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The root is the most critical plant organ for water and nutrient acquisition. Although the
root is vital for water and nutrient uptake, the diverse root characters of soybean still
need to be identified owing to the difficulty of root sampling. In this study, we used 150
wild and 50 cultivated soybean varieties to collect root image samples. We analyzed root
morphological traits using acquired-image. Except for the main total length (MTL), the
root morphological traits for most cultivated and wild plants were significantly different.
According to correlation analysis, the wild and cultivated plants showed a significant
correlation among total root length (TRL), projected area (PA), forks, total lateral length
(TLL), link average diameter, and MTL. In particular, TRL was highly correlated with PA
in both cultivated (0.92) and wild (0.82) plants compared with between MTL (0.43 for
cultivated and 0.27 for wild) and TLL (0.82 for cultivated and 0.52 for wild). According
to principal component analysis results, both plants could be separated; however, there
was some overlap of the traits among the wild and cultivated individuals from some
regions. Nevertheless, variation among the cultivated plants was higher than that found
in the wild plants. Furthermore, three groups, including MTL, TLL, and the remaining
traits, could explain all the variances.

Keywords: link average diameter, link average branching angle, phenomics, projected area, WinRHIZO

INTRODUCTION

Soybean (Glycine max L.) is regarded as a significant worldwide crop owing to its nutritional value
(Kim et al., 2015). According to Nawaz et al. (2018), soybean is classified into 28 species under 2
subgenera. Among them, G. max and G. soja Sieb. and Zucc are consumed as food by humans and
livestock (Nawaz et al., 2018).

Glycine max (cultivated soybean) is an annual legume with white to purple–pink flowers and
trifoliate leaves and an extensive taproot system; most of the taproot system is in the top 15 cm
soil layer (Chaturvedi et al., 2011). Cultivated soybean was domesticated from its annual relative
G. soja (wild soybean) (Carter et al., 2004). Soybean is native to East Asia, and it is widely cultivated
for its edible beans in Korea, China, Japan, and Russia (Jeong et al., 2019). Soybean has numerous
uses (Multilingual Multiscript Plant Name Database: Retrieved Feb 16, 2012). It is an economically
important legume crop that provides food and animal feed (Graham and Vance, 2003). In China,
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which is the world’s largest soybean genetic diversity reservoir (Li
et al., 2008), 23,587 soybean landraces have been collected.

Several pieces of evidence, including proteomics, genomics,
and cytological traits (Wang et al., 2016), suggest that wild
soybean is the progenitor species of cultivated soybean.
Moreover, wild soybean is widely distributed in East
Asia, including Korea, China, Japan, and the Russian Far
East. Moreover, it grows well in diverse areas, including
agricultural fields, lakesides, marshlands, and riverbank,
within any nation (Lu, 2004; Wang et al., 2016). Thus,
it is well acclimated to various environmental conditions
because of its broad regional adaptability (Nawaz et al.,
2018). The wild soybean contains enriched characters known
as gene banks for the species (Li et al., 2017; Nawaz et al.,
2018). Hence, various traits have been comprehensively
characterized, focusing on the above-ground organs
of wild soybean.

The root is essential for water acquisition and nutrient
absorption across the entire life of a plant (Zhao et al., 2017). It
participates in nutrient cycling and soil formation stabilization
via its interaction with soil organisms (Bardgett et al., 2014;
Faucon et al., 2017). Thus, there is a considerable potential for
breeding better cultivars by understanding root morphological
traits associated with plant growth and development. This makes
the root important for identifying crucial traits. However, the
root system has not been studied in detail compared with
the above-ground organs of the plants because of difficulty in
phenotyping them. In addition, manual measuring of the root
traits is time-consuming, laborious, and inaccurate in a fully
grown plant (Costa et al., 2001; French et al., 2009; Lobet et al.,
2011). Hence, phenotyping of the architecture of the root system
is performed primarily under controlled laboratory conditions
at early growth stages, although “shovelomics” has also been
used for both field breeding and quantitative genetics (Colombi
et al., 2015). However, the shovelomic method measures the
ground nodal root (crown root) phenotypes, disregarding the
internal root system despite its enormous impact on plant growth
(York and Lynch, 2015).

Due to developments in imaging technology, high-resolution
images can be easily captured using a compact camera (Chung
et al., 2017). Many efforts have been employed to apply
image-based phenotyping for high-throughput phenotyping in
agricultural research fields (Vasseur et al., 2018; Kim et al., 2019).
In particular, many imaging analysis software were launched
to determine root growth and development (Judd et al., 2015;
Richard et al., 2015). In this context, WinRHIZO root-scanning
software (Regent Instruments Inc., Ottawa, ON, Canada) is
unique for measuring several root morphologies, including total
root length (TRL), average root diameter, projected area (PA),
number of tips, and forks (FK) (Pornaro et al., 2017). This
software comprises two parts: one is the scanner, which acquires
images, and the other is the analysis software in the computer.
This equipment can quickly analyze several root traits via the
acquired two-dimensional (2D) images (Arsenault et al., 1995).
Hence, it has been used to identify root morphology and
architecture (Wang and Zhang, 2009; Pang et al., 2011; Tajima
and Kato, 2013; Pornaro et al., 2017). The present study aimed

to screen root morphology to evaluate the variation in root traits
among the cultivars and wild germplasm of soybean.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
We used 200 soybeans (150 wild soybean accessions and 50
cultivars; Supplementary Table 1) to evaluate root characteristics
in soybean. Each accession comprised three plants. We
used polypropylene (PVC) pipes as pots to collect root
samples without damage. The size of the PVC pot was 6
(diameter) × 40 cm (height). The seeds were sterilized with 70%
ethanol and then washed with double distilled water thoroughly.
Three experimental replicates were performed, and a single plant
was used as one replication for root analysis. We planted two
sterilized seeds on the PVC pots containing horticulture soil
(Tobirang, Baekkwang Fertility, South Korea) to reduce the
chances of the seeds not germinating. Then, we placed the pipes
in a greenhouse that is located at the research farm in Kyungpook
National University. After germination, only one soybean plant
was used to collect the root sample.

Phenotypic Data Collection
Root Data Collection
We collected root samples when the soybean plant reached the
V1 growth stage with fully developed leaves at the unifoliate
node (Jones et al., 1991). We carefully removed the stopper
from the bottom of the PVC pipes to minimize root damage
or loss. Then, we removed all soil and soybean roots from the
pipes. We carefully transferred the soil and soybean root samples
to a sieve and separated the soil from the roots using fresh
water. The clean root samples were transferred to a plastic bag
containing distilled water until image analysis to prevent the root
from drying. We analyzed the root morphological traits using a
2D image captured by a scanner (Expression 12000XL, Epson,
Japan). The clean root samples were placed on a transparent
tray (30 cm × 20 cm), and tap water was poured carefully until
the root samples floated. Images of the floating root samples
were captured using the scanner. The root images were added
to WinRHIZO pro software (Regent Instruments Inc., Canada)
for root morphological data analysis (Figure 1). We annotated
and analyzed only the root area in the original image to avoid
sampling error data. Supplementary Table 2 describes the root
morphological traits obtained with the WinRHIZO software.

Statistical Analysis
One-Way Analysis of Variance
We performed two experiments: the first experiment identified
the root traits among 150 wild plants and the second experiment
evaluated the root traits in 50 cultivated plants. Hence, a total
of 200 soybean genotypes (150 wild and 50 cultivated) were
used for identifying root characteristics. To determine differences
among soybean accessions and to verify that there is no effect
from replications, all data were transformed into square roots
for normalizing the distribution of data. One-way analyses
of variance (SAS v.9.4; SAS, Gary, NC, United Sates) were
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FIGURE 1 | Process of root analysis for morphological data collection.

performed twice for replications and genotypes. The equation is
as follows:

Yij = µ+ τj + eij, (1)

Where, Yij is the ith and jth quantified phenotype observations,
i is the index regarding the observations of the phenotype in
the entire dataset, j is the index of over replication of genotype
groups, τij is the ith and jth effect of replications or genotypes, and
e is the error.

Kruskal–Wallis Rank-Sum Test and Spearman’s Rank
Correlation Test
The Kruskal–Wallis rank-sum test was performed using a raw
dataset of 200 genotypes to demonstrate differences in the
phenotypes of wild and cultivated soybean cultivars. Moreover,
the Spearman’s rank correlation test was performed to identify
correlations among the phenotypes of the cultivars. The R
programming language was used for performing these tests (R v.
4.0.4; R Foundation for Statistical Computing, Vienna, Austria).

Principal Component Analysis Plot Analysis
Principal component analysis (PCA) was performed for the same
200 soybean accessions, (150 wild and 50 cultivated cultivars)
in R. The analysis was performed using five traits that showed
significant differences between the wild and cultivated cultivars
[TRL, PA, FK, main total length (MTL), and total lateral length
(TLL)]. The PCA plot was generated through the R packages
“devtools” and “ggbiplot” for choosing the first and second
principal components.

RESULTS

Variations Among the Cultivated and
Wild Plants
Both the cultivated and wild plants were significantly different
from one another with respect to the root morphological traits
obtained from image analysis, except for MTL (0.060) among
the cultivated plants (Table 1). We could infer that MTL was
selected as a direction or breeding goal in the cultivated plants
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TABLE 1 | Analysis of variance for the wild (n = 150) and cultivated soybean (n = 50).

Wild

Effects df TRL_sqrt PA sqrt FK_sqrt MTL_sqrt TLL_sqrt LAD_sqrt

F value Pr(>F) F value Pr(>F) F value Pr(>F) F value Pr(>F) F value Pr(>F) F value Pr(>F)

Rep 2 3.376 0.068 302.59 < 0.001*** 10.342 0.002** 1.230 0.269 0.193 0.661 329.586 < 0.001***

Genotype 149 14.465 < 0.001*** 13.04 < 0.001*** 8.177 < 0.001*** 1.492 0.008** 3.011 < 0.001*** 1.854 < 0.001***

Cultivated

TRL_sqrt PA sqrt FK_sqrt MTL_sqrt TLL_sqrt LAD_sqrt

Rep 2 0.128 0.722 37.133 < 0.001*** 22.148 < 0.001*** 11.949 0.001*** 5.426 0.0219* 76.855 < 0.001***

Genotype 49 19.084 < 0.001*** 9.577 < 0.001*** 6.677 < 0.001*** 1.453 0.060 1.708 0.0126* 2.382 < 0.001***

TRL, total root length; PA, projected area; FK, forks; MTL, main total length; TLL, total lateral length; LAD, link average diameter. * < 0.05, ** < 0.01, *** < 0.001.

during the domestication process of soybean. The p-value of
MTL for the wild plants was relatively higher (0.008) than that
of the rest of the traits (<0.001 for all others), suggesting that
MTL among the wild plants was somewhat selected compared
with other characteristics. Likewise, the relatively high p-value
of TLL (0.0126) in the cultivated plants might suggest the same
domestication pattern.

Comparison Between the Cultivated and
Wild Plants
Between the wild and cultivated plants, there was a significant
difference among five traits, including TRL, PA, FK, MTL, and
TLL (Table 2). However, the p-value of MTL between the plants
was higher (0.045) than that of others (<0.001). The values of
each trait were higher in the cultivated and wild plants (Figure 2).
This result could be because the above-ground biomass of the
cultivated plants is significantly more than that of the wild plants.
However, the MTLs of both the cultivated and wild plants were
not significantly different (Table 1). This result indicates that
MTL is an essential trait for survival in the wild and leads to better
performance in the cultivated field.

Correlations
According to the correlation analysis, both soybean plant types
mostly showed a significant correlation among TRL, PA, FK,
MTL, TLL, and AD, except for the correlation between few traits
[PA and AD (wild plants); MTL and AD (wild and cultivated
plants)] (Table 3). Both plant types showed correlations between
L and AD (−0.12 for cultivated plants and−0.41 for wild plants),

TABLE 2 | Kruskal–Wallis rank-sum test for wild and cultivated
soybean (By Wild/Cult).

TRL PA FK MTL TLL

Df 2 2 2 2 2

P-Value <0.001 <0.001 <0.001 0.045 <0.001

chi-square 232.930 264.370 36.795 4.036 94.186

TRL, total root length; PA, projected area; FK, forks; MTL, main total length; TLL,
total lateral length.

between FK and AD (−0.19 for cultivated plants and −0.56 for
wild plants), and between MTL and TLL (0.54 for cultivated
plants and 0.73 for wild plants). By contrast, the correlation
between TLL and AD showed a difference (Table 3). These
results suggest that longer MTL means longer TLL in wild plants,
whereas longer MTL does not necessarily mean longer TLL in
cultivated plants. As stated above, TRL was highly correlated with
PA in both cultivated (0.92) and wild (0.82) plants and relatively
less correlated with MTL (0.43 for cultivated and 0.27 for wild
plants) and TLL (0.82 for cultivated and 0.52 for wild plants) even
though TRL comprises the sum of MTL and TLL. That tendency
was particularly prominent in the wild plants rather than in the
cultivated plants. The correlation between TRL and TLL was
higher than that between TRT and MTL for both the cultivated
and wild plants, suggesting that the length of lateral root branches
is more responsible for TRL than the main root length.

The correlations between TRL and MTL as well as TRL and
TLL were stronger in the cultivated plants than in the wild
plants, suggesting that MTL and TLL are more explanatory
compared with TRL in cultivated plants than in wild plants.
There was a stronger correlation between TRL and AD in the
wild plants (−0.41) than in the cultivated plants (−0.12). Our
results showed that the diameter of the roots is more consistent
in the wild plants compared with that in the cultivated plants.
Although most results showed a positive correlation among root
morphological traits, only AD showed a negative correlation with
TRL, FK, and TLL in both the cultivated and wild plants. The
highest correlation values for the ranked comparison between
TRL and PA were 0.92 (cultivated plants) and 0.85 (wild plants),
respectively. The correlations between TRL and AD as well as
between FK and AD were stronger in the wild plants than in the
cultivated plants, whereas the correlation between FK and MTL
was much stronger in the cultivated plants than in the wild plants.

PCA
Principal component analysis revealed a variation between the
cultivated plants and wild plants (Figure 3). The cultivated and
wild plants could be separated, but there was an overlap. The
variation among the cultivated plants was higher than that among
the wild plants. Three groups, including MTL, TLL, and the rest

Frontiers in Plant Science | www.frontiersin.org 4 August 2021 | Volume 12 | Article 704239

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-704239 July 30, 2021 Time: 16:55 # 5

Kim et al. The Potential for Breeding Underground in Soybean

FIGURE 2 | Plot of each traits: (A) the total root length; (B) the projected area; (C) the forks; (D) the main total length; and (E) the total lateral length (blue, wild; red,
cultivated).

of the traits, could explain all the variance. Of note, a very high
variation was found among the cultivated plants, which implies a
considerable breeding potential for the root traits, if necessary.

DISCUSSION

The root area shows the enormous diversity by several factors
such as soil physical property, chemical composition of soil, soil
moisture and soil nutrients (Neina, 2019). In general, however,

TABLE 3 | Spearman rank correlation of wild and cultivated soybean (raw data).

TRL PA FK MTL TLL AD

TRL Wild 1.00 0.85*** 0.83*** 0.27** 0.52*** −0.41***

Cultivated 1.00 0.92*** 0.91*** 0.43*** 0.82*** −0.12*

PA Wild 1.00 0.61*** 0.34*** 0.52*** 0.08

Cultivated 1.00 0.80*** 0.42*** 0.74*** 0.25***

FK Wild 1.00 0.19* 0.42*** −0.56***

Cultivated 1.00 0.35*** 0.73*** −0.19***

MTL Wild 1.00 0.73*** 0.05

Cultivated 1.00 0.54*** 0.01

TLL Wild 1.00 −0.14*

Cultivated 1.00 −0.14*

TRL, total root length; PA, projected area; FK, forks; MTL, main total length; TLL,
total lateral length; AD, average diameter. * < 0.05, ** < 0.01, *** < 0.001.

the root area is known as over fifty percent of the whole
plant area (Bardhan et al., 2021). Moreover, roots regulate or
participate in various physiological mechanisms in the plant;
therefore, understanding root morphological traits is crucial for
plant research. In soybean research, the identification of root
traits is required to expand the research field, which can help
improve water and nutrient efficiency to increase productivity
under uncertain water and nutrient conditions. For these reasons,
many studies have been conducted to identify root morphologies
in cultivated and wild plants (Costa et al., 2001; French et al.,
2009; Lobet et al., 2011; Zhao et al., 2017). However, most root
studies were conducted with a limited number of cultivars or
germplasm. Thus, these studies could not show enough variation
among and within cultivars or germplasm. This is because most
of these studies collected root phenotypes manually; hence, it was
challenging to show detailed root morphological traits. Therefore,
we investigated root morphological traits using the image basis
analysis technology to improve the limitation of previous studies.
According to previous QTL studies, loci associated with root
morphological traits were found to be inconsistent. Liang et al.
(2014) analyzed the lateral root number, maximum root length,
and root volume to identify related QTLs. They located QTLs in
chromosome 2 with two loci and chromosome 4 with five loci.
Prince et al. (2020) investigated QTLs that are involved in taproot
length; QTLs were located in chromosome 8 with one locus
and chromosome 7 with one locus. Although both studies used
similar root traits, different QTLs were identified. We believed
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FIGURE 3 | Plot of the first-two PC loading vectors (blue, wild; red, cultivated).

that this issue could be resolved using a large-scale dataset of root
traits in many cultivars and wild germplasm, thereby enabling
researchers to detect more unidentified loci.

Similar to correlation studies on root characters, many studies
examined the association between under- and above-ground
traits. Plant height, one of the above-ground traits, was not
correlated with root length in the study by Liang et al. (2014),
whereas an inconsistent result was reported by Mayaki et al.
(1976). QTL studies on under- and above-ground traits were
also inconsistent with respect to the location and number of loci
(Liang et al., 2014; Prince et al., 2015).

Only when that information is obtained, numerous traits
can be efficiently incorporated into new cultivars. Many rare

alleles from wild plants have been employed to improve various
agronomic traits in cultivated plants (Hajjar and Hodgkin, 2007;
Liu et al., 2007). Such improvements include stress tolerance
(Carter et al., 2004; Chen et al., 2006; Tuyen et al., 2010), seed
compositional traits (Kanamaru et al., 2006), and seed yield (Li
et al., 2008). In addition to these traits, the root traits also have
been incorporated from wild plants to cultivated plants. Root
length root volume are highly associated with stress tolerance
(drought and aluminum stress) indices (Liu et al., 2005; Yang
et al., 2005). Plants with drought tolerance ability have a profound
rooting ability (Taylor et al., 1978) and more fibrous roots
(Myers et al., 2007) for the effective acquisition of water, which
is positively associated with improved yields under drought
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conditions (Hudak and Patterson, 1995). Root volume and
surface area can facilitate foraging and phosphorus accumulation
(Liang et al., 2014) and even improve shoot growth (Bates and
Lynch, 2001). The results of the present study, however, showed
that these traits were present in both wild and cultivated plants,
considering the large variation found in PCA.

These root morphologies are not the only factors that
are correlated with yield components. High numbers of
mitochondria, Golgi bodies, and amyloplasts in root tip cells can
affect shoot growth and yield (Yang et al., 2012). Furthermore,
the mechanism underlying root–shoot and root–soil interactions,
roles of root-sourced hormones in regulating crop growth and
development, and soil moisture and nutrient management on
the root architecture and physiology may be necessary for the
root morphology itself. Indeed, Ramos et al. (2010) reported that
root morphology changes depending on soil physicochemical
characters. This interaction was supported by Forde and
Lorenzo (2001) when they proposed “trophomorphogenesis”
to describe changes in plant morphology that arise from
variations in the availability or distribution of nutrients in the
environment. They described the mechanisms of external and
internal nutrient sensing, the possible nature of long-distance
signals, and the role of hormones in the trophomorphogenic
response. This makes sense because roots have evolved to
adapt to dynamic soil conditions, including soil moisture,
soil property, soil nutrition, and soil temperature (Wasaya
et al., 2018). Nevertheless, the present study would be useful
for “root breeding” because our study was conducted with
large numbers of both the wild and cultivated plants. This
finding enabled us to observe the end results of interactions
in the “standard condition.” Once changes in the standard
condition are understood, these changes can be evaluated in
the given field condition, which does not refer to location
of the wild and cultivated plants but the target location
for cultivation.

According to various studies, wild plants have diverse genetic
resources involved in abiotic stress resistance, including salinity
(Ji et al., 2010), drought (Kao et al., 2006), flooding (Li et al.,
2017), and high temperature (Nawaz et al., 2018). Thus, they
are considered as an alternative to breeding new cultivars
because they contribute a significant proportion of genetic
resources to mitigate unfavorable environmental conditions for
cultivation (Dwivedi et al., 2017; Zhang et al., 2017; Mammadov
et al., 2018). Moreover, the root may evolve as per the given
environment, which could be vast sources for breeding. One of
the most important root features to measure for breeding is its
morphology. The data obtained in this study by the phenome
technology provided a better estimation of the correlations
among traits because of the large numbers of cultivated and wild
plants. More importantly, our results revealed huge variations
in root morphologies even among cultivated plants, which is
sufficient to break the general myth “screen wild germplasm for
new traits.” Indeed, the study results showed a huge potential of
root breeding in soybean. In the future, it is suggested that the
root shape should be examined using the method by Falk et al.
(2020) to gain an insight in the variation of the root shapes as
well as the traits examined in the present study.

CONCLUSION

We analyzed numerous images of the roots of cultivated and wild
soybean using WinRHIZO software. We revealed that there is a
huge variation in root morphology. Of note, we found that the
variation is larger in cultivated than in wild plants. Furthermore,
we found the following relationships among root traits. First, TRL
significantly decides PA in the wild and cultivated plants. Second,
TRL is more affected by FK in both the wild and cultivated plants.
Third, TRL in wild plants is shorter than that in cultivated plants,
and FK is less developed as AD increases, unlike in cultivated
plants. Fourth, TLL in cultivated plants is highly affected by TRL,
PA, and FK; however, in wild plants, it is positively associated
with MTL. There was no correlation between MTL and AD,
suggesting that these two traits independently segregate each
other. However, a high correlation found in this study could
imply two characteristics: linked and co-selected. One trait can
be selected by the other trait when they are highly correlated and
linked; however, if they are not correlated and linked, the traits
are co-selected, which can be discovered by a molecular marker
study. Taken together, our results showed that there is enough
room for root breeding, particularly in cultivars.
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