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Trans-isopentenyl diphosphate synthases (TIDSs) genes are known to be  important 
determinants for terpene diversity and the accumulation of terpenoids. The essential oil 
of Cinnamomum camphora, which is rich in monoterpenes, sesquiterpenes, and other 
aromatic compounds, has a wide range of pharmacological activities and has therefore 
attracted considerable interest. However, the TIDS gene family, and its relationship to the 
camphor tree (C. camphora L. Presl.), has not yet been characterized. In this study, 
we identified 10 TIDS genes in the genome of the C. camphora borneol chemotype that 
were unevenly distributed on chromosomes. Synteny analysis revealed that the TIDS gene 
family in this species likely expanded through segmental duplication events. Furthermore, 
cis-element analyses demonstrated that C. camphora TIDS (CcTIDS) genes can respond 
to multiple abiotic stresses. Finally, functional characterization of eight putative short-chain 
TIDS proteins revealed that CcTIDS3 and CcTIDS9 exhibit farnesyl diphosphate synthase 
(FPPS) activity, while CcTIDS1 and CcTIDS2 encode geranylgeranyl diphosphate synthases 
(GGPPS). Although, CcTIDS8 and CcTIDS10 were found to be catalytically inactive alone, 
they were able to bind to each other to form a heterodimeric functional geranyl diphosphate 
synthase (GPPS) in vitro, and this interaction was confirmed using a yeast two-hybrid 
assay. Furthermore, transcriptome analysis revealed that the CcTIDS3, CcTIDS8, CcTIDS9, 
and CcTIDS10 genes were found to be more active in C. camphora roots as compared 
to stems and leaves, which were verified by quantitative real-time PCR (qRT-PCR). These 
novel results provide a foundation for further exploration of the role of the TIDS gene family 
in camphor trees, and also provide a potential mechanism by which the production of 
camphor tree essential oil could be  increased for pharmacological purposes through 
metabolic engineering.
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INTRODUCTION

Cinnamomum camphora is a subtropical evergreen tree species 
that has been widely cultivated in southern China for over 
1,500 years (Chen et al., 2020b). Studies have shown that essential 
oil extracted from the leaves of the camphor tree, which is 
rich in monoterpenes, sesquiterpenes, and other aromatic 
compounds, has a wide range of pharmacological activities, 
including antibacterial, antioxidant, and insecticidal properties 
(Yu et  al., 2019).

Cinnamomum camphora subspecies can be  grouped into 
five chemotypes according to the dominant component in their 
essential oils, which were extracted from their leaves: linalool, 
D-borneol, camphor, cineole, or nerolidol (Guo et  al., 2017; 
Chen et  al., 2018). These terpenoids have important industrial 
and pharmaceutical applications. For example, D-borneol is a 
well-established traditional Chinese medicine that is used to 
treat cardiovascular diseases, including stroke, coronary heart 
disease, and angina pectoris (Yang et  al., 2020). D-Borneol 
has been documented in various versions of the Chinese 
Pharmacopoeia (Huang et  al., 2016; Liang et  al., 2018; Ren 
et  al., 2018; Chai et  al., 2019; Chen et  al., 2019; Yang et  al., 
2020), and it is in high demand as a key ingredient in many 
traditional Chinese herbal formulas. This compound can also 
be  used to relieve pain resulting from wounds, injuries, burns, 
and cuts (Yang et al., 2020). However, despite the high medicinal 
value of volatile terpenoids, limited plant resources, and low 
extraction efficiency limit the amounts of the essential oils 
from C. camphora that can be obtained for research or practical 
applications (Ma et  al., 2021).

An increasing body of research has demonstrated that 
metabolic engineering consists of optimizing the genetic and 
regulatory mechanisms that govern cellular processes, and this 
is an effective method that can be used to increase the production 
of active natural products in microorganisms and plants (Choi 
et  al., 2019; Li and Mutanda, 2019). Identifying the genes that 
govern production and accumulation of the essential oil in 
C. camphora could therefore enable the implementation of this 
approach to increase the essential oil yield, which would assist 
in meeting high demand.

Terpenoids are the largest category of plant specialized 
metabolites. More than 55,000 of these compounds have thus 
far been described, and are grouped into hemi- (C5), mono- 
(C10), sesqui- (C15), di- (C20), sester- (C25), tri- (C30), tetra- 
(C40), and poly- (C50) terpenoids according to the number 
of carbon atoms they contain (Dudareva et al., 2004; Pichersky 
et  al., 2006; Ueoka et  al., 2020). Despite diverse functions and 
structures, all terpenoids contain two universal C5 units: 
isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl 
diphosphate (DMAPP). The mevalonic acid (MVA) pathway 
gives rise to IPP, and via enzymatic isomerization, to DMAPP, 
whereas the methylerythritol phosphate (MEP) pathway directly 
produces both IPP and DMAPP. IPP and DMAPP can 
be  condensed (head to tail) by prenyltransferase (PTS) or 
isoprenyl diphosphate synthase (IDS), resulting in a series of 
prenyl diphosphates with various chain lengths. These linear 
precursors are then catalyzed by terpene synthase (TPS) and 

other modifying enzymes to form a variety of different terpenoids 
(Tholl and Lee, 2011; Athanasakoglou and Grypioti, 2019; 
Johnson et al., 2019; Johnson and Bhat, 2019; Adal and Mahmoud, 
2020; Hivert et  al., 2020; Miller and Bhat, 2020).

Isoprenyl diphosphate synthase is located at the branch point 
of the terpenoid biosynthetic pathway, and plays a vital role 
in the formation of diverse terpenoid structures (Jia and Chen, 
2016). Differences in terpenoid synthase gene expression and 
the supply of precursors determine the terpenoid composition 
produced by plants (Dudareva et  al., 2000; Johnson et  al., 
2019; Johnson and Bhat, 2019; Adal and Mahmoud, 2020; 
Miller and Bhat, 2020). Both trans- and cis- isomers of the 
products of IDS exist (Liang et  al., 2002). Trans-IDS (TIDS) 
enzymes synthesize isoprenyl diphosphates (Barja and Rodríguez-
Concepción, 2020) and are classified as short-chain (SC-TIDS, 
C10–20), medium-chain (MC-TIDS, C25–35), or long-chain 
(LC-TIDS, C40–50), depending on the length of the isoprenyl 
diphosphates that they produce (Wang et  al., 2019). Cis-IDSs 
(CIDSs) were initially predicted to synthesize long-chain isoprenyl 
diphosphates (>C50) for dolichol and polyprenol production 
(Jia and Chen, 2016). Although, TIDSs and CIDSs have 
similarities in substrate preference and reaction products, they 
utilize different catalytic mechanisms and may be  readily 
distinguished from one another by their primary amino acid 
(AA) sequences (Akhtar et  al., 2013).

Short-chain-trans-isopentenyl diphosphate synthase includes 
homodimeric or heterodimeric geranyl diphosphate synthase 
(GPPS), farnesyl diphosphate synthase (FPPS), and geranylgeranyl 
diphosphate synthase (GGPPS; Jia and Chen, 2016), and their 
products provide the precursors for monoterpenes, 
sesquiterpenes, and diterpenes, respectively. Geranylfarnesyl 
diphosphate synthase (GFPPS) and polyprenyl diphosphate 
synthase (PPPS) are MC-TIDSs, whereas solanesyl diphosphate 
synthase (SPPS) is classified as an LC-TIDS (Vandermoten 
et  al., 2009; Nagel et  al., 2015; Wang et  al., 2016; Kopcsayová 
and Vranová, 2019).

Phylogenetic analysis has revealed that plant TIDS genes 
can be documented into five subfamilies according to sequence 
identity: TIDS-a, -b, -c, and -e including the genes encoding 
FPPS, SPPS, PPPS, and small subunits (SSUs) of GPPS, 
respectively (Jia and Chen, 2016). The TIDS-d subfamily is 
more complex, and it includes genes encoding GGPPS, GFPPS, 
and PPPS that share a high sequence identity of at least 40%, 
with some shared identities of 55% or greater (Jia and Chen, 
2016; Cui et  al., 2019). Identification of entire TIDS gene 
families in plant species is required to determine their functions 
and to understand their combined effect on the specific profile 
of terpenoids produced.

Thus far, this level of TIDS gene family characterization 
has only been achieved in the model plant Arabidopsis thaliana 
(Kopcsayová and Vranová, 2019), in which 16 TIDS genes 
were identified, and in the tomato plant Solanum lycopersicum 
(Zhou and Pichersky, 2020), in which 10 were characterized. 
Studies characterizing these TIDS genes have revealed that 
while most of the synthase types they encode are homodimeric, 
GPPS may exist as either a homodimer or a heterodimer 
containing a small subunit (SSU) and a large subunit (LSU), 
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or both (Rai et al., 2013; Chen et al., 2015; Adal and Mahmoud, 
2020). The SSU can be  further separated into two types (I 
and II), which are generally inactive alone. The LSU may be 
either inactive alone or possess GGPPS activity, while its 
heterodimer is an active GPPS (Burke et al., 2004; Rai et al., 2013).

Given that isoprenyl diphosphate biosynthesis is a crucial 
determinant for the formation of downstream terpenoid type 
and their yield, in-depth studies on TIDSs in the camphor 
tree would be  instrumental in optimizing the production of 
these medicinally valuable products. Here, for the first time, 
we conducted a genome-wide analysis in the borneol chemotype 
of C. camphora to identify and characterize TIDS genes and 
the proteins they encode.

MATERIALS AND METHODS

Plant Materials
Borneol chemotype C. camphora plants were purchased from 
Ji’an Yu Feng Natural Species Co., Ltd. (Ji’an, China), and 
grown in an artificial climate box (Shanghai Yiheng Instrument 
Co., Ltd., Shanghai, China) at 25°C with a 12 h light and then 
12 h dark photoperiod. We verified the origin of these plants 
through DNA barcodes.

Genome-Wide Identification of TIDS Genes 
in C. camphora
We downloaded TIDS protein sequences of A. thaliana and 
S. lycopersicum from The Arabidopsis Information Resource 
(TAIR)1 and the Sol Genomics Network (Wijfjes and Smit, 2019).2 
We  then used the Protein Basic Logical Alignment Search Tool 
(BLASTP, United States National Library of Medicine)3 to compare 
these sequences with the C. camphora database (unpublished), 
using previously established thresholds for e-value (≤1e−5) and 
identity (Cui et  al., 2019). Any genes identified were then used 
as queries for a second round of BLASTP searches to ensure 
no putative CcTIDS genes were missed. We  also conducted a 
Hidden Markov Model (HMM) search for sequence homologs 
using the HMMER 3.0 program and the polyprenyl synthase 
domain PF00348 as a bait, and previously established e-value 
and identity thresholds (Wong et  al., 2015; Cui et  al., 2019).

The BLASTP and HMM search results were then integrated 
to identify candidate TIDS genes. Their sequences were then 
submitted to the online Pfam database and NCBI conserved 
domains database (CDD) in order to verify the presence of 
the polyprenyl synthase domain (Zhu et  al., 2020). The 
physicochemical parameters of each CcTIDS, including molecular 
weight and isoelectric point, were calculated using the ExPASy 
online tool (Zhu et  al., 2020).4 The MEME online tool5 was 
used to discover conserved domains in the amino acid sequence 
of each CcTIDS (Zhu et al., 2020). Finally, we used the chloroP 

1 https://www.arabidopsis.org/index.jsp
2 https://solgenomics.net/organism/Solanum_lycopersicum/genome/
3 https://blast.ncbi.nlm.nih.gov/Blast.cgi
4 https://web.expasy.org/protparam
5 https://meme-suite.org/meme/tools/meme

(Emanuelsson et al., 1999),6 TargetP (Emanuelsson et al., 2000),7 
Wolfpsort (Horton et  al., 2007),8 and Plant-mPloc (Chou and 
Shen, 2010)9 tools to predict the subcellular localization of 
each CcTIDS.

Phylogenetic Relationship, Exon-Intron 
Structure, Chromosomal Localization, and 
Cis-Acting Element Analysis
A maximum likelihood (ML) evolutionary tree was constructed 
using the identified C. camphora TIDS amino acid sequences 
and those of 10 other plant species (A. thaliana: Arabidopsis 
Genome Initiative, 2000; Oryza sativa: Yu et  al., 2002; 
Physcomitrella patens: Rensing et  al., 2008; Selaginella 
moellendorffii: Banks et  al., 2011; S. lycopersicum: Tomato 
Genome Consortium, 2012;  Amborella trichopoda: Amborella 
Genome Project, 2013; Picea abies: Nystedt et  al., 2013; Zea 
mays: Jiao et  al., 2017; and Cinnamomum micranthum: Chaw 
et  al., 2019) and the Molecular Evolutionary Genetics Analysis 
(MEGA) tool (version 7.0; Kumar et  al., 2016) with the best 
models of JTT + G. Bootstrap value, which indicates the reliability 
of each branch node, was set at 1,000 replicates. The resulting 
tree was visualized using EvolView v3 (Subramanian et al., 2019).

Exons and introns for each TIDS were identified using the 
gene transfer format (GTF) file from the C. camphora genome, 
which contains information regarding gene structure, and 
visualized using TBtools (Chen et al., 2020a). Finally, in order 
to identify cis-regulatory elements, TBtools was used to extract 
the 2,000 bp upstream sequence for each TIDS gene identified 
in the C. camphora genome (Chen et al., 2020a). We  then 
compared these sequences with the PlantCARE database of 
plant cis-acting regulatory elements (Lescot et al., 2002). Circos 
graphs showing the chromosomal localization and results of 
the synteny analysis of the CcTIDS sequences were drawn 
using TBtools (Chen et  al., 2020a).

RNA Extraction, cDNA Synthesis, and 
Gene Cloning
Total RNA was extracted from the root, stem, and leaf of 
C. camphora using the Plant Pure Plant RNA Kit (Aidlab, Beijing, 
China). cDNA was synthesized from 1 μg of high-quality total 
RNA (OD 260/280 = 1.8–2.2, OD 260/230 ≥ 2.0, RIN ≥ 6.5, and 
28S:18S ≥ 1.0) using the TransScript One-Step gDNA Removal 
and cDNA Synthesis SuperMix kit (TransGen Biotech, Beijing, 
China) according to the manufacturer’s instructions (Su et al., 2019).

The primers use to amplify eight putative SC-TIDSs were 
designed using the Primer Premier 5 program 
(Supplementary Table S4). Amplification by PCR was conducted 
using the 2 × TransStart FastPfu PCR SuperMix (TransGen 
Biotech, Beijing, China) and cDNA as the template. Purified 
PCR products were then cloned into the pEASY-blunt vector 
using previously described methods (Su et  al., 2019).

6 http://www.cbs.dtu.dk/services/ChloroP/
7 http://www.cbs.dtu.dk/services/TargetP/
8 https://wolfpsort.hgc.jp/
9 http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
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FIGURE 1 | Circos graph showing the chromosomal locations and duplicated gene pairs of trans-isopentenyl diphosphate synthases (CcTIDS) genes in the  
C. camphora genome. The blue segments represent the 12 chromosomes present in this species. Duplicated genes are indicated as red lines between each  
gene pair.

Quantitative Real-Time PCR Analysis
Quantitative real-time PCR (qRT-PCR) was performed 
using the TransStar Tip Green qPCR SuperMix (TransGen 
Biotech, Beijing, China) and the CFX96 Touch Deep Well 
platform (Bio-Rad, United  States; Yang et  al., 2020). We  used 
a previously described reaction system composition and qRT-PCR 
procedure (Yang et  al., 2020). Primers are listed in 
Supplementary Table S4.

Subcellular Localization of CcTIDS 
Proteins
Full-length putative SC-TIDS gene sequences without stop 
codons were each fused with enhanced green fluorescent 
protein (EGFP) and ligated into the pAN580 vector (using 
the primers described in Supplementary Table S4). The 
recombinant vectors were then transformed into Arabidopsis 
protoplasts using polyethylene glycol (PEG; Zhou and Pichersky, 
2020). Protoplast isolation and recombinant vector transformation 
were performed with protocols described in previous studies 
(Yoo et  al., 2007; Wang et  al., 2018). EGFP fluorescent signals 
were observed using a Zeiss laser scanning microscope (LSM) 
800 (Zeiss, Germany) as previously described (Beck et al., 2013; 
Su et  al., 2019).

Recombinant Expression and Enzymatic 
Assays
Truncated or full length versions of the eight putative SC-TIDSs 
were ligated into the pET32a [polyhistidine (6x His) tag, Wego, 
Guanghzou, China] or pMAL-C5X (MBP tag, Wego, Guanghzou, 
China) expression vectors using the pEASY-Basic Seamless 
Cloning and Assembly Kit (TransGen Biotech) following the 
manufacturer’s instructions (Su et  al., 2019), using the primers 
listed in Supplementary Table S4. Constructs were verified 
using Sanger sequencing. Upon sequence confirmation, 
recombinant plasmids were transferred into the expression 
strain Escherichia coli Rossetta (DE3; Huayueyang, Beijing, 
China). Heterologous protein expression in this strain and the 
purification of the fusion protein were conducted according 
to previously established methods (Su et  al., 2019).

In order to establish the function of each SC-TIDS, a 200-μl 
in vitro enzymatic activity reaction containing 25 mmol/L MOPSO 
buffer with pH of 7.0, 10 mmol/L magnesium chloride, 10% 
glycerin, 20–50 μg protein, and substrates (150 μmol/L 
IPP + 40 μmol/L DMAPP or GPP or FPP, Sigma-Aldrich, 
United States), was conducted. Each mixture was first incubated 
at 30°C for 6 h, and then, 200 μl of 200 mmol/L Tris–HCl (pH 9.5), 
containing 2 units of bovine intestine alkaline phosphatase 
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(18 units mg−1; Sigma-Aldrich) and 2 units of potato apyrase 
(25.2 units mg−1; Sigma-Aldrich) were added (Rai et  al., 2013). 
An overnight hydrolysis reaction was carried out at 30°C. Ethyl 
acetate was then used to extract the enzymatic reaction buffer 
in 2 × 400 μl extractions (Su et al., 2019). The ethyl acetate extracts 
were concentrated to 100 μl under N2, and these concentrated 
extracts were then used for gas chromatography–mass spectrometry 
(GC–MS) analysis using previously described methods 
(Athanasakoglou and Grypioti, 2019; Yang et  al., 2020). The 
GPPS large and small subunits from Catharanthus roseus were 
also analyzed as a positive control (Rai et  al., 2013).

Yeast 2-Hybrid Assay
The interactions between the CcGPPS small and large subunits 
were verified by the following experiments: the truncated 
versions of these subunits were amplified from the cDNA of 
C. camphora, followed by fusing to the activation domain of 
the pGADT7 vector or the binding domain of the pGBKT7 
vector. Recombinant vectors were co-transformed into 
Saccharomyces cerevisiae AH109 yeast and sequentially cultivated 
on the synthetic dropout (SD) medium SD/-Trp/-Leu. The 
interaction between the two proteins was tested on SD/-Trp/-
Leu/-His/-Ade medium supplemented with 150 mM 3-amino-
1,24-triazole (3-AT).

RESULTS

Genome-Wide Identification of TIDS Genes 
in C. camphora
Based on the HMM scan and BLASTP search results, 10 full-
length, protein-coding TIDS-like gene sequences were identified 
in C. camphora, which we  numbered CcPTPS1–10 according 
to their locations on the chromosomes. These genes included 
eight putative SC-TIDS (two FPPSs, CcTIDS3 and CcTIDS9; 
two GPPSs, CcTIDS4 and CcTIDS5; three GGPPSs, CcTIDS1, 
CcTIDS2, and CcTIDS8; and one GPPS small subunit, CcTIDS10) 
and two putative LC-TIDS (SPPS, and CcTIDS6 and CcTIDS7), 
which were distributed along six of the 12 chromosomes 
(Figure  1). In addition, genome synteny analysis showed that 
three segmental duplications and no tandem duplication events 
likely occurred, suggesting that segmental duplication might 
be one of the reasons for TIDS gene family expansion (Figure 1).

The proteins encoded by the CcTIDS genes were found to 
have a minimum size of 298 AA and a maximum size of 428 
AA. All of the CcTIDS proteins had an isoelectric point (pI) 
<7, indicating that these proteins are rich in acidic AAs. Specific 
information for all CcTIDS proteins is shown in Table  1.

Phylogenetic Relationships Within the 
C. camphora TIDS Gene Family
A total of 100 TIDS-like genes were identified in 10 other 
plant species (Supplementary Tables S1 and S2). It can 
be  concluded from the number of TIDS genes contained in 
each species that as the complexity of the species increases, 
the greater amount TIDS it contains (Coman et  al., 2014).  TA
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FIGURE 2 | A phylogenetic tree constructed using putative or characterized TIDS genes from 11 sequenced land plant genomes and a neighbor joining approach. 
GPPS, geranyl diphosphate synthase; FPPS, farnesyl diphosphate synthase; GGPPS, geranylgeranyl diphosphate synthase; LSU, large subunit; SSUI/II, small 
subunit I/II; GFPPS, geranylfarnesyl diphosphate synthase; PPPS, polyprenyl diphosphate synthase; and SPPS, solanesyl diphosphate synthase.

In addition, fewer CcTIDS genes were found in C. camphora 
than those in A. thaliana, Populus trichocarpa, O. sativa, and 
Z. mays, but equal to those in S. lycopersicum and the stout 
camphor tree C. micranthum.

A ML evolutionary tree was built to determine the phylogenetic 
relationships between the C. camphora TIDS family and those 
found in the other plants (Figure  2). None of the genes apart 

from those in S. lycopersicum and A. thaliana has yet been 
functionally characterized. In order to better distinguish the 
functional attributes of the TIDS genes on each branch, we added 
several well-characterized TIDS genes when constructing the 
phylogenetic tree (Supplementary Table S3). The TIDS genes 
in the resulting tree clustered into recently described catalytically 
distinct subfamilies (Jia and Chen, 2016).
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A

D

B C

FIGURE 3 | Tran-prenyltransferase protein subfamily analysis based on phylogenetic relationships. (A) Intron-exon structures, (B) conserved motifs, (C) analysis of 
C. camphora (Cc)TIDS, Arabidopsis thaliana (At)TIDS, and Solanum lycopersicum (Sl)TIDS. (D) Legend depicting the protein sequence of the corresponding motif. 
GPPS, geranyl diphosphate synthase; FPPS, farnesyl diphosphate synthase; GGPPS, geranylgeranyl diphosphate synthase; LSU, large subunit; SSUI/II, small 
subunit I/II; GFPPS, geranylfarnesyl diphosphate synthase; PPPS, polyprenyl diphosphate synthase; and SPPS, solanesyl diphosphate synthase.

A

C

B

FIGURE 4 | (A) The number of cis-acting elements in each C. camphora (Cc)TIDS gene, indicated by the intensity of the red color and numbers in the grid. 
(B) Histograms indicating the number of cis-acting elements in each CcTIDS gene with functions in plant growth and development, phytohormone responsiveness, 
or stress responsiveness. (C) Pie charts showing the ratio of different cis-acting elements in each structural category.
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According to enzymatic activity and the relevance of genetic 
evolution, the subfamily encoding TIDS-e proteins was subdivided 
into two clades, which contained genes encoding GPPS small 
subunits I  and II. Among them, only one single GPPS small 
subunit-encoding C. camphora gene, CcTIDS10, was placed 
(within the small subunit I  clade), indicating that the genome 
of C. camphora only contained GPPS small subunit genes from 
this class. CcTIDS6 and CcTIDS7 were clustered closely with 
the genes encoding the TIDS-b subfamily of proteins, indicating 
that these two genes may function as SPPS enzymes.

CcTIDS1, CcTIDS2, and CcTIDS8 were found to belong to 
the TIDS-d subfamily, and therefore, may encode  GGPPS, 
GFPPS, or PPPS enzymes. CcTIDS3 and CcTIDS9 were clustered 
with genes encoding TIDS-a proteins, indicating that they may 
encode  FPPS enzymes. Although, the TIDS-c subfamily is 
known to contain mostly PPPS (Jia and Chen, 2016), genes 
encoding functionally characterized GPPS enzymes were included 
in this clade according to our analysis. Two CcTIDSs, CcTIDS4, 
and CcTTPS5, were clustered within this subfamily and were 

more closely related with the known GPPS-encoding genes, 
indicating that they may possess GPPS activity as well (Figure 2).

Conserved Motifs, Exon-Intron Structure, 
and Multiple Gene Alignment Analysis of 
CcTIDS in the Camphor Tree
The evolution of gene families may be accompanied by changes 
in gene structure, which may provide additional information 
from which the diversification of gene functions can be inferred 
(Ye et  al., 2017; Cui et  al., 2019; Li et  al., 2020). For this 
reason, we  further analyzed the organization of the exons and 
introns of CcTIDS genes and compared them with those from 
A. thaliana and S. lycopersicum. Our results showed that the 
TIDS genes within the same subgroup mostly exhibited similar 
arrangements of exons and introns. For instance, CcTIDS6 and 
CcTIDS7, which were assigned to the TIDS-b-encoding subfamily, 
possessed six introns each. CcTIDS1, CcTIDS2, and CcTIDS8 
were all found to contain no introns, indicating that they do 
not encode GFPPS, which are known to contain two introns, 

A B C

D E F

G H I

FIGURE 5 | Differential expression of C. camphora (Cc)TIDS genes in different tissues by transcriptome and quantitative real-time PCR (qRT-PCR). (A) FPKM value 
of the RNA sequencing data for each gene in leaf, root, and stem tissues. (B–I) Relative expression of each gene in the different plant tissues as calculated by qRT-
PCR, with red and blue representing high and low expression levels, respectively.
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although, they were closely clustered with known GFPPS genes, 
and belong to the same subfamily (Figure  1). However, it 
remains unclear whether these genes encode GPPS large subunits 
or GGPPS proteins.

Our analysis on conserved TIDS motifs showed that TIDS 
belonging to the same subfamily exhibited a similar motif 
composition and arrangement (Figures  3A–D). Catalytically 
important conserved motifs were recognized in every identified 
TIDS sequence after multiple sequence alignment of CcTIDS, 
A. thaliana TIDS (AtTIDS), and S. lycopersicum TIDS (SlTIDS). 

Two common aspartate-rich motifs, the first and second 
aspartate-rich motif (FARM and SARM, respectively), are known 
binding sites for DMAPP (Su et  al., 2019), and these were 
present in sequences of all the TIDS sequences except for 
those of CcTIDS10, AtGPPS small subunit II, and SlGPPS 
small subunit I.

In addition, two conserved cysteine-rich (CxxxC) motifs 
were found in CcTIDS10, AtGPPS small subunit II, and SlGPPS 
small subunit I, and one each in CcTIDS1, CcTIDS2, and 
CcTIDS8. These CxxxC motifs play important roles in the 
interaction between the two subunits of the plant heterodimer 
GPPS. Our data suggest that CcTIDS10 is most likely a GPPS 
small subunit that forms a heterodimer with CcTIDS1, CcTIDS2, 
or CcTPS8 as a GPPS large subunit (Supplementary Figure S1).

Cis-Element Analysis of the TIDS Genes in 
C. camphora
We analyzed cis-elements in the promoter of the CcTIDS genes 
to better understand their potential regulation and function. 
In total, 343 cis-acting elements were identified, and they were 
grouped into three categories, which were responsible for plant 
growth and development, phytohormone responsiveness, and 
stress responsiveness, according to previous research (Abdullah 
et  al., 2018). Of these, nine belong to the plant growth and 
development category, of which AAGAA motifs (involved in 
the endosperm) and AS-1 elements (involved in shoot expression) 
accounted for the highest proportion (19.05%).

The greatest proportion of cis-acting regulatory elements 
related to phytohormone response were myelocytomatosis (MYC) 
elements that are associated with methyl jasmonate (MeJA), 
accounting for 50%. All CcTIDS genes contained at least five 
MYC cis-acting elements, suggesting that CcTIDS gene expression 
might be  moderated by MeJA. Nearly half of all the cis-acting 
elements were associated with stress responsiveness (167/343), 
of which the most common three cis-acting elements were 
the STRE motif related to stress (19%), G-box (14%), and box 
4 (9%), which are associated with responsiveness to light 
(Figure  4). These results suggest that CcTIDS gene expression 
may be  induced or suppressed by MeJA, and these genes may 
play roles in plant responses to a variety of abiotic stressors.

Expression Patterns of CcTIDS Genes in 
Different C. camphora Tissues
Our sequence alignment, evolution, and gene structure analyses 
all indicated that the CcTIDS6 and CcTIDS7 genes most likely 
encode SPPS enzymes. Hence, only the eight putative SC-TIDS-
encoding genes were included in further analyses of expression 
patterns and subcellular localization, and an enzymatic assay.

To identify potential roles for CcTIDS genes in different 
tissues of C. camphora, we established a transcriptome database 
based on RNA sequencing of the leaves, roots, and stems 
(Accession number: PRJNA747104). qRT-PCR was used to 
verify these transcriptome data. We  found that the expression 
profiles of CcTIDS genes were tissue-specific (Figure  5). For 
example, CcTIDS1 and CcTIDS2 were upregulated in the leaf 
tissue compared with the root and stem, whereas the expression 

FIGURE 6 | Subcellular localization of eight putative C. camphora trans-
prenyltransferase (CcTIDS) enzymes in A. thaliana protoplasts. eGFP, green 
fluorescent protein fluorescence image; chlorophyll, chlorophyll 
autofluorescence image; bright-field, transmission image; merged, all 
channels (eGFP, chlorophyll, and bright-field) combined.
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level of CcTIDS3, 9, 8, and 10 were upregulated in the root 
compared with the other tissues. This may indicate that there 
are functional differences in CcTIDS according to the different 
C. camphora organs from which the tissue was derived.

Subcellular Localization of Putative 
SC-TIDS Proteins
Subcellular localization predictions using four different online 
software programs revealed that CcTIDS1, 2, 8, and 10 are 
likely to be located in plastids. However, the results for CcTIDS3, 
4, 5, and 9 were inconsistent (Table  1). In order to obtain 
exact subcellular location information for each candidate CcTIDS, 
we analyzed expression patterns using fluorescence microscopy 
(Figure  6). Consistent with all prediction programs, the GFP 
signals for CcTIDS1, 2, 8, and 10 were localized mainly within 
chloroplasts. Fluorescently tagged CcTIDS3 and CcTIDS9 
proteins were both localized in the cytoplasm, while fluorescent 
signals for CcTIDS4 and CcTIDS5 recombinant proteins indicated 
that they may be  located within mitochondria.

Heterologous Expression and in vitro 
Functional Characterization of the 
SC-TIDS Proteins
In vitro enzymatic assays were conducted using recombinant 
proteins extracted and purified from E. coli expression strains. 
The large subunit of CrGPPS was found to catalyze IPP and 
DMAPP to form geranyl diphosphate (GPP) and geranylgeranyl 
diphosphate (GGPP), whereas the small subunit of CrGPPS 
was found to be  inactive alone. However, when both subunits 
were co-incubated, they catalyzed the formation of GPP 
(Supplementary Figure S2). This is accordance with the results 
reported in previous research, indicating that the method is 
valid for the verification of SC-TIDS in vitro enzymatic activity 
(Rai et  al., 2013).

To characterize the two putative CcGPPS proteins (CcTIDS4 
and 5), full-length and truncated versions of CcGPPSs were 
both analyzed. However, full-length recombinant CcGPPS protein 
was found to be completely insoluble. Therefore, soluble protein 
that was purified from the truncated version of each CcGPPS 
was used in the in vitro enzymatic activity assays. Unexpectedly, 

no catalytic products were detected for the truncated versions 
of both CcTIDS4 and CcTIDS5 under the conditions used 
here (Table  2).

Two full-length putative CcFPPS proteins (CcTIDS 3 and 9) 
lacking a transit peptide were generated. As expected, both 
recombinant proteins exhibited FPPS activity, producing FPP 
as the unique product, indicating that these two TIDS proteins 
are FPP synthases. Therefore, we  reclassified these two TIDS 
proteins as CcFPPS1 and CcFPPS2 (Figure  7).

It was predicted that three putative CcGGPPS proteins (CcTIDS1, 
2, and 8) and one putative CcGPPS small subunit (CcTIDS10) 
contained a transit peptide. Therefore, truncated versions of these 
four proteins were fused to His or MBP tags, resulting in the 
formation of soluble protein. The activity of these four soluble 
proteins was detected in all substrate combinations. As a result, 
CcTIDS1 and 2 emitted a prominent chromatographic signal 
corresponding to geranylgeraniol (C20), demonstrating that 
CcTIDS1 and 2 function individually as bona fide GGPPS enzymes. 
Hence, these two proteins were renamed CcGGPPS1 and 
CcGGPPS2 (Figures  8A–F). In contrast, CcTIDS8 and 10 did 
not exhibit any chromatographic peak signal for farnesol (C15), 
geraniol (C10), or geranylgeraniol (C20), suggesting that these 
proteins are inactive alone (Figure  8G).

CcTIDS8 Interacts With CcTIDS10 to 
Generate GPP
Because CcTIDS10 was identified as the only CcGPPS small 
subunit, we determined whether this protein was able to interact 
with CcGGPPS1/2 or CcTIDS8 to form active heterodimers. 
Intriguingly, when CcTIDS10 was co-incubated with CcTIDS8, 
but not CcGGPPS1 or 2, GPP was detected as a sole product 
(Figures  8G-I).

A yeast two-hybrid system (Y2H) was used to confirm the 
interaction of CcTIDS10 with CcTIDS8. As expected, CcTIDS10 
was able to interact with CcTIDS8 and itself (Figure 8J). These 
results, along with the co-localization of CcTIDS10 and 
CcTIDS8  in the plastid, confirmed that the inactive CcTIDS10 
and CcTIDS8 interact to form heteromeric functional GPPS, 
generating GPP as the sole product. Thus, CcTIDS10 was 
designated as CcGPPS.small subunit (SSU), whereas CcTIDS8 
was renamed as CcGPPS.large subunit (LSU).

TABLE 2 | Functionally characterized enzymes in this study.

Genes Full-length ORF/bp Variants studied Accepted substrates Products Rename

CcTIDS1 1,149 Ala62-end DMAPP + IPP GGPP CcGGPPS1
CcTIDS2 1,161 Asp65-end DMAPP + IPP GGPP CcGGPPS2

CcTIDS3 1,050 Full length
DMAPP + IPP FPP

CcFPPS1
GPP + IPP FPP

CcTIDS4
1,263 Full length No activity - -
1,263 M101-end No activity -

CcTIDS5
1,284 Full length No activity - -
1,284 M108-end No activity -

CcTIDS8 1,149 Lys56-end No activity - CcGPPS.LSU

CcTIDS9 1,092 Full length
DMAPP + IPP FPP

CcFPPS2
GPP + IPP FPP

CcTIDS10 894 Asn65-end No activity - CcGPPS.SSU
CcTIDS8&CcTIDS10 1,149&894 Lys56-end&Asn65-end DMAPP + IPP GPP
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FIGURE 7 | Gas chromatography–mass spectrometry (GC–MS) profile showing in vitro reaction products of C. camphora trans-prenyltransferases CcTIDS3 
and CcTIDS9, where different prenyldiphosphates were used as substrates. Expression and purification of (A) CcTIDS3 and (B) CcTIDS9 recombinant protein 
from Escherichia coli Rosetta (DE3) harboring pET32a(+)–CcTIDS3/CcTIDS9, where lane 1 shows the total protein after induction, 2 shows the soluble protein, 
and 3–6 shows the purified CcTIDS3 or CcTIDS9 recombinant protein from the first to the fourth collected tube. The GC–MS chromatogram of the reaction 
products generated by (C) CcTIDS3 and (D) CcTIDS9 and the acid hydrolysis products of farnesol (FOH) standards. (E) Mass spectra of farnesol standard 
(shown in red) and products in the NIST14/Wiley275 library (blue). GPP, geranyl diphosphate; DMAPP, dimethylallyl diphosphate; and IPP, isopentenyl 
diphosphate.
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FIGURE 8 | Gas chromatography–mass spectrometry profile showing in vitro reaction products of C. camphora trans-prenyltransferases CcTIDS1, CcTIDS2, 
CcTIDS8, and CcTIDS9, where different prenyldiphosphates were used as substrates. Expression and purification of (A) CcTIDS1, (B) CcTIDS2, (C) CcTIDS8, 
and (D) CcTIDS10 recombinant protein from E. coli Rosetta (DE3) harboring pET32a(+)–CcTIDS1/CcTIDS10 or pMAL-C5x–CcTIDS2/CcTIDS8, where lane 1 
shows the total protein after induction, 2 shows the soluble protein, 3–6 show the purified CcTIDS1 or CcTIDS2, CcTIDS8, or CcTIDS10 recombinant protein 
from the first to the fourth collected tube. The GC–MS chromatogram of the reaction products generated by (E) CcTIDS8 and CcTIDS10, (F) CcTIDS1, and 
(G) CcPTS2 and the acid hydrolysis products of geraniol (GOH) and gerylgeraniol (GGOH) standards. (H) Mass spectra of GOH standard (red) and products in 
the NIST14/Wiley275 library (blue). (I) Mass spectra of the GGOH standard (red) and products in the NIST14/Wiley275 library (blue). (J) Confirmation of the 
interaction between CcTIDS8 and CcTIDS10 using a yeast two-hybrid system, where blue color indicates an interaction. Yeast cells harboring both constructs 
were spotted on synthetic dropout (SD) medium lacking Ade, His, Leu, and Trp (SD/−4) to test for protein interactions. AD: pGADT7; BD: pGBDT7; AD-T: 
pGADT7::T; BD-53: pGBKT7-53. Cells co-transformed with pGADT7::T and pGBKT7-53 were included as a positive control, and pGADT7 and pGBDT7 as a 
vector control.
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DISCUSSION

In this study, we reported the characterization of the C. camphora 
TIDS gene family for the first time. Of the 10 identified TIDS 
genes, three (CcGGPPS1, CcGGPPS2, and CcGPPS.LSU) were 
clustered within the subfamily encoding TIDS-d enzymes, while 
one single gene, CcTIDS10, was closely related to the subfamily 
encoding TIDS-e enzymes. Apart from those in gymnosperms, 
TIDS proteins within the TIDS-d and TIDS-e subfamily have 
been classified as GGPPS paralogs in previous studies. As a 
result, many GGPPS homologs were predicted from the plant 
genomes (Coman et  al., 2014).

The expansion of the GGPPS family in A. thaliana occurred 
at distinct evolutionary time points through different duplication 
mechanisms, including whole gene, tandem, and segmental 
genome duplications (Coman et  al., 2014). The evolution of 

this A. thaliana GGPPS family likely involved neofunctionalization 
(with the duplicated gene developing a function that was not 
present in the ancestral gene), subfunctionalization (in which 
the duplicated and ancestral genes retain different parts of the 
original function of the ancestral gene), and pseudogenization 
(loss of function; Coman et  al., 2014). Based on our fragment 
duplication and functional differentiation results for CcGGPPS1, 
CcGGPPS2, and CcGPPS.LSU, and the phylogenetic tree 
we constructed, these three genes may have been derived from 
the same ancestor, having undergone neo- or subfunctionalization.

Thus far, homodimeric GPPS has been functionally 
characterized in only a few plant species (Burke et  al., 2004; 
Hsiao et  al., 2008; Schmidt and Gershenzon, 2008; Gutensohn 
et  al., 2013; Rai et  al., 2013; Adal and Mahmoud, 2020). 
We found that the C. camphora genome contained two putative 
homodimeric GPPS genes (CcTIDS4 and CcTIDS5).  

FIGURE 9 | Overview of the terpenoid biosynthesis pathway in C. camphora. AACT, acetoacetyl-coenzyme A thiolase; HMGS, 3-hydroxy-3-methylglutaryl 
coenzyme A synthase; HMGR, 3-hydroxy-3-methylglutaryl coenzyme A reductase; MVK, mevalonate kinase; PMK, 5-phospho mevalonate kinase; MVD, 
mevalonate diphosphate decarboxylase; IDI, isopentenyl diphosphate isomerase; FPPS, farnesyl diphosphate synthase; DXS,1-deoxy-D-xylulose-5-phosphate 
synthase; DXR,1-deoxy-D-xylulose-5-phosphate reductoisomerase; MCT, 2-C-methyl-D-erythritol-4-(cytidyl-5-diphosphate) transferase; CMK, 4-(cytidine50-
diphospho)-2-C-methyl-D-erythritol kinase; MDS, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; HDS,1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate 
synthase; and HDR, 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase.
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Our evolutionary analysis suggested that these two genes were 
related to those encoding the functionally characterized 
homodimeric GPPS from A. thaliana, and subcellular localization 
experiments indicated that the two proteins encoded by these 
genes might localize to the mitochondria, consistent with earlier 
reports on C. roseus (Rai et  al., 2013). However, there was 
no observable GPPS activity associated with the proteins in vitro.

Instead, CcGPPS.SSU (CcTIDS10) and CcGPPS.LSU 
(CcTIDS8), both identified in our study, were found to interact 
with one another to form a heterodimeric CcGPPS that produced 
GPP from IPP and DMAPP substrates in vitro. These proteins 
were found to be inactive alone. This is consistent with previous 
reports in both Mentha × piperita subunits (Burke et  al., 2004), 
both Lavendula × intermedia subunits (Adal and Mahmoud, 
2020), and A. thaliana GPPS.SSU2 (Wang and Dixon, 2009).

CcGPPS.SSU and CcGPPS.LSU were primarily expressed in 
roots compared with stems and leaves. Furthermore, both 
CcGPPS.SSU and CcGPPS.LSU were found to reside in plastids, 
which are the known site of monoterpene biosynthesis (Magnard 
et  al., 2015; Yin et  al., 2017). These results suggest that 
heteromeric CcGPPS likely participates in the biosynthesis of 
GPP in C. camphora.

Interestingly, all CcTIDS genes had orthologs of greater 
than 90% identity with the C. micranthum genome, with 
the sole exception of CcGPPS.SSU (Supplementary Figure S3). 
Cinnamomum micranthum, known as the stout camphor tree, 
is the sister species of C. camphora. The genome of 
C. micranthum with a contig N50 of 0.9 Mb has been published. 
However, contig N50 of the genome of C. camphora is 23.89 Mb 
(data not shown), indicating that the assembly quality of 
the C. camphora genome is significantly better than that of 
the C. micranthum genome. This lower quality may 
explain why the GPPS.SSU gene is missing from the 
C. micranthum genome.

In addition, although, CcTIDS4 and CcTIDS5 did not possess 
GPPS activity in our study, they may perform different functions. 
For example, At2g34630 from A. thaliana was initially classified 
as a homodimeric GPPS (Bouvier et  al., 2000), but further 
study indicated that At2g34630 silencing did not affect the 
production of monoterpenes, and At2g34630 was subsequently 
identified as a PPPS (Hsieh et al., 2011). Therefore, the functions 
of CcTIDS4 and 5 should be  investigated in future studies.

In conclusion, this is the first comprehensive and systematic 
genome-wide analysis of TIDS gene families in C. camphora. In 
total, 10 TIDS genes in the borneol chemotype of C. camphora 
were identified. These genes likely expanded through segmental 
duplication events, and expression was found to respond to multiple 
abiotic stressors via cis-acting elements in the promoter region. 

Eight putative SC-TIDS were identified, six of which were 
catalytically active, including a heteromeric GPPS (composed of 
CcGPPS.SSU and CcGPPS.LSU), two CcFPPS (CcTIDS3 and 9), 
and two CcGGPPS (CcTIDS1 and 2), which catalyzed the 
biosynthesis of GPP, FPP, and GGPP, respectively (Figure  9).

Finally, CcTIDS3, 8, 9, and 10 were more active in roots 
compared with stems and leaves, which were confirmed by 
both transcriptome analysis and qRT-PCR experiments. These 
novel insights provide the basis for further investigation of 
the TIDS family in C. camphora, and a good foundation from 
which to develop a metabolic engineering approach to increase 
production of pharmacologically valuable essential oils from 
the camphor tree.
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