replacement
and generating multiple data sets, and subsequently multiple
base models, bagging ensures the base models have a certain
level of diversity. In other words, bagging tries to reduce the
prediction variance by averaging the predictions of multiple
diverse base models.

Here, inspired by the way bagging introduces diversity in
the base model generation, we design a bagging schema which
generates multiple base CNN-DNN models using the same
foundation model (Figure 1). This is shown in Figure 2. Then
several ensemble creation methods make use of these bagged
networks as the base models to create a better-performing
ensemble network. We believe one drawback of bagging is
assigning equal weights to the bagged models. To address that,
we will use different ensemble creation methods in order to
optimally combine the bagged models. We will discuss ensemble
creation in the next chapter.

Heterogenous Ensembles
On the other hand, the base models in the heterogenous
ensembles are not the same. They can be any machine
learning model from the simplest to the most complex models.
However, as mentioned before, the ensemble is not expected
to perform favorably if the base models do not exhibit a
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FIGURE 1 | The architecture of the proposed base network. prcp, t_max, and gdd represent precipitation, maximum temperature, and growing degree days,
respectively. S1, S2, . . ., and S10 are 10 soil variables which each are measured at 10 depth levels. Y_hat represents the final corn yield prediction made by the
model.

TABLE 1 | Detailed structure of the CNN networks of CNN components designed as the foundation for ensemble neural networks.

CNNs in the W-CNN component CNNs in the S-CNN component

Input size 32 × 1 Input size 10 × 1

Layer name FS NF S P Layer name FS NF S P

Conv1 6 4 1 Valid Conv1 3 4 1 Valid

Average pooling 1 2 – 2 Valid Average pooling 1 2 – 2 Valid

Conv2 3 4 1 Valid Conv2 3 4 1 Valid

Average pooling 2 2 – 2 Valid Average pooling 2 2 – 2 Valid

Conv3 3 4 1 Valid Conv3 3 4 1 Valid

Average pooling 3 2 – 2 Valid Output size 4 × 1

Output size 4 × 1

The table on the left shows the details of the CNNs designed for each weather feature, and the right table presents the ones for the CNNs designed for each soil feature.
FS, NF, S, and P represent filter size, number of features, stride, and padding.

certain level of diversity. To that end, we train k variations of
the base CNN-DNN model presented earlier. The foundation
architecture of these k models are the same, but their CNN
hyperparameters are different. In other words, we preserve
the same architecture for all models and change the number
of filters inside each CNN network to create various CNN-
DNN models. These models will serve as the inputs to the

ensemble creation methods explained in the next chapter
(see Figure 3).

Ensemble Creation
After generating base learners in either of the heterogenous
and homogenous methods, they should be combined using a
systematic procedure. We have used three different types of
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FIGURE 2 | Homogenous ensemble creation with bagging architecture. k data sets (D1, D2, . . ., Dk) were generated with bootstrap sampling from the original data
set (D) and the same base network is trained on each of them. The ensemble creation combines the predictions made by the base networks.

FIGURE 3 | Heterogenous ensemble creation. k networks with the same architecture but with different hyperparameters are created using the original data set (D).

ensemble creation methods which are Basic Ensemble Method
(BEM), Generalized Ensemble Method (GEM), and stacked
generalized ensemble method.

Basic Ensemble Method (BEM)
Perrone and Cooper (1992) proposed BEM as the most natural
way of combining base learners. BEM creates a regression
ensemble by simple averaging the base estimators. This study

claims that BEM can reduce mean squared error of predictions,
given that the base learners are diverse.

Generalized Ensemble Method (GEM)
GEM is the general case of a BEM ensemble creation method and
tries to create a regression ensemble as the linear combination
of the base estimators. Cross-validation is used to generate out-
of-bag (OOB) predictions and optimize the ensemble weights
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and the model was claimed to avoid overfitting the data
(Perrone and Cooper, 1992).

The nonlinear convex optimization problem is as follows.

Min 1
n
∑n

i = 1

(
yi−

∑k
j = 1 wjŷij

)2

s.t.
(2)

∑k
j = 1 wj = 1, wj ≥ 0,∀j = 1 . . . ,k. In which wj is the

weight of base model j (j = 1 . . . , k), n is the total number of
observations, yi is the true value of observation i, and ŷij is the
prediction of observation i by base model j.

Stacked Generalized Ensemble Method
Stacked generalization is referred to combining several base
estimators by performing at least one more level of machine
learning task. Usually, cross-validation is used to generate OOB

predictions form the training samples and learn the higher-
level machine learning models (Wolpert, 1992). The second level
learner can be any choice of ML models. In this study we have
selected linear regression, LASSO, random forest and LightGBM
as the second level learners.

RESULTS

The historical county-level data of the US Corn Belt states
(Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri,
Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin)
spanning across years 1980–2019 were used to train all
considered models. The data from the years 2017, 2018, and 2019,
in turn, were reserved as the test data and the data from the years
before each of them formed the training data.

TABLE 2 | Detailed structure of the CNN networks of CNN components designed for heterogenous ensemble models.

CNNs in the W-CNN component of model 1 CNNs in the S-CNN component of model 1

Input size 32 × 1 Input size 10 × 1

Layer name FS NF S P Layer name FS NF S P

Conv1 6 2 1 Valid Conv1 3 2 1 Valid

Average pooling 1 2 – 2 Valid Average pooling 1 2 – 2 Valid

Conv2 3 2 1 Valid Conv2 3 2 1 Valid

Average pooling 2 2 – 2 Valid Average pooling 2 2 – 2 Valid

Conv3 3 2 1 Valid Conv3 3 2 1 Valid

Average pooling 3 2 – 2 Valid Output size 2 × 1

Output size 2 × 1

CNNs in the W-CNN component of model 2 CNNs in the S-CNN component of model 2

Input size 32 × 1 Input size 10 × 1

Layer name FS NF S P Layer name FS NF S P

Conv1 6 3 1 Valid Conv1 3 3 1 Valid

Average pooling 1 2 – 2 Valid Average pooling 1 2 – 2 Valid

Conv2 3 3 1 Valid Conv2 3 3 1 Valid

Average pooling 2 2 – 2 Valid Average pooling 2 2 – 2 Valid

Conv3 3 3 1 Valid Conv3 3 3 1 Valid

Average pooling 3 2 – 2 Valid Output size 3 × 1

Output size 3 × 1

CNNs in the W-CNN component of model 3 CNNs in the S-CNN component of model 3

Input size 32 × 1 Input size 10 × 1

Layer name FS NF S P Layer name FS NF S P

Conv1 6 4 1 Valid Conv1 3 4 1 Valid

Average pooling 1 2 – 2 Valid Average pooling 1 2 – 2 Valid

Conv2 3 4 1 Valid Conv2 3 4 1 Valid

Average pooling 2 2 – 2 Valid Average pooling 2 2 – 2 Valid

Conv3 3 4 1 Valid Conv3 3 4 1 Valid

Average pooling 3 2 – 2 Valid Output size 4 × 1

Output size 4 × 1

(Continued)
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TABLE 2 | Continued

CNNs in the W-CNN component of model 4 CNNs in the S-CNN component of model 4

Input size 32 × 1 Input size 10 × 1

Layer name FS NF S P Layer name FS NF S P

Conv1 6 5 1 Valid Conv1 3 5 1 Valid

Average pooling 1 2 – 2 Valid Average pooling 1 2 – 2 Valid

Conv2 3 5 1 Valid Conv2 3 5 1 Valid

Average pooling 2 2 – 2 Valid Average pooling 2 2 – 2 Valid

Conv3 3 5 1 Valid Conv3 3 5 1 Valid

Average pooling 3 2 – 2 Valid Output size 5 × 1

Output size 5 × 1

CNNs in the W-CNN component of model 5 CNNs in the S-CNN component of model 5

Input size 32 × 1 Input size 10 × 1

Layer name FS NF S P Layer name FS NF S P

Conv1 6 6 1 Valid Conv1 3 6 1 Valid

Average pooling 1 2 – 2 Valid Average pooling 1 2 – 2 Valid

Conv2 3 6 1 Valid Conv2 3 6 1 Valid

Average pooling 2 2 – 2 Valid Average pooling 2 2 – 2 Valid

Conv3 3 6 1 Valid Conv3 3 6 1 Valid

Average pooling 3 2 – 2 Valid Output size 6 × 1

Output size 6 × 1

The tables on the left show the details of the CNNs designed for each weather feature, and the right tables present the ones for the CNNs designed for each soil feature.
FS, NF, S, and P represent filter size, number of features, stride, and padding.

TABLE 3 | Test prediction error (RMSE) and coefficient of determination (R2) of designed ensemble models compared to the benchmark ensembles (Shahhosseini et al.,
2020, 2021).

ML models BEM GEM Stacked regression Stacked LASSO Stacked random forest Stacked LightGBM

RMSE
(kg/ha)

R2 (%) RMSE
(kg/ha)

R2 (%) RMSE
(kg/ha)

R2 (%) RMSE
(kg/ha)

R2 (%) RMSE
(kg/ha)

R2 (%) RMSE
(kg/ha)

R2 (%)

Test year: 2017—Training years: 1980–2016

Benchmark 960 79.6 1,002 77.7 1,014 77.2 1,012 77.3 1,024 76.7 999 77.9

Heterogenous 1,003 77.7 969 79.2 908 81.8 908 81.7 978 78.8 933 80.7

Homogenous 954 79.8 944 80.3 875 83.0 874 83.1 936 80.6 906 81.8

Test year: 2018—Training years: 1980–2017

Benchmark 1,145 74.7 1,047 78.8 1,041 79.0 1,041 79.0 1,101 76.6 1,070 77.9

Heterogenous 1,065 78.0 1,094 76.8 1,072 77.8 1,072 77.8 1,116 75.9 1,087 77.2

Homogenous 1,033 79.4 992 81.0 1,058 78.4 1,056 78.4 1,077 77.6 1,065 78.1

Test year: 2019—Training years: 1980–2018

Benchmark 936 72.6 1,035 66.4 1,028 66.9 1,035 66.5 1,084 63.2 1,029 66.9

Heterogenous 900 74.6 1,083 63.3 1,282 48.5 1,279 48.8 1,225 53.0 1,234 52.3

Homogenous 866 76.5 867 76.5 885 75.5 883 75.6 932 72.8 895 74.9

As mentioned in the section “Ensemble Creation,” the
ensemble creation methods require OOB predictions from all
the input models that represent the test data to optimally
combine the base models. The current procedure to create these
OOB predictions is using a cross-validation method. However,
due to time-dependency in the training data and the fact
that in the homogenous ensemble models the training data

is resampled k times, it is not possible to find a consistent
vector of OOB predictions across all models and use it to
combine the base models. Therefore, 20% of the training data
was considered as the validation data and was not used in
model training. It is noteworthy that the training data is split
to 20–80% with a stratified split procedure to ensure the
validation data has a similar distribution with the training data.
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FIGURE 4 | Comparing prediction error (relative RMSE) of the homogeneous model with the benchmark on the data from the year 2019 taken as the test data.

FIGURE 5 | Train and test loss vs. epochs of some of the trained CNN-DNN models. Similar observations were made for all trained models and only some of them
are shown for illustration purposes. The shown examples are representative of all the examples.

FIGURE 6 | Comparing prediction error (relative RMSE) of some of the designed ensembles across all US Corn Belt states on the data from the year 2019 taken as
the test data.

To achieve the stratified splits, we binned the observations in
the training data into five linearly spaced bins based on their
corresponding yield values.

The CNN structure of the base models trained for creating
homogenous ensemble models are same as the one shown in

Table 1. We have resampled the training data 10 times (with
replacement) and trained the same CNN-DNN model on each
of the 10 newly created training data. The OOB predictions are
the predictions made by each of the 10 mentioned models on the
validation data.
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FIGURE 7 | Relative percentage error of the Homogenous GEM predictions
shown on a choropleth map of the US Corn Belt.

On the other hand, the base models trained for creating
heterogenous ensemble models are not the same and they differ
in their CNN hyperparameters (number of filters). We trained
five different CNN-DNN base models on the same training data
and formed the OOB predictions by each of those five models
predicting the observations in the validation data. The details
of the CNN components in these five models are shown in the
Table 2.

To evaluate the performance of the trained heterogenous
and homogenous CNN-DNN ensembles, the ensembles
created from five individual machine learning models (linear
regression, LASSO, XGBoost, random forest, and LightGBM)
were considered as benchmark and were trained on the same
data sets developed for training the CNN-DNN ensemble
models. The benchmark models were run on a computer
equipped with a 2.6 GHz Intel E5-2640 v3 CPU, and 128 GB
of RAM. The CNN-DNN models were run on a computer
with a 2.3 GHz Intel E5-2650 v3 CPU, NVIDIA k20c GPU,
and 768 GB of RAM.

The predictive performance of these ensemble models was
previously shown in two separate published papers (Shahhosseini
et al., 2020, 2021). The results are summarized in the Table 3
(see Supplementary Figure 1 for XY plots of some of the
designed ensembles).

The heterogenous and homogenous ensemble models both
provide improvements over the well-performing ensemble
benchmarks in most cases (Table 3). However, the heterogenous
ensemble model is constantly outperformed by the homogeneous
ensemble models. This is in line with what we expected as the
homogeneous model inherently introduces more diversity
in the ensemble base models which in turn will result in
lowering the prediction variance and consequently better
generalizability of the trained model. The performance
comparison of homogeneous ensemble model compared to
the benchmark is shown in the Figure 4. Another observation in
the Table 3 is that in case of homogenous ensembles, some of the
ensemble creation methods have made better predictions than
average homogeneous ensemble (BEM) i.e., bagged CNN-DNN.
This again confirms our assertion that assigning unequal weights
to the bagged models results in better predictions.

The generalizability of all trained models is proved as we
have shown that in three test scenarios, the ensemble models
demonstrate superb prediction performance. This also can be
observed by looking at the train and test loss vs. epochs graphs.

TABLE 4 | Test prediction error (RMSE) and coefficient of determination (R2) of designed ensemble models compared to the benchmark ensembles (Shahhosseini et al.,
2020, 2021) when applied on 2020 test data.

ML models BEM GEM Stacked regression Stacked LASSO Stacked random forest Stacked LightGBM

RMSE
(kg/ha)

R2 (%) RMSE
(kg/ha)

R2 (%) RMSE
(kg/ha)

R2 (%) RMSE
(kg/ha)

R2 (%) RMSE
(kg/ha)

R2 (%) RMSE
(kg/ha)

R2 (%)

Test year: 2020—Training years: 1980–2018

Benchmark 1,115 68.4 1,165 65.5 1,166 65.4 1,170 65.2 1,210 62.8 1,183 64.4

Heterogenous 972 76.0 989 75.1 992 75.0 991 75.0 1,048 72.1 1,000 74.6

Homogenous 982 75.5 958 76.7 1,001 74.5 999 74.6 1,053 71.8 1,018 73.6
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Some examples of these graphs are shown in Figure 5. As the
figure suggests, the dropout layers could successfully prevent
overfitting of the CNN-DNN models, and the test errors tend to
stay stable across the iterations. The generalizability of the trained
models will further be discussed in the chapter 4.

DISCUSSION

Models’ Performance Comparison With
the Literature
We designed a novel CNN-DNN ensemble model with the
objective of providing the most accurate prediction model for
county-level corn yield across US Corn Belt states. The numerical
results confirmed the superb performance of the designed
ensemble models compared to literature models. Table 3
showed that the homogenous ensemble models outperform the
benchmark (Shahhosseini et al., 2020) by 10–16%. In addition,
comparing the results with another well-performing prediction
model in the literature (Khaki et al., 2020b), the homogeneous
ensemble could outperform the prediction results of Khaki et al.
(2020b) by 10–12% in common test set scenarios (2017 and
2018 test years). The CNN-RNN model developed by Khaki
et al. (2020b) presented test prediction errors of 988 kg/ha
(15.74 bu/acre) and 1,107 kg/ha (17.64 bu/acre) for the test
years 2017 and 2018, respectively, while the homogeneous
ensemble model designed here resulted in test prediction errors
of 874 kg/ha (13.93 bu/acre) and 992 kg/ha (15.8 bu/acre) for the
test years 2017 and 2018, respectively.

This is the first study that designed a novel ensemble
neural network architecture that has the potential to make the
most accurate yield predictions. The model developed here is
advantageous compared to the literature due to the ability of the
ensemble model in decreasing prediction variance by combining
diverse models as well as reducing prediction bias by training the
ensemble model based on powerful base models. Shahhosseini
et al. (2020) had used ensemble learning for predicting county-
level yield prediction, but neural network-based architectures
were not considered, and the models were trained only on three
states (IL, IA, IN). Khaki et al. (2020b) trained a CNN-RNN
model for predicting US Corn Belt corn and soybean yields,
but the model developed there is unable to make predictions
as accurate as the models designed in this study and is not
benefitting from the diversity in the predictions.

Including remote sensing data as well as simulated data from
crop model like APSIM could potentially improve the predictions
made by our models further which can be pursued as the future
research direction. In addition, we assumed all considered farms
are rainfed, while in states such as Kansas and Nebraska many
of the farms are irrigated. Surprisingly, the prediction accuracy
in these states was comparable with other states (Figures 6, 7).
We believe this is because of the use of average or rainfed corn
yields from these states, not irrigated yields to train our models.
Including the irrigation data can result in better prediction and
perhaps new models for those states and is another possible future
research direction.

Comparing the Models’ Performance
Across US Corn Belt States
Figure 6 compares the prediction errors of the test year of 2019
for some of the designed ensemble models represented by relative
root mean squared error (RRMSE) for each of the 12 US Corn
Belt states under study. The models performed the best in Iowa,
Illinois, and Nebraska, and worst in Kansas and South Dakota.
The worse prediction error in Kansas can be explained by the
fact that the majority of the farms in Kansas state are irrigated
and this irrigation is not considered as one of the variables when
training the ensemble models. It is clear that including irrigation
variable can improve the predictions. However, that was not
the case for Nebraska, suggesting that irrigation may not be the
only reason for the low performance in Kansas. Upon further
investigate, we realized the corn yields in the Nebraska state are
highly correlated with the weather features especially maximum
temperature, while the corn yields in the Kansas state don’t show
this amount of correlation to weather features and are slightly
correlated with both weather and soil features. In other words,
it seems that although the weather features are adequate for
making decent predictions in the Nebraska state, this is not the
case for the Kansas.

Figure 7 depicts the relative error percentage of each year’s
test predictions on a county choropleth map of the US Corn
Belt. The errors are calculated by dividing over/under prediction
of the homogenous GEM model divided by the yearly average
yield. This figure proves that the model is robust and can be
easily generalized to other environments/years. One observation
is that the model keeps overpredicting the yields in the Kansas
state. This could be explained by the irrigation assumption we
made when developing the data set. We assumed all the farms
are rainfed and did not consider irrigation in states like Kansas in
which some of the farms are irrigated.

Generalization Power of the Designed
Ensemble CNN-DNN Models
To further test the generalization power of the designed
ensembles, we gathered the data of all considered US Corn Belt
states for the year 2020 and applied the trained heterogeneous
and homogeneous ensemble models as well as the benchmarks
on the new unseen observations of the year 2020. As the results
imply (Table 4), both heterogenous and homogeneous ensemble
models provide better predictions than the benchmark ensemble
models, with the homogeneous Generalized Ensemble Model
(GEM) being the most accurate prediction model. This model
could provide predictions with 958 kg/ha root mean squared
error and explain about 77% of the total variability in the
response variable.

CONCLUSION

In this study we designed two novel CNN-DNN ensemble types
for predicting county-level corn yields across US Corn Belt
states. The base architecture used for creating the ensembles is
a combination of CNNs and deep neural networks. The CNNs
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were in charge of extracting useful high-level features from the
soil and weather data and provide them to a fully connected
network for making the final yield predictions. The two ensemble
types were heterogeneous and homogeneous which used the
same base CNN-DNN structure but generated the base models
in different manners. The homogenous ensemble used one fixed
CNN-DNN network but applied it on multiple bagged data
sets. The bagged data sets introduced a certain level of diversity
that the created ensembles had benefited from. On the other
hand, the heterogeneous ensemble used different base CNN-
DNN networks which shared the same structure but differed
in their number of filters. The different numbers of filters were
considered as another method of introducing diversity into the
ensembles. All base models generated from either of these two
ensemble types were combined with each other using three
ensemble creation methods: BEM, GEM, and stacked generalized
ensembles. The numerical results showed that the ensemble
models of both homogeneous and heterogeneous types could
outperform the benchmark ensembles which had previously
proved to be effective (Shahhosseini et al., 2020, 2021) as well
as well-performing CNN-RNN architecture designed by Khaki
et al. (2020b). In addition, homogeneous ensembles provide
the most accurate predictions across all US Corn Belt states.
The results demonstrated that in addition to the fact that these
ensemble models benefitted from higher level of diversity from
the bagged data sets, they provided a better combination of
base models compared to simple averaging in the bagging. The

generalization power of the designed ensembles was proved by
applying them on the unseen observations of the year 2020.
Once again heterogeneous and homogeneous ensemble models
outperformed the benchmark ensembles.
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