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Alpinia zerumbet (Zingiberaceae) is a unique ornamental and medicinal plant primarily

used in food ingredients and traditional medicine. While organic amendments such as

biochar (BC) and compost (Co) have been demonstrated to improve plant productivity,

no studies have examined their effects on the growth, physiology, and secondary

metabolites of A. zerumbet. This study evaluated the impact of the amendment of BC,

Co, or a biochar and compost mixture (BC+Co) on modifying and improving the growth,

photosynthesis, antioxidant status, and secondary metabolism of A. zerumbet grown

on sandy loam soil. The morpho-physiological and biochemical investigation revealed

variation in the response of A. zerumbet to organic amendments. The amendment of

BC and BC+Co significantly increased net photosynthetic rates of plants by more than

28%, chlorophyll a and b contents by 92 and 78%, respectively, and carboxylation

efficiency by 50% comparedwith those grown in the sandy loam soil without amendment.

Furthermore, the amendment significantly decreased plant oxidative stress, measured

as leaf free proline and glycine betaine. Enzymatic antioxidant activity, total phenols, and

flavonoids also varied in their response to the organic amendments. In conclusion, this

study shows that BC and/or Co amendments are an efficient and sustainable method

for improving the metabolite contents and reducing oxidative stress in A. zerumbet.
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INTRODUCTION

There is increasing interest in soil amendments, such as biochar
(BC) and compost (Co) for the sustainable production of
high-value medicinal plants and crops (Basak et al., 2021;
Liu et al., 2021; Nigam et al., 2021). BC is a recalcitrant,
black carbonaceous, porous, and low-density material produced
by the pyrolysis of various biological residues, such as crop
residue, wood waste, manure, food waste, forest residue, and
sewage sludge (Wang et al., 2020). BC amendment to soils
can improve the photosynthesis, growth, and yield of crop
plants (Ali et al., 2019; He et al., 2020; Mansoor et al., 2020;
Wang et al., 2021). Compost is an organic residue product
produced by aerobic biological decomposition (biodegradation
process). Compost amendment has been shown to alter plant
metabolism, improving plant growth and productivity (Liang
et al., 2021).

Plant metabolites, such as phenolics and flavonoids, are
a vital group of active constituents of medicinal plants
with therapeutic importance (Zulfiqar et al., 2021). These
antioxidants play a crucial role in mitigating oxidative stress
by regulating reactive oxygen species (Hasanuzzaman et al.,
2020; Zulfiqar et al., 2021). The therapeutic properties of
medicinal plants depend on these metabolites and antioxidant
activity, which can be improved by amending soils with
organic materials (Liu et al., 2021; Mehdizadeh et al., 2021;
Nigam et al., 2021). BC application to medicinal plants has
been reported to affect plant metabolites and the antioxidant
system under stress conditions (Liu et al., 2021; Nigam et al.,
2021). Similarly, soils amended with compost can influence
these traits in medicinal plants (Burducea et al., 2019). The
combined application of BC and Co could have additional
benefits for improving medicinal plant production (Zulfiqar
et al., 2019a). However, less is known about the interactive
effects of the compost and BC application on the physiological
and biochemical pathways of medicinal plants under non-
stressed conditions.

This study considered shell ginger (Alpinia zerumbet (Pers.)
B.L. Burtt. and R.M. Sm.), a member of the family Zingiberaceae,
and a tall herbaceous crop that is widespread and important
in tropical and subtropical regions of China, Taiwan, Japan,
and Brazil. Shell ginger is commonly grown as a landscape
and cut-foliage species. It has many pharmacological properties
due to its chemical constituents, such as flavonoids, phenolic
acids, phenylpropanoid glycosides, kava pyrones, sterols, and
terpene (Lim, 2016; Chan et al., 2017). For instance, the fruits
are used to treat gastrointestinal and cardiovascular diseases,
rhizomes are consumed as spices, stem fibers are used to
produce paper, kariyushi wear, and textiles, and the essential
oil from leaves is used in cosmetics (e.g., perfume, soap,
skincare, and deodorant) and insect repellent. To determine the
beneficial effects of BC and Co on shell ginger, we investigated
the effect of BC and Co, individually and combined, on
the growth, physiology, and secondary metabolites of shell
ginger, which will be of interest for both growers and the
pharmaceutical industry.

MATERIALS AND METHODS

Experimental Location and Plant Material
The experiment was established in the floriculture research
area of the Institute of Horticulture, University of Agriculture
Faisalabad, Pakistan (31◦300N, 73◦100 E, altitude 213m),
under natural daylight conditions in typical subtropical climate
conditions fromApril 12, 2017 toMarch 20, 2018. A 40% shading
net was placed above the metal canopy to prevent high light
intensities and temperatures on sunny days. Alpinia plants (with
18-cm height, 85-g fresh weight, six-leaf stage) produced from
tissue culture were purchased from a local nursery in Pakistan
(Best Garden Nursery, Faisalabad).

Selection and Preparation of Raw Material
Sandy loam soil (65 sand, 20 silt, and 15% clay) was taken from
the top layer (∼6–22 cm depth) of a field (31◦300N, 73◦100 E,
altitude 213m), air-dried, ground, and sieved.

Biochar was produced by the slow pyrolysis of chopped wheat
straw (Triticum aestivum L.) prepared at 450◦C for 2-h resident
time. Prior to the soil amendment, the BC was air-dried for
4 days and grounded. Compost was manufactured from plant
leaf residue (the Institute of Horticultural Sciences, University
of Agriculture Faisalabad, Pakistan) and sieved to <2mm. The
compost and/or BC were mixed with the soil before pot filling.
Plants were grown in earthen pots (with 28-cm top diameter,
24-cm base diameter, and 22-cm height). The soil, BC, and Co
properties are listed in Table 1.

Preparation of Soil Potting Mixtures
Four different soil mixtures were tested as follows: (1) soil only as
control (S), (2) BC soil amendment (5% by weight), (3) Co soil
amendment (5% by weight), and (4) BC+Co (5+ 5% by weight).

Experimental Setup
The experiment had a randomized block design with four
replications. The median light intensity received by A. zerumbet
plants was about 150µmol photonsm−2 s−1, with a 95% quantile
of 1,230 µmol photons m−2 s−1. The median temperature was
about 25◦C. Plants were tap-watered by hand on alternate days.
Seedlings were provided with a half-strength Hoagland nutrient
medium after 7 days. The daily photoperiod ranged from 14
to 16 h. The impact of the soil amendments on growth, gas
exchange, photosynthetic pigments, and antioxidants was studied
for 12 months.

Plant Sampling and Analysis
Morphological characteristics, gas exchanges, chlorophyll
contents, some secondary metabolites, and activities of the
oxidative-related enzymes of shell ginger plants grown in the
four treatments were examined.

Plant Growth Parameters
The non-destructive vegetative parameters, such as plant height,
tiller number, shoot diameter, and leaf number, were recorded
at the end of the experiment (March 2018). Plant height was
determined as the distance from the root base to the top of the
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TABLE 1 | Chemical characteristics and nutritional composition of wheat straw biochar, compost, and soil used in the study.

Chemical properties Soil Biochar Compost

pH 7.56 7.94 6.89

Electrical conductivity (dS m−1) 1.15 2.75 1.2

Cation exchange capacity (cmolc kg−1) 5.69 82.40 90

Moisture (%) 23 4.21 ND

Organic matter (%) 0.70 – –

Carbon (g kg−1) – 633.51 199.2

Nitrogen (g kg−1) – 11.25 21.8

Total phosphorus (g kg−1) – 1.43 0.42

Total potassium (g kg−1) – 9.29 1.67

Zinc (mg kg−1) – 47.61 47.0

Iron (mg kg−1) – 85.31 70.8

TABLE 2 | Impact of organic amendments (biochar, compost, and biochar+compost) on growth parameters (means ± SE) of Alpinia zerumbet.

Treatments Control BC Co BC+Co

Leaf fresh weight (g) 7.25 ± 0.1c 9.57 ± 0.2b 12.65 ± 0.6b 15.45 ± 0.0a

Leaf number 8.66 ± 0.2c 18.66 ± 0.3a 11.66 ± 0.3b 14.33 ± 0.1b

Leaf area (cm2) 28.43 ± 0.5c 55.97 ± 1.9a 40.33 ± 0.5b 46.23 ± 1.1b

Specific leaf area (cm2/g) 3.92 ± 0.1c 8.53 ± 0.4b 11.02 ± 0.1a 13.39 ± 0.2a

Root fresh mass (g) 109 ± 2.0b 100 ± 1.8b 111± 4.3b 137 ± 2.6a

BC, Biochar; Co, Compost. Means followed by the same letter in each row do not significantly differ (p ≤ 0.05).

plant. The main shoot diameter was measured with a digital
Vernier caliper (India Tools and Instruments Co., Mumbai,
India). Four plants (n = 4) in each treatment were separated
into leaf and root tissue, and the fresh mass of each was
measured with a digital balance. Leaf area was determined with
an LI-3000C portable area meter (LI-COR, Lincoln, NE, USA)
and subsequently used to calculate the leaf area/leaf mass ratio
[specific leaf area (SLA)].

Gas Exchange Measurements
Gas exchange parameters were measured on March 12,
2018. Photosynthetic rate (Pn), stomatal conductance (gs),
transpiration rate (E), internal CO2 concentration (Ci), water use
efficiency (Pn/E), and carboxylation efficiency (COE, Pn/CO2)
concentration were analyzed on fully expanded mature leaves
(i.e., midportion; two per replicate) on a sunny day between
10:00 and 12:30 with a portable CO2 IR gas analyzer (Analytical
Development Company, Hoddesdon, England).

Chlorophyll Contents
Eight days before the end of the experiment (March 12, 2018),
twomature leaves per plant were excised from themiddle portion
of the main shoot (i.e., six replicates per treatment); 0.5 g was
mortared and kept overnight (dark) in 80% acetone at −4◦C.
The extract was centrifuged (Z 306; HERMLE Labortechnik,
Wehingen, Germany) at 10,000 × g for 5min. The absorbance
of the supernatant was read at 663 and 645 nm using a UV-1900
spectrophotometer (BMC, Canada). Chlorophyll concentrations
(i.e., a, b, and total chlorophyll) were calculated following the
protocol of Arnon (1949).

Leaf Free Proline Content
Amature leaf sample (0.5 g) was isolated from themiddle portion
of a plant (i.e., four replicates per treatment) and mixed with
10ml of 3% (w/v) sulfosalicylic acid (MP Biomedicals, Inc.,
Solon, OH, USA) according to the study by Bates et al. (1973).
The samples were filtered; 2.0ml filtrate was mixed with 2.0ml
acid ninhydrin solution; and 2.0ml glacial acetic acid (GAA) (MP
Biomedicals, Inc.) in a test tube. Acid ninhydrin was prepared by
mixing 1.25 g ninhydrin (C6H4COCOCOH2O, BDH, Anala R,
England) with 30ml GAA and 20ml of 6M H3PO4. The optical
density of the filtrate was measured at 520 nm using a UV-1900
spectrophotometer (BMC, Canada).

Glycine Betaine Content
Leaf material (0.5 g) for each replicate was shaken occasionally
in 10ml toluene (0.5%) and kept at 4◦C overnight. After
filtration and centrifugation, 1ml filtrate was added to 1ml
of 2N sulfuric acid and 200 µl potassium triiodide (KI3)
in a test tube. Samples were cooled at 4◦C for 1 h in a
chiller before adding 2.8ml ice-cooled deionized H2O and
5ml 1,2-dichloroethane. The absorbance of the organic layer
(lower layer) was recorded spectrophotometrically (UV-1900
spectrophotometer; BMC, Canada) at 365 nm. The glycine
betaine (GB) concentrations were recorded against a standard
curve following the study by Grieve and Grattan (1983).

Preparation of Extracts for Biochemical
Assays
Fresh leaf material (1 g) was pulverized in a mortar and extracted
with 25ml solvent (i.e., methanol, ethanol, acetone, or water). An
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TABLE 3 | Impact of organic amendments (biochar, compost, and biochar+compost) on leaf gas exchange and chlorophyll contents (means ± SE) of A. zerumbet.

Treatments Control BC Co BC+Co

Net photosynthesis (Pn) 5.58 ± 0.41b 7.16 ± 0.68a 5.96 ± 0.60b 7.74 ± 1.32a

Stomatal conductance (gs) 0.63 ± 0.08a 0.56 ± 0.08b 0.43 ± 0.12c 0.60 ± 0.05a

Internal carbon dioxide (Ci ) 263 ± 3.52a 229 ± 3.52b 222 ± 1.73b 218 ± 2.33b

Transpiration (E) 0.49 ± 0.16d 1.00 ± 0.30b 0.68 ± 0.11c 1.40 ± 0.25a

Carboxylation efficiency (Pn/Ci ) 0.002 ± 0.00c 0.031 ± 0.00a 0.02 ± 0.01b 0.03 ± 0.01a

Chlorophyll a 1.15 ± 0.08c 2.21 ± 0.10a 1.76 ± 0.13b 2.55 ± 0.29a

Chlorophyll b 0.64 ± 0.03c 1.14 ± 0.08b 0.87 ± 0.04c 1.46 ± 0.02a

Total chlorophyll 1.80 ± 0.10c 3.35 ± 0.09a 2.63 ± 0.10b 4.01 ± 0.32a

BC, Biochar; Co, Compost; Pn, µmol CO2 m
−2 s−1; gs, mol H2O m−2 s−1; Ci , µmol m−2 s−1; E, mmol H2O m−2 s−1; Pn/Ci , mol m

−2 s−1; Chlorophyll a, b, and total, mg g−1 FW.

Means followed by the same letter in each row do not significantly differ (p ≤ 0.05).

orbital shaker (Kalsterin, YR 40, Montpellier, France) was used
to continually stir at 150 × g for 24 h to homogenize the extract
before centrifuging at 10,000× g for 10min. The supernatant was
filtered using the Whatman filter paper (No. 1) (Tisch Scientific,
Cleves, OH, USA). The filtrate was used for further screening.

Quantification of Total Phenolic Content
The total phenolic content (TPC) of the leaf extract was
quantified at 765 nm using a UV-1900 spectrophotometer (BMC,
Canada), as described by Folin and Ciocalteu (1927). Briefly,
1ml leaf extract was mixed with 4ml sodium carbonate (20%)
and 5ml Folin–Ciocalteu solution (10%) and incubated for 1 h
in a water bath. Absorbance was read at 765 nm (Optizen POP,
Mecasys Co., Ltd., Korea). The TPC was expressed as gallic acid
equivalents (GAE). Of note, 1ml of each standard wasmixed with
4ml sodium carbonate (20%) and 5ml Folin–Ciocalteu reagent,
and the absorption was measured after 1 h at 765 nm using a UV-
1900 spectrophotometer (BMC, Canada). A calibration curve
was prepared using absorbance as a function of concentration.
Finally, GAE was calculated as follows:

T = C×V/M

where T is the TPC (mg GAE per g plant extract), C is the gallic
acid concentration determined from the calibration curve (mg
ml−1), V is the volume of extract (ml), and M is the weight (g) of
pure plant extract.

Determination of Total Flavonoid Content
The total flavonoid content (TFC) of the prepared leaf extract
was estimated using the AlCl3 colorimetric method described by
Chang et al. (2006) using quercetin as a standard. The extract or
standard solution (0.5ml) was mixed with 2ml distilled water
and 0.15ml of 5% NaNO2 solution. After 6min of incubation,
0.15ml of 10% AlCl3 solution was added. After 6min, 1MNaOH
was added to the mixture. Finally, 3ml methanol was added
for an end volume of 5ml. The reaction mixture was mixed
thoroughly and incubated at room temperature for 45min.
Absorbance was measured using a UV-1900 spectrophotometer
(BMC, Canada) at 510 nm. The TFC was expressed as catechin
equivalents from the linear regression curve of catechin.

Antioxidant Assays
Determination of 2,2-Diphenyl-1-Picrylhydrazyl

(DPPH) Radical Scavenging Activity
Total free radical scavenging activity was measured using 2,2-
diphenyl-1-picrylhydrazyl (DPPH) as per the method described
by Yen and Chen (1995). Briefly, 0.5 g leaf tissue was
homogenized in 10ml acetone. Then, 3ml leaf extract (i.e., three
replicates) was added to 1ml DPPHmethanol solution (0.004%),
vigorously shaken, and incubated in the dark for 30min at room
temperature. Absorbance was read at 517 nm using a UV-1900
spectrophotometer (BMC, Canada). A low absorbance reading
indicates high radical scavenging activity. DPPH inhibition was
calculated as follows:

DPPH inhibition (%) = [(Absorbance of blank− Absorbance

of sample/Absorbance of blank)×100]

Determination of Reducing Power Assay
The reducing power capacity of the leaf extract was evaluated
by direct electron donation to reduce Fe3+ (CN)6 to Fe2+

(CN)6 using the method described by Yadav et al. (2014).
Briefly, 1ml prepared extract was mixed with 2.5ml potassium
ferricyanide (1%) and 2.5ml phosphate buffer (0.2M, pH 6.6).
The mixture was incubated in a water bath at 50◦C for 20min
before adding 2.5ml trichloroacetic acid (1% w/v). The reaction
mixture was centrifuged at 3,000× g for 10min. The supernatant
(2.5ml) was mixed with 0.5ml ferric chloride (0.1%) and 2.5ml
deionized water. Absorbance was read at 700 nm using a UV-
1900 spectrophotometer (BMC, Canada).

Enzymatic Antioxidant Extraction and
Assay
Leaf sample (0.5 g) was homogenized in 4ml sodium
phosphate buffer (0.05M, pH 7.8), comprising
2% (w/v) polyvinylpyrrolidone (PVP) and 1.0mM
ethylenediaminetetraacetic acid (EDTA). The homogenate
was centrifuged (Z 306; HERMLE Labortechnik, Wehingen,
Germany) at 10,000× g for 17min at 4◦C. The supernatant (i.e.,
protein extract) was used in the catalase (CAT) and peroxidase
(POD) assays and to determine total soluble proteins (TSP).
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Catalase Activity
Catalase activity was determined according to the method
described by Chance and Maehly (1955). Briefly, 0.1ml of
the reaction mixture contains 0.9ml of 5.9mM H2O2, 2ml
of 50mM phosphate buffer, and 0.1ml protein extract. The
changes in absorbance weremeasured at 240 nmusing aUV-1900
spectrophotometer (BMC, Canada). Absorbance was read at 30-s
intervals for 5min to study H2O2 decomposition, reflecting CAT
activity (µmol min−1 mg−1 protein).

Peroxidase Activity
Peroxidase activity was determined in leaf extracts using the
method of Chance and Maehly (1955). The reaction mixture
contained 0.1ml protein extract, 0.4ml guaiacol (20mM), 0.5ml
H2O2 (40mM), and 2ml sodium phosphate buffer (50mM).
Absorbance was read at 470 nm in 20-s intervals with a UV-1900
spectrophotometer (BMC, Canada). The absorbance slope was
used to calculate POD activity (µmol min−1 mg−1 protein).

Superoxide Dismutase Activity
Superoxide dismutase activity was assayed using the method
of Van Rossum et al. (1997). The reaction mixture contained
0.4ml distilled water, 0.1ml methionine, 0.1ml Triton-X, 0.25ml
phosphate buffer (pH 7.8), 0.5ml nitro blue tetrazolium, 0.5ml
riboflavin, and 0.5ml protein extract. The mixture was kept in
the light for 20min before recording the absorbance at 560 nm.

Total Soluble Proteins
Total soluble proteins were determined according to the protocol
described by Bradford (1976). The absorbance of the prepared
reaction mixture (0.2ml protein extract, 0.02ml Coomassie blue
dye, and 0.78ml deionized water) was read at 595 nm with a
UV-1900 spectrophotometer (BMS, Canada).

Statistical Analysis
All collected data were subjected to ANOVA using SPSS software
version 11.0 (SPSS, Chicago, IL, USA). If significance occurred
among treatments, means were separated by the least significance
difference (LSD) at p < 0.05 level. SigmaPlot software version
12.0 (Systat, San Jose, CA, USA) was used to display the means
and SE of the dataset.

RESULTS

Effect of Organic Amendments on Plant
Growth
The application of BC and/or Co significantly affected the
measured growth parameters of plants. The BC and BC+Co
treatments increased plant height by 40 and 47%, respectively,
relative to the control (Figure 1). The BC, Co, and BC+Co
treatments increased tiller number (about two-fold) and stem
diameter, compared to the control, more so in the two BC
treatments (Figure 1). Leaf fresh weights increased in the three
amended treatments, relative to the control, more so in the
BC+Co treatment (Table 2). The BC and BC+Co treatments
increased leaf numbers by 65% compared to the control. Leaf
areas of plants grown in the three amendment media were more

than doubled with respect to those of plants grown in the control
medium. The SLA of plants grown in BC+Co was the highest
among the treatments (Table 2).

Effect of Organic Amendments on Leaf
Gas Exchange
Net photosynthesis rate (Pn) increased by 19 and 26% in the
BC and BC+Co treatments, respectively, compared to control
(Table 3). The Co treatment did not significantly increase Pn,
relative to the control (Table 3). Stomatal conductance (gs)
decreased (32%) sharply only in the Co treatment. Internal CO2

concentration declined in the three amended treatments, relative
to the control. COE increased by 15% in the BC and BC+Co
treatments. Transpiration rate (E) increased by 40, 12, and 57%,
respectively, in the BC, Co, and BC+Co treatments, relative to
the control (Table 3).

Effect of Organic Amendments on
Chlorophyll Contents
Chlorophyll a, b, and total chlorophyll contents increased in the
three amended treatments, more so in the BC+Co treatment,
relative to the control (Table 3).

Effect of Organic Amendments on
Biochemical Parameters
Leaf free proline and GB contents showed a differential decrease
response in the three amended treatments, relative to the control
(Figure 2). The TFC increased 1.5-fold in the BC treatment but
did not change in the Co or BC+Co treatments, compared to
the control (Figure 3). TPC increased by 15% in the BC and
BC+Co treatments, but the Co treatment did not influence this
trait, relative to the control. The TSP in plants grown in BC were
similar to those grown in the control medium but decreased in
the Co and BC+Co treatments by 15%, relative to the control
(Figure 3).

Antioxidant capacity by DPPH declined in the three amended
treatments, relative to the control. The antioxidant activity by
reducing power assay increased in the BC and BC+Co treatments
more than the Co treatment (Figure 4). The CAT activity did not
change in any treatment, with respect to the control, while POD
increased by 60% and SOD activities increased by 18% in plants
grown in BC+Co medium compared with those grown in the
control medium. SOD of plants grown in BC also increased by
18% compared to the control medium (Figure 5).

DISCUSSION

Plant Growth
The application of BC, Co, and BC+Co increased total biomass
in A. zerumbet. The increase in plant height, tiller number, stem
diameter, and leaf and root fresh weights in response to organic
amendments could be associated with enhanced photosynthesis,
as reported elsewhere (Agegnehu et al., 2016; Singh et al., 2018;
Sánchez-Monedero et al., 2019; Rasool et al., 2021a). In contrast,
Schmidt et al. (2014) reported a small and mostly nonsignificant
effect of BC and combined applications of BC and Co on
grapevines grown in nutrient-poor soil.
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FIGURE 1 | Plant height (A), and stem diameter and tiller number (B) of Alpinia zerumbet treated with biochar (BC), compost (Co), and biochar+compost mixture

(BC+Co). Data are the mean ± SE (n = 6). Different letters above the bars represent significant differences according to the least significance difference (LSD) post

hoc test at the p < 0.05 level.

The organic soil amendment increased leaf fresh weight in
A. zerumbet due to changes in various leaf-related parameters,
such as an increased leaf canopy and foliage area to facilitate
net photosynthesis, particularly in the BC+Co treatment. In
contrast, the presence of BC and Co in the growth medium had a
smaller increase in leaf fresh weight.

The BC+Co treatment improved root development in
A. zerumbet more than BC or Co alone. This is consistent
with previous studies where combined BC and Co
application increased soil moisture and nutrient retention
and thus root growth more than individual applications

(Sorrenti et al., 2019; Abideen et al., 2020a; Teodoro et al.,
2020). The positive effect of BC on root growth could be due to
changes in physical soil condition, such as soil pH, water holding
capacity, and hormonal effects, thus accelerating root growth
and improving overall growth (Somerville et al., 2020).

Physiological Attributes
Higher photosynthetic rates in A. zerumbet were observed in
the BC (19%) and BC+Co (26%) treatments than the compost
treatment, which was similar to the control and could be related
to improved COE at decreased intracellular CO2 concentration.
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FIGURE 2 | Leaf proline (A) and glycine betaine (B) contents of A. zerumbet treated with BC, Co, and BC+Co. Data are the mean ± SE (n = 6). Different letters

above the bars represent significant differences according to the LSD post hoc test at the p < 0.05 level.

Other studies have also reported higher Pn with BC and BC+Co
amendments relative to the control (Xu et al., 2015; Seehausen
et al., 2017).

The BC+Co mixture increased transpiration the most in
A. zerumbet, while Co alone had no effect. BC alone and
combined increased soil water availability and soil water
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FIGURE 3 | Leaf total flavonoids (A), phenolics (B), and soluble proteins (C) of A. zerumbet treated with BC, Co, and BC+Co. Data are the mean ± SE (n = 6).

Different letters above the bars represent significant differences according to the LSD post hoc test at the p < 0.05 level.
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FIGURE 4 | Leaf DPPH % inhibition (A) and reducing power (B) of A. zerumbet plants treated with BC, Co, and BC+Co. Data are the mean ± SE (n = 6). Different

letters above the bars represent significant differences according to the LSD post hoc test at the p < 0.05 level.

holding capacity, thus increasing transpiration. Hence, higher
transpiration was associated with higher Pn for Alpinia plants
grown in BC+Co. Plants grown in soil amended with BC and Co
can minimize substantial water losses through stomatal closure
and transpiration (Kammann and Graber, 2015), which helps
maintain water balance and leaf turgidity. Thus, organic soil

improvements ultimately support photosynthetic performance
(Xu et al., 2015), while decreasing Ci, Ci/Ca, and gs.

Chlorophyll a and b contents of Alpinia increased in
the BC and BC+Co treatments, as reported for Phragmites
karka (Agegnehu et al., 2016). Higher chlorophyll contents
are accompanied by higher Pn in plants grown in BC and
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FIGURE 5 | Superoxide dismutase (SOD) (A), catalase (CAT) (B), and peroxidase (POD) (C) antioxidant enzyme activities of A. zerumbet plants treated with BC, Co,

and BC+Co. Data are the mean ± SE (n = 6). Different letters above the bars represent significant differences according to the LSD post hoc test at the p < 0.05 level.
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TABLE 4 | Representation of changes in different parameters of A. zerumbet after

treatment with biochar, compost, and biochar+compost.

Parameters Treatments

BC Co BC+Co

Growth ↑ ↑ ↑↑

Net photosynthesis ↑ ↓ ↑

Leaf free proline ↓ ↓ ↓

Glycine betaine ↓ ↓↓ ↓

Total phenolic contents ↑ – ↑

Total flavonoid content ↑ – –

Total soluble proteins – ↓ ↓

DPPH radical scavenging activity ↓↓ ↓↓ ↓

Reducing power assay ↑ ↑ ↑↑

Superoxide dismutase ↑ ↓ ↑

Peroxidase activity ↑ – ↑

Catalase activity – – ↑

BC, Biochar; Co, Compost. The direction of the arrow shows the change relative to the

control treatment. The number of arrows shows the intensity of response.

BC+Co. The high chlorophyll contents in Alpinia could be
related to improved soil physical and chemical properties that
facilitated the plant absorption of nutrients, especially nitrogen
concentration (Almaroai and Eissa, 2020), and may increase light
absorption to increase photosynthesis. Increased chlorophyll
contents act as a proxy for leaf maximum carboxylation rate,
which could be supported by increased water flux and carbon
acquisition with BC and Co application to soil. Increased
chlorophyll in the presence of BC and Co triggers nitrogen supply
for photosynthetic enzymes and indirectly enhances COE (Luo
et al., 2018).

Biochemical Parameters
Total flavonoid and polyphenol contents increased in the BC
treatments but were unaffected or decreased in the sole Co
treatment. The synthesis of phenolic compounds was associated
with higher antioxidant activity (reducing power activity), which
helps plants detoxify reactive oxygen species, indicating that
BC is useful for enhancing plant antioxidant capability and
protecting plants from oxidative stress by increasing phenolic
acid concentrations. The antioxidative balance is important for
optimal leaf photosynthesis and biomass production, as reflected
in the higher POD and SOD activities in Alpinia amended
with BC+Co, which increased plant biomass. Plant antioxidants

act as a natural defense system against various stresses that
induce excessive production of reactive oxygen species (Ahmad
et al., 2010, 2019; Kohli et al., 2019; Zulfiqar and Ashraf,
2020). Numerous studies have shown that organic amendments
improve the systematic resistance of antioxidant enzymes in
plants (Quartacci et al., 2017; Rehman et al., 2019; Zulfiqar et al.,
2019b; Abideen et al., 2020a,b; Rasool et al., 2021b).

Plants subjected to climatic variations could accumulate
osmotic substances in cells, such as proline, soluble sugars,
and various betaines, which function as osmoprotectants
(Zulfiqar et al., 2020). In Alpinia, the soil organic amendments
decreased proline and GB accumulation due to osmoprotectant
mechanisms. The accumulation of nitrogenous compounds also
declined, which was related to strong enzymatic and non-
enzymatic defense in Alpinia. An elevated plant antioxidative
defense system is related to reduced energy demands for
catabolism and increased demand for anabolism (biomass
synthesis) with BC andCo amendment (Ali et al., 2017; Quartacci
et al., 2017; Huang et al., 2019).

CONCLUSIONS

Organic soil amendments (i.e., BC, Co, and BC+Co) had a
positive effect on the growth and physiobiochemical response
of A. zerumbet. In particular, BC+Co significantly increased
the growth, chlorophyll content, photosynthesis, and antioxidant
defense system activity, and it also reduced the proline and
GB accumulation (Table 4). The results support the view that
BC alone or combined with Co alters the physiobiochemical
characteristics of A. zerumbet. Further research studies are
needed to evaluate the agronomic and environmental benefits
of A. zerumbet supplied with different feedstock-based BCs at
different concentrations and combined with compost, especially
under field conditions.
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