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Populus sect. Turanga (hereafter referred to as “Populus”), including Populus euphratica

and Populus pruinosa, are the predominant tree species in desert riparian forests in

northwestern China. These trees play key roles in maintaining ecosystem balance,

curbing desertification, and protecting biodiversity. However, the distribution area of

Populus forests has been severely diminished and degraded in recent years due to

increased habitat destruction and human activity. Understanding the genetic diversity

among Populus individuals and populations is essential for designing conservation

strategies, but comprehensive studies of their genetic diversity in northwest China

are lacking. Here, we assessed the population structures and genetic diversity of

1,620 samples from 85 natural populations of Populus (59 P. euphratica and 26 P.

pruinosa populations) covering all of northwestern China using 120 single nucleotide

polymorphism (SNP) markers. Analysis of population structure revealed significant

differentiation between these two sister species and indicated that strong geographical

distribution patterns, a geographical barrier, and environmental heterogeneity shaped

the extant genetic patterns of Populus. Both P. euphratica and P. pruinosa populations

in southern Xinjiang had higher genetic diversity than populations in other clades,

perhaps contributing to local geographic structure and strong gene flow. Analysis

of molecular variance (AMOVA) identified 15% variance among and 85% variance

within subpopulations. Mantel tests suggested that the genetic variation among P.

euphratica and P. pruinosa populations could be explained by both geographical and

environmental distance. The genetic diversity of P. euphratica showed a significant

negative correlation with latitude and longitude and a positive correlation with various

environmental factors, such as precipitation of warmest quarter and driest month,

temperature seasonality, and annual mean temperature. These findings provide insights

into how the genetic differentiation of endangered Populus species was driven by

geographical and environmental factors, which should be helpful for designing strategies

to protect these genetic resources in the future.
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INTRODUCTION

Populus euphratica Oliv. and Populus pruinosa Schrenk are sister
species in the section Turanga (Populus sect. Turanga, hereafter

referred to as “Populus”). Both species are predominant trees
in the extremely arid desert areas in northwestern China and
play important roles in maintaining ecosystem balance and
protecting biodiversity (Lang et al., 2015; Zheng et al., 2016).
P. euphratica and P. pruinosa diverged during the Pleistocene
era due to climate oscillations and were further isolated by the
barrier imposed by the Tianshan Mountains (Wang et al., 2014).
Along with the hitchhiking of incidental variations, ancient
genetic polymorphisms are thought to have driven the speciation
of P. euphratica and P. pruinosa (Ma et al., 2018). Whereas,
P. pruinosa is mainly restricted to Xinjiang province in China
and the adjacent countries and regions (Wang et al., 1995), the
natural distribution areas of P. euphratica range from western
China and the Middle East to North Africa and southwestern

Europe (Ma et al., 2018). Approximately 61% of P. euphratica
forests worldwide are located in China, with 91.1% of those
in Xinjiang province. Alarmingly, the distribution area of P.
euphratica forests has been seriously diminished or degraded in
recent years due to increased habitat destruction and human

activity. The protection of Populus forests in northwestern
China is an extremely urgent issue. One effective strategy for
protection of a plant species is to identify priority protection
areas or conservation units (Zhang et al., 2020). Assessing the
genetic variations in Populus populations would be beneficial
for the conservation and utilization of the genetic resources of
these species and could provide useful basic data on Populus
germplasm to facilitate breeding.

Studies of genetic diversity and population structure are
crucial for exploring natural selection, adaptive evolution, and
the genetic relationships of populations within or among P.
euphratica and P. pruinosa. However, although several molecular
population genetics studies have been performed on P. euphratica
and P. pruinosa, these studies led to opposite conclusions
about their genetic diversity (Wang et al., 2011, 2014; Ma
et al., 2018; Zeng et al., 2018). For example, a preliminary
investigation using a relatively small number of nuclear and
chloroplast DNA markers to investigate the genetic diversity
of P. euphratica populations (552 P. euphratica individuals
of 33 natural populations) indicated that this was lower in
southern Xinjiang (SX) than in northern Xinjiang (NX) (Zeng
et al., 2018). However, whole-genome resequencing of 252 P.
euphratica individuals from 27 natural populations showed the
reverse (Jia et al., 2020). This inconsistency might be attributed
to the relatively limited numbers of markers, individuals, or
populations studied in narrow geographical areas (Wu et al.,
2008; Eusemann et al., 2013; Xu et al., 2013; Wang et al., 2014), or
the relatively less advanced methods utilized (e.g., AFLP, RAPD,
and SRAP) (Saito et al., 2002; Vonlanthen and Bruelheide, 2010;
Wang et al., 2011; Kansu and Kaya, 2020).

The development of molecular markers at the whole-genome
level is becoming increasingly accurate and efficient (Verma et al.,
2015). Genome-wide single nucleotide polymorphism (SNP)
markers are widely used to assess the genotypes and genetic

relationships of various populations (Lu et al., 2020; Zhang et al.,
2020). Genotyping-in-Thousands by sequencing (GT-seq) has
proven to be an efficient SNP genotyping technology (Campbell
et al., 2015) and has been widely applied in many fields of
research (Bootsma et al., 2020; McKinney et al., 2020; Powell and
Campbell, 2020; Schmidt et al., 2020). To better understand the
genetic diversity and population differentiation of P. euphratica
and P. pruinosa to facilitate further conservation and breeding
efforts, an analysis of their population genetics using larger-scale
samples and more advanced molecular markers is needed.

The natural ranges of P. euphratica and P. pruinosa
include different niches that show discontinuous geographical
distribution. The barrier represented by the TianshanMountains,
a major mountain system and biodiversity hotspot, has impeded
gene flow between SX andNX in Populus populations (Zeng et al.,
2018). The geographical differences caused by environmental
heterogeneity and climatic fluctuations could drive plant-
specific or intraspecific genetic divergence and distribution
patterns (Muellner-Riehl, 2019). Geographical distance can also
affect the gene flow from one population to another, while
environmental factors can influence genetic diversity and help
fix a population in a specific ecological niche (Liu et al., 2013).
However, there is no report on how the genetic distance and
differentiation of P. euphratica and P. pruinosa were influenced
by geographical and environmental factors. Elucidating the
relationship between genetic diversity and geographical or
environmental heterogeneity will help explain the discontinuous
distribution pattern of Populus in northwestern China.

In this study, we collected the leaves of 1,620 accessions from
85 natural populations throughout the natural distribution range
of P. euphratica (1,183 individuals from 59 natural populations)
and P. pruinosa (437 individuals from 26 natural populations)
in northwest China. Based on our de novo assembled reference
genome and published resequencing data, we developed 120
high-quality SNPs with MAF ≥ 0.4 for further genetic analysis.
Our objectives were to (1) determine the optimal population
structures of P. euphratica and P. pruinosa; (2) evaluate
genetic diversity and genetic differentiation between and within
the subpopulations; and (3) assess the relationships between
population-level genetic diversity and geographical as well as
environmental factors. Our findings provide new insights into the
genetic differentiation of P. euphratica and P. pruinosa and lay a
genetic foundation for the construction of priority conservation
areas of Populus.

MATERIALS AND METHODS

Sample Collection and DNA Extraction
Leaves were sampled from 1,183 P. euphratica individuals
from 59 natural populations in northwest China, including 27
populations from southern Xinjiang (SX), 23 from northern
Xinjiang (NX), and 9 total from Gansu (GS), Qinghai
(QH), Ningxia (NiX), and Inner Mongolia (NMG) provinces
(Supplementary Table 1). Leaves were sampled from 437 P.
pruinosa individuals from 26 natural populations in Xinjiang
province (23 from southern Xinjiang, three from northern
Xinjiang), 22 of which co-occurred with P. euphratica. To reduce
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the impact of clonal ramets, all sampled individuals from each
population were located at least 100m apart. The leaves were
dried with silica gel in the field. Total DNAwas extracted from the
leaves and purified using a modified CTAB method (Allen et al.,
2006). The integrity of the DNA was evaluated by 0.8% agarose
gel electrophoresis, and DNA quality was evaluated based on the
A260/A280 absorbance ratio of the samples.

SNP Marker Development
Marker development and sequencing were carried out using the
GT-seqmethod (Campbell et al., 2015). In brief, 120 SNPmarkers
were selected and developed for the P. euphratica samples
based on our reference genome and resequencing data from P.
euphratica (Jia et al., 2020). These SNPs, which are uniformly
distributed on the 19 P. euphratica chromosomes, were retained
according to the following criteria (Supplementary Figure 1): (i)
SNP interval >50 kb; (ii) minor allele frequency (MAF) ≥0.4;
(iii) heterozygosity ≤25%; (iv) missing rates ≤0.25. Primer 3
software (version 2.5.0) was used to design amplification primers
for each target site according to the following criteria: (i) the
primers ranged from 17 to 32 bases in length; (ii) melting
temperature (Tm) values ranged from 60◦C to 64◦C, with an
optimal value of 62◦C; (iii) product size was ≤500 bp; (iv)
sequenced reads had to be able to cover target sites. Primers for
each target site that could specifically amplify the target were
obtained (Supplementary Table 2). Libraries were constructed
and sequenced (PE150) on the Illumina HiSeq 2500 platform.

Sequencing Data Analysis
Reliable clean reads were obtained via quality control and
filtering of raw reads. Quality control was performed based
on strict criteria to remove the following types of reads: (i)
adaptor sequences of reads were removed using Cutadapt
software (version 1.13); (ii) low-quality bases were removed using
Trimmomatic software (Version 0.36); (iii) reads ≤50 bp long
were excluded. The reliable clean reads were aligned to the P.
euphratica reference genome using the BWA-MEM algorithm
(version 0.7.15-r1140). After alignment, GATK (version 3.7)
(DePristo et al., 2011) and SAMtools (version 1.3.1) (Li and
Durbin, 2009) were used for SNP calling. Genotypes at SNP loci
were analyzed using an in-house Python script.

Analysis of Population Structure
Population structure analysis was implemented using
STRUCTURE v2.3.4 (Earl and vonHoldt, 2011). The K-
value was used to evaluate the number of clusters based on the
genotyping data; the number of genetic clades was predefined
using 10,000 iterations for each run. The optimal K-value was
determined using Structure Harvester (Earl and vonHoldt,
2011). Principal component analysis (PCA) was carried out
using GCTA (Yang et al., 2011). A neighbor-joining (NJ) tree was
constructed and visualized using MEGA 7 (Tamura et al., 2013).

Analysis of Molecular Variance and
Genetic Diversity
Analysis of Molecular Variance (AMOVA) was performed and
Nei’s genetic distance was calculated using GenAlEx 6.503 based

on the number of subpopulations (Peakall and Smouse, 2012).
Pairwise population differentiation (FST) was calculated.Multiple
indicators of genetic diversity from each population, such as
Shannon’s information index (I), observed heterozygosity (Ho),
expected heterozygosity (He), and polymorphism information
content (PIC), were obtained using GenAlEx v6.503.

Analysis of Genetic Isolation
To study the relationships of isolation-by-environment vs.
isolation-by-distance based on the genetic differentiation of
P. euphratica and P. pruinosa, 19 bioclimatic variables with
a resolution of 2.5 arc-min from the WorldClim Database
(http://www.worldclim.org) were obtained (Fick and Hijmans,
2017). Their correlation coefficients were then calculated, and
the seven least correlated bioclimatic variables (Spearman’s r <

0.8) were retained (Supplementary Tables 3, 4). The correlation
coefficients between pairwise genetic differentiation and the
bioclimatic distance matrix, as well as the geographical distance
matrix, were calculated. Mantel tests were performed with 1,000
permutations based on Genepop (https://genepop.curtin.edu.
au/) (Rousset, 2008).

To examine the relationships between genetic diversity
at the population level and geographical factors, as well as
environmental factors according to a previous study (Zhang et al.,
2020), the genetic diversity of each population was represented
by expected heterozygosity (He). Latitude and longitude were
considered to be the main geographical factors affecting the
P. euphratica and P. pruinosa populations. All seven retained
bioclimatic variables were environmental factors. PCA was used
to analyze the climate variables of the sample sites, and the
absolute values from standardized PC1 scores were obtained
based on correlation analyses using R version 3.5.0.

RESULTS

Population Structure and Genetic
Relationships
To comprehensively investigate the genetic diversity of P.
euphratica (1,183 individuals from 59 natural populations) and
P. pruinosa (437 individuals from 26 natural populations), we
sampled 1,620 individuals from 85 natural Populus populations
covering the distribution regions throughout northwestern
China (Figure 1). The number and distribution area of P.
euphratica are larger in SX than in NX, and P. pruinosa is
primarily distributed in SX. The habitat regions of P. euphratica
showed discontinuous distribution on both banks of inland rivers
in the arid regions (e.g., the Tarim River, Yarkant River, and
Hotan River of southern Xinjiang and the Ili River, Manas
River, and Eerqisi River of northern Xinjiang). In addition,
for P. euphratica, compared to previous studies, we collected
samples from the easternmost population (SZWQ) of China
for the first time and added samples from Ningxia Province
(ZW). For P. pruinosa, compared to previous studies, samples
from three populations of P. pruinosa (CX, KKDL, and NLKX)
were collected for the first time in northern Xinjiang (Figure 1;
Supplementary Table 1). In summary, 1,620 samples with high
coverage from northwestern China were collected to investigate
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FIGURE 1 | Geographical distributions of the natural populations of P. euphratica and P. pruinosa analyzed in this study. Different font colors represent the two

species: black for P. euphratica populations, light blue for P. pruinosa populations, and red for overlapping populations. The map was created using the ArcMap

package in ArcGIS ver. 10.8 (http://www.esri.com/software/arcgis). The populations are described in Supplementary Table 1.

the genetic diversity and population structures of P. euphratica
and P. pruinosa.

We then carried out population structure analysis based on
our genotypic data (Figure 2). When K = 2, all individuals were
clearly subdivided into two species-specific clusters, highlighting
the significant differentiation of P. euphratica and P. pruinosa at
the species level. Notably, a few P. euphratica individuals were
mixed with the P. pruinosa lineage (e.g., MGTX, YPHX, BCX,
ALE, YTX), implying the presence of recent gene flow in the
two species. When K = 3, the P. euphratica populations were
further divided into southern Xinjiang, northern Xinjiang, and
mixed clusters (including GS, NMG, NiX, and QH populations).
When K = 4, the P. euphratica populations were divided
into four distinct clades that demonstrated strong geographical
distribution patterns (NX, SX, GNM, and QH, with the GNM
clade containing individuals from Gansu, Ningxia and Inner
Mongolia).

PCA and neighbor-joining phylogenetic analysis confirmed
our findings about population structure. PC1 mainly explained
the variation between P. pruinosa and P. euphratica, and
intermediate individuals (SX1) were primarily from the mixed
forests of P. pruinosa and P. euphratica in southern Xinjiang
(e.g., MGTX, ALE, and LPX) (Figure 3; Supplementary Table 5).
The presence of these intermediate individuals provides further
evidence of gene flow between the two species. PC2 strongly
explained the differentiation among the four clades (SX, NX,
QH, and GNM) of P. euphratica. The QH cluster demonstrated
distinct genetic variation compared to the other clades, which
might be related to the high altitude (2,709–2,936m) of
this region. The phylogenetic tree, which was constructed
to represent the genetic distances between these populations,
revealed distinctly different evolutionary relationships among
the populations (Figure 4). All three complementary methods
(STRUCTURE, PCA, and NJ tree analysis) indicated that
distinct genetic differences existed with different geographical

distribution patterns at the population level and that the
two sister species (P. euphratica and P. pruinosa) showed
significant differentiation at the species level regardless of
geographical distance.

Genetic Diversity of P. euphratica and P.

pruinosa Populations
Based on the population structures of P. euphratica and P.
pruinosa (Figure 2), we calculated the four genetic indices (He,
Ho, I, and PIC) for each clade and population. The genetic
diversity values revealed higher diversity for P. pruinosa (He =

0.256) than for the four clades of P. euphratica. For P. euphratica,
the SX clade exhibited the highest genetic diversity (He = 0.216),
followed by the GNM clade (He = 0.212) and the NX clade
(He = 0.206), while the QH clade had the lowest genetic diversity
(He = 0.112) (Table 1).

In addition, we calculated the genetic diversity of
each population within P. euphratica and P. pruinosa
(Supplementary Tables 6, 7). Among P. euphratica populations,
the MGTX population (from the KS region of southern Xinjiang)
had the highest genetic diversity (He = 0.29) and the TLX
population (from the TC region of northern Xinjiang) had
the lowest genetic diversity (He = 0.11). On the whole, the
populations of southern Xinjiang had relatively high genetic
diversity (e.g., MGTX, ALE, YPHX, LPX, PSX, and YTX),
followed by one population from Inner Mongolia (EJN) and
those from Ningxia (ZW) and Gansu (GZX and JTX), while the
populations of northern Xinjiang (e.g., TLX, MLX, FYX, HBHX,
and ALSK) and QH (GEM), and the second population from
Inner Mongolia (SZWQ), had relatively low genetic diversity
(Supplementary Table 6). Among P. pruinosa populations, the
YTX population (HT region of southern Xinjiang) had the
highest genetic diversity (He = 0.28), while the YLX population
(BaZ region of southern Xinjiang) had the lowest (He = 0.12).
The three P. pruinosa populations (CX, KKDL, and NLKX)
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FIGURE 2 | Population stratification for K = 2, 3, and 4 determined using STRUCTURE software.

found only in northern Xinjiang had relatively low genetic
diversity (Supplementary Table 7). Overall, the populations of
Populus in southern Xinjiang had higher genetic diversity than
those of other clades. Of these, the MGTX, YTX, ALE, BCX, and
KPX populations had relatively high genetic diversity, whereas
the KCX, KKDL, AKTX, NLKX, and YLX populations had lower
genetic diversity.

Genetic Differentiation of the Populations
The genetic divergence (FST from 0.118 to 0.160) between P.
euphratica and P. pruinosa was high (Table 2). Of the four clades
of P. euphratica, we detected high genetic differentiation between
QH and GNM (FST = 0.064), moderate differentiation between
NX and SX (FST = 0.044) and between NX and QH (FST =

0.044), and lower genetic differentiation between SX and GNM
(FST = 0.010).

We further analyzed the genetic differentiation within P.
euphratica and P. pruinosa via pairwise comparisons of different
populations. For P. euphratica, the genetic differentiation
coefficient within populations in southern Xinjiang was low
except for MGTX, ALE, and CLX, indicative of strong gene
flow among populations. Detailed PCA showed that most
of the MGTX (9/11) and ALE (8/11) samples were in SX1
(Supplementary Table 5), suggesting that the higher genetic
diversity of MGTX and ALE might have been caused by
hybridization of P. euphratica and P. pruinosa. The genetic
differentiation among P. euphratica populations in southern
Xinjiang and populations of other clades (NX, GNM, and QH)
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FIGURE 3 | PCA based on genetic distance showing four clustered subpopulations within P. euphratica and P. pruinosa.

was higher, especially for MLX, FYX, TLX, MQX, SZWQ,
and GEM (Supplementary Table 8). However, higher levels of
genetic differentiation occurred within the northern Xinjiang
population between NX and other populations (GNM and
QH). Similar results were obtained regarding the genetic
differentiation between the GNM and QH populations. For
P. pruinosa, the genetic differentiation within populations in
southern Xinjiang was high except for MGTX and BCX, and
the genetic differentiation among populations in SX and NX
was high. Notably, QMX exhibited high genetic differentiation
from all other populations of P. pruinosa (FST from 0.180
to 0.397), which is associated with the isolated geographic
location of this region (Supplementary Table 9). Overall, the
populations of Populus had relatively high genetic differentiation
between SX and NX. AMOVA revealed higher genetic variation
within populations (85%, a total of 36% among individuals
and 49% within individuals) than among populations (15%)
of P. euphratica, suggesting a high level of differentiation
(Table 3). Nei’s genetic distance analysis revealed moderate levels
of population differentiation (FST = 0.147) accompanied by
a high rate of gene flow between P. euphratica populations
(Nm = 1.447).

Potential Distributions and Genetic
Isolation
To determine whether the genetic differentiation in Populus
is significantly associated with isolation-by-distance and/or
isolation-by-environment, we conducted Mantel tests
between pairwise genetic differentiation [FST/(1 – FST)]
and a geographical distance matrix, as well as a Euclidean

bioclimatic distance matrix with the seven bioclimatic variables.
Geographical distance (Figure 5A) and environmental distance
(Figure 5B) had significant effects on genetic distance among P.
euphratica populations. Positive correlations of genetic distance
with geographical distance (Figure 5C) and environmental
distance (Figure 5D) were also observed for the P. pruinosa
populations. This finding implies that the genetic differentiation
of Populus increased as the geographical and environmental
distances between populations increased, leading to low gene
flow. Also, the different correlations for P. euphratica and P.
pruinosa suggest that environmental distance played a more
important role in the genetic differentiation of the P. euphratica
populations (R2 = 0.11) than the P. pruinosa populations
(R2 = 0.05), while geographical distance contributed equally
to the genetic differentiation of both the P. euphratica and P.
pruinosa populations.

Finally, to test the effects of environmental and geographical
factors on the genetic diversity (He) of P. euphratica and P.
pruinosa at the population level, we performed correlation
analysis between the genetic diversity of Populus and latitudinal,
longitudinal, and environmental factors. He showed significant
negative correlations with longitude and especially latitude for
the P. euphratica populations (Figures 6A,B), suggesting that
the genetic diversity of this species markedly decreased with
increasing latitude and longitude. The He of the P. pruinosa
populations was negatively correlated with latitude but not
longitude (Figures 6D,E). Thus, the negative influence of latitude
on the genetic diversity of Populus was more important than
that of longitude. The genetic diversity values of both the
P. euphratica and P. pruinosa populations showed significant
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FIGURE 4 | Neighbor-joining phylogenetic tree based on a genetic distance matrix representing the grouping of 1,183 P. euphratica and 437 P. pruinosa individuals.

TABLE 1 | Comparison of genetic diversity among and within species.

Pop ID He Ho I PIC

Pe GNM 0.212 0.210 0.323 0.171

Pe NX 0.206 0.197 0.317 0.167

Pe QH 0.112 0.205 0.161 0.086

Pe SX 0.216 0.210 0.339 0.176

Pp 0.256 0.194 0.399 0.210

Pe, P. euphratica; Pp, P. pruinosa; GNM,Gansu, Ningxia, and InnerMongolia; NX, northern

Xinjiang; QH, Qinghai; SX, southern Xinjiang.

positive correlations with environmental factors (Figures 6C,F),
suggesting that such factors play important roles in the genetic
diversity of both species.

DISCUSSION

Geographical isolation and environmental heterogeneity are
considered to be the crucial drivers of allopatric variance

TABLE 2 | Comparison of genetic differentiation among and within species.

Pop ID Pp NX SX QH GNM

Pp 0.000

Pe NX 0.160 0.000

Pe SX 0.146 0.044 0.000

Pe QH 0.118 0.042 0.023 0.000

Pe GNM 0.131 0.022 0.010 0.064 0.000

Pe, P. euphratica; Pp, P. pruinosa; GNM,Gansu, Ningxia, and InnerMongolia; NX, northern

Xinjiang; QH, Qinghai; SX, southern Xinjiang.

(Evans et al., 2014; Jiang et al., 2018; Binks et al., 2019). A
geographic barrier not only facilitates the local adaptation of
populations but also can lead to the evolution of populations
with unique genetic characteristic (Barnes et al., 2002; Zhang
et al., 2020). Our results reveal distinct differentiation between
P. euphratica populations of the NX and SX clades, suggesting
that the Tianshan Mountains may limit gene flow between
the two clades and that the differences in local environments
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TABLE 3 | Analysis of molecular variance of the genetic variation among and

within P. euphratica populations.

Source df SS MS Est. Var. %

Among populations 4 92843.949 23210.987 40.518 15%

Among individuals 1574 526277.637 334.357 99.837 36%

Within individuals 1579 212664.000 134.683 134.683 49%

Total 3157 831785.586 275.038 100%

FST 0.147

Nm 1.447

and the long period of isolation facilitated their allopatric
divergence. It is also thought that the Tianshan Mountains
impede seed dispersal and pollen flow in these two regions
(Zeng et al., 2018; Jia et al., 2020). Accumulating evidence
suggests that climatic fluctuations during the Pleistocene era
led to extreme drought and desert expansion in southern
Xinjiang (Meng et al., 2015), resulting in habitat fragmentation
of desert plant populations. This fragmentation likely affected
the geographical distributions of different species, further
promoting population divergence and affecting intraspecific
genetic diversity (Larmuseau et al., 2009; Ye et al., 2019).
Here, Mantel tests showed that the greater the geographical
distance, the higher the genetic differentiation and the weaker
the gene flow between populations (Figure 5). Moreover, in the
current study, we collected CX, KKDL, and NLKX populations
of P. pruinosa in northern Xinjiang for the first time, and
we found that the above analyses were also applicable to
P. pruinosa.

Genetic diversity refers to the variation of genetic
characteristics in a population, which allows the population
to adapt to environmental changes. The genetic diversities
of each clade were ranked from high to low as follows: SX
> GNM > NX > QH. Our results are similar to previous
findings based on whole-genome resequencing (Jia et al., 2020)
but are not quite consistent with findings based on analysis
using 17 nuclear microsatellite loci from Populus trichocarpa
(Zeng et al., 2018). Perhaps the relatively small number and
the P. trichocarpa origin of these molecular markers limit their
applicability for evaluating genetic diversity in P. euphratica and
P. pruinosa.

Accumulating evidence suggests that gene flow is a creative
force in evolution that functions via pollen spread or seed
dispersal. Intraspecific genetic admixture can produce
new allelic combinations, leading to novel genotypes and
phenotypes (Hendry et al., 2002; Olson-Manning et al., 2012;
Rius and Darling, 2014). Interestingly, the P. euphratica
MGTX population showed variable leaf morphology
intermediate between that of P. euphratica and P. pruinosa
(Supplementary Figure 2), along with the highest genetic
diversity among the P. euphratica populations, which could
be attributed to gene flow and gene introgression between
species (Supplementary Table 5). In addition, P. euphratica
and P. pruinosa are dioecious, with males flowering earlier
than females in each species, although the flowering periods

basically overlap. However, P. euphratica flowers slightly
earlier than P. pruinosa, suggesting that asymmetrical gene
flow from male P. pruinosa to female P. euphratica might
increase the probability of genetic variation (Wang et al.,
1995, 2011). This observation likely explains why the co-
occurring population of P. euphratica and P. pruinosa
had higher genetic diversity than the other populations of
each species.

Current assumptions suggest that palaeogeographical changes
(Wang et al., 2013) or heterogeneous environments (Forester
et al., 2016) might also affect the spatial genetic patterns of
plants. We found here that both geographical distance and
environmental heterogeneity significantly influenced the genetic
variation of P. euphratica and P. pruinosa, suggesting that the
genetic distance within the isolates increased with geographical
distance. Changes in longitude and latitude represent the
effects of geographical distance on genetic variation, which
further strengthens our hypothesis that the presence of a
geographical barrier facilitated the genetic differentiation of
these populations. Local environmental differences and a
long period of isolation facilitate allopatric divergence. For
example, the environmental factors of NMG, NiX, and GS
were intermediate between those of SX and NX (Jia et al.,
2020), which might have contributed to the formation of the
GNM clade. Meanwhile, analysis of the effects of geographical
and environmental factors on the genetic diversity of P.
euphratica and P. pruinosa showed that genetic diversity
decreased with increasing latitude and longitude. In particular,
the genetic diversity of Populus is more closely related to
latitude, which might be related to differences in photoperiod
or temperature in different latitudes. This notion requires
further study.

A recent study of environmental factors influencing the
geographical distribution of P. euphratica showed that this is
affected by precipitation of the driest month and the warmest
quarter, the soil moisture content (10–40 cm underground), soil
moisture around the root system, and the evapotranspiration
of soil water (Guo et al., 2020). Precipitation of the driest
month and the warmest quarter is an important source of
soil groundwater recharge during the growing season of P.
euphratica. Soil water evaporation limits the effective recharge of
soil groundwater, and soil water content and root soil moisture
are important indices of effective soil groundwater recharge.
Notably, precipitation of the driest month and the warmest
month was opportunely encountered flooding season in southern
Xinjiang (Zheng et al., 2016; Gai et al., 2020). In general, the peak
of yearly seed release (at the end of July) coincides with the annual
flooding period in that region (Eusemann et al., 2013). These
favorable conditions may be conducive to the reproduction of
P. euphratica and P. pruinosa, perhaps explaining why southern
Xinjiang owns the largest P. euphratica and P. pruinosa forests in
northwest China.

The high genetic diversity of the SX populations may result
from its distinct local geographic structure and strong gene
flow (Shen et al., 2014). Southern Xinjiang represents the
widest distribution area of P. euphratica globally. The high
genetic diversity of P. euphratica populations in this region
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FIGURE 5 | Tests of isolation-by-distance and isolation-by-environment among 58 P. euphratica populations (A,B) and 24 P. pruinosa populations (C,D), respectively.

Correlation coefficients were analyzed with data matrixes of genetic distance × geographical distance and genetic distance × environmental distance from pairwise

populations.

reflects the large effective population size and large amount
of endemic gene resources. To better protect these genetic
Populus resources, more effort should focus on the intensity
of flood diversion and irrigation and the protection of P.
euphratica forests in southern Xinjiang, regardless of their
ecological significance or importance to genetic conservation.
More attention should also be paid to the replacement and

renewal of P. euphratica forests in northern Xinjiang. Finally,
the dramatic decreases in P. pruinosa populations underline
the need to preserve this species, which is important not only
in itself but as a precious genetic resource to enrich the gene
pool of P. euphratica. Our genetic data here indicate that a
comprehensive strategy is needed to maximize the protection of
desert poplar.

Frontiers in Plant Science | www.frontiersin.org 9 August 2021 | Volume 12 | Article 705083

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Gai et al. Genetics of Populus sect. Turanga

FIGURE 6 | Effects of geographical and environmental factors on genetic diversity in Populus populations. (A–C) P. euphratica. (D–F) P. pruinosa.

CONCLUSION

In this study, we explored population structure and genetic
diversity among 1,620 samples covering the full distribution
ranges of P. euphratica and P. pruinosa populations in northwest
China. Our study found that the natural populations of
P. euphratica in northwest China show strong geographical
distribution patterns and that P. euphratica and P. pruinosa
populations in southern Xinjiang have higher genetic diversity
than the populations of other clades. Mantel tests suggested
that both geographical and environmental distance significantly
influence genetic variation in P. euphratica and P. pruinosa:
the genetic diversity of P. euphratica markedly decreases with
increasing latitude and longitude and is positively correlated
with environmental factors. Finally, the higher genetic diversity
in southern Xinjiang may contribute to the local geographic
structure and strong gene flow in these populations.
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