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Reciprocal recurrent genomic selection is a breeding strategy aimed at improving

the hybrid performance of two base populations. It promises to significantly advance

hybrid breeding in wheat. Against this backdrop, the main objective of this study was

to empirically investigate the potential and limitations of reciprocal recurrent genomic

selection. Genome-wide predictive equations were developed using genomic and

phenotypic data from a comprehensive population of 1,604 single crosses between 120

female and 15 male wheat lines. Twenty superior female lines were selected for initiation

of the reciprocal recurrent genomic selection program. Focusing on the female pool,

one cycle was performed with genomic selection steps at the F2 (60 out of 629 plants)

and the F5 stage (49 out of 382 plants). Selection gain for grain yield was evaluated

at six locations. Analyses of the phenotypic data showed pronounced genotype-by-

environment interactions with two environments that formed an outgroup compared to

the environments used for the genome-wide prediction equations. Removing these two

environments for further analysis resulted in a selection gain of 1.0 dt ha−1 compared to

the hybrids of the original 20 parental lines. This underscores the potential of reciprocal

recurrent genomic selection to promote hybrid wheat breeding, but also highlights the

need to develop robust genome-wide predictive equations.

Keywords: grain yield, hybrid breeding, long-term selection gain, genotype-times-year interaction, abiotic stress

INTRODUCTION

Since the discovery of the advantages of hybrid breeding through increased performances due to
the exploitation of heterosis (Shull, 1908), it has proven to be a successful strategy in allogamous
species such as maize (Troyer, 1999), sunflower (Reif et al., 2013), sugar beet (Li et al., 2010), and
rye (Geiger and Miedaner, 2015). Besides, hybrids display higher yield stabilities (Mühleisen et al.,
2014), especially in marginal environments (Hallauer et al., 1988) and facilitate the stacking of
major genes (Longin et al., 2012). These advantages stimulated investments in the implementation
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of hybrid breeding also in autogamous species, with the
main challenge to develop economically competitive varieties
that can compete against the line varieties on the market as
the autogamous biology makes economic seed production
challenging. Therefore, hybrid varieties must outperform
significantly line varieties and the yield surplus must compensate
for the higher costs in seed production. Recent advances enabled
the introduction of hybrid breeding in autogamous species such
as barley (Mühleisen et al., 2013), wheat (Melonek et al., 2021),
and most successfully rice (Huang et al., 2017) but a major
challenge is the selection gain per unit time: Classical hybrid
breeding uses heterosis but exploits less additive variance and the
breeding schemes are longer compared to line breeding (Longin
et al., 2012).

A promising approach to breed high-yielding hybrids is to
maximize the exploitation of beneficial heterosis. The concept
of reciprocal recurrent selection (RRS) was originally proposed
by Comstock et al. (1949) and optimizes the use of general
and specific combining ability by selecting genotypes from one
population based on the performance of their progeny resulting
from crosses with another population. Ideally, this selection
strategy results in a reciprocal shift in gene frequencies among
the two populations from which female and male genotypes shall
derive. Recurrent selection cycles are applied to further manifest
this tendency. The success of RRS has been demonstrated in
outcrossing species such as maize (Eyherabide and Hallauer,
1991; Tardin et al., 2007; Souza et al., 2010; Kolawole et al., 2018)
and sugar beet (Doney and Theurer, 1978; Hecker, 1985). To the
authors knowledge, no studies were published that investigate the
potentials and limits of RRS in autogamous cereals such as wheat.

A disadvantage of RRS compared to recurrent selection is
the elongation of breeding cycles due to the need to produce
sufficient progeny based on which genotypes can be rated. In
recurrent selection, the implementation of genomic selection has
the potential to shorten the length of selection cycles and raise
selection gain (Santantonio et al., 2020; Atanda et al., 2021), but
empirical studies providing insights into the long-term effect
in recurrent genomic selection are still missing. Research in
animal breeding has suggested to complement RRS with genomic
selection (Kinghorn et al., 2010). In oil palm, simulations have
shown that genomic selection could potentially reduce the
generation time of an RRS breeding cycle from 20 to 6 years (Cros
et al., 2015). Integration of genomic selection into RRS would
furthermore allow the combination of RRS and speed breeding
approaches as proposed by Watson et al. (2018). Empirical
evidence of the superiority of reciprocal recurrent genomic
selection (RRGS) breeding programs, however, is still missing.

Many breeding programs are aimed at producing genotypes
adapted to so-called mega-environments. Mega-environments
are geographic regions that show similar growing conditions
limiting the variance of the interaction effects between genotype
and environments (Braun et al., 1996). In Germany, breeders
generally aim for genotypes that are capable to meet the
requirement criteria of the Federal Plant Variety Office
(Bundessortenamt, Hannover), to release registered varieties. The
Federal Plant Variety Office tests candidate genotypes in its
official trials at up to 15 locations representing wheat growing

regions in Germany. It is important to note here that Germany
is not further subdivided in the Federal Plant Variety Office tests
into target mega-environments for wheat breeding.

This study provides the first empirical results on the
potential and limits of an RRGS breeding program in wheat
targeted for Germany. The objectives were to (1) investigate
the utility of genomic selection to identify superior females
through genomic estimation of the general combining ability,
(2) evaluate the selection gain for grain yield achieved by an
RRGS breeding strategy, and (3) examine the impact of genotype-
by-environment interaction on the effectiveness of a long-term
breeding strategy.

MATERIALS AND METHODS

Design of the Reciprocal Recurrent
Genomic Selection Program
We implemented an RRGS program based on genomic and
phenotypic data of a large hybrid wheat population (further
denoted as HYWHEAT population) presented in detail in
previous studies (Longin et al., 2013; Zhao et al., 2013, 2015;
Gowda et al., 2014; Liu et al., 2016, 2020a,b; Jiang et al., 2017;
Schulthess et al., 2018; Thorwarth et al., 2018, 2019). Briefly,
120 female and 15 male winter wheat lines adapted to Central
Europe were crossed using chemical hybridization agents (e.g.,
Croisor 100; Kempe et al., 2014) applying standard in house
protocols. 1,604 single-cross hybrids were produced. The 1,604
hybrids, their 135 parents, and 10 commercial varieties (As
de Coeur, Colonia, Genius, Hystar, JB Asano, Julius, Kredo,
Tabasco, Tobak, Tuerkis) were evaluated for grain yield in 11
environments, i.e., 5 and 6 locations (Adenstedt, Boehnshausen,
Hadmersleben, Harzhof, Hohenheim, and Seligenstadt), in the
growing seasons 2011/2012 and 2012/2013, respectively, in
Central Europe, resulting in high quality phenotypic data
(Supplementary Table 2 in Zhao et al., 2015). The 135 parental
lines were genotyped using a 90,000 SNP array based on an
Illumina Infinium assay and after quality tests, 17,372 high-
quality SNP markers were retained. The phenotypic and the
genomic data were combined, and a ridge regression best linear
unbiased prediction (RRBLUP)model was trained fitting additive
and dominance effects using the package rrBLUP (Endelman,
2011) in the R software environment (R Core Team, 2020). The
implementation of the RRBLUP model was described in detail
elsewhere (Zhao et al., 2015). Briefly, the model was:

Y = 1nµ + ZAa+ ZDd + e, (1)

where Y refers to the grain yield data of the 135 parent lines
and their 1,604 hybrids, µ was the overall mean, 1n was an n-
dimensional vector of ones, a and ZA denoted the additive effects
and the corresponding design matrix, and d and ZD denoted
the dominance effects and the corresponding design matrix. The
estimated a and d effects were used to predict the genotypic values
of the hybrid performances when crossed with the 15 male lines.

In the recurrent genomic selection program, we focused on
the female pool and selected 20 out of the 120 female lines.
The selection was based on the first-year estimates of general
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combining abilities and further criteria such as for example being
carrier of the dwarfing gene Rht2. The 20 female lines formed
the C0 cycle and were crossed following a single round robin
design (A x B, B x C, C x D, . . . , T x A), i.e., every line was
used in two crosses resulting in 20 F1’s. The 20 F1’s were grown
in the following season and selfed to the F2 generation in the
green house. Seeds were harvested and around 30 F2 plants were
grown for each of the 20 biparental families amounting to a
total of 629 F2 plants. The 629 F2 plants were genotyped before
flowering using the above-mentioned SNP array. The general
combining abilities of the 629 F2 plants when crossed with the
15 original male lines were estimated using the SNP profiles and
the above outlined RRBLUP model. The best 3 F2 plants per
family, i.e., 60 F2 plants in total, were selected and selfed toward
the F5 generation resulting in 2,886 F5 genotypes. Descendants
from each of the 20 initial crosses were represented in this panel
with a mean number of genotypes of 144, ranging from 76 to
277. Seeds of the 2,886 F5 genotypes were grown in single row
plots in the season 2016/2017 and a fraction of 382 F5 : 6 families
were visually selected based on overall agronomic performance
(disease resistance) and considering plant height and flowering
time to facilitate hybrid seed production when crossed with three
out of the 15 above outlined male lines. The 382 F5 : 6 families
were genotyped using the above-mentioned SNP array. The
general combining abilities of the 382 F5 : 6 families when crossed
with the 15 original male lines were estimated using the SNP
profiles and the above outlined RRBLUP model. Based on the
estimated general combining ability effects, 50 outstanding F5 : 6
families were selected (denoted as C1S). All of the 20 biparental
F2 families were represented in this set of families.

As further reference point besides C0, 60 F2 plants out of
the above outlined 629 F2 plants of the 20 biparental families
were randomly selected. Here, a total of 3 F2 plants were
randomly drawn from each of the 20 biparental families and
selfed toward the F5 generation resulting in 714 F5 genotypes.
Seeds of the 714 F5 genotypes were multiplied in single row plots
in the season 2016/2017. A subfraction of 30 F5 : 6 families were
visually selected considering plant height and flowering time to
facilitate hybrid seed production when crossed with three out
of the above outlined 15 male lines. The subfraction of 30 F5 : 6
families were denoted as C1R. The 30 genotypes of the C1R
cycle were genotyped using the above-mentioned SNP array.
The integrated data set was filtered by excluding markers with
more than 5% missing values, resulting in 4,031 unique and
polymorphic markers.

Evaluation of the Selection Gain in Field
Trials and Phenotypic Data Analyses
The data set comprised 376 genotypes, including 3 male lines
previously used to produce the 1,604 original F1 hybrids,
20 female lines from C0, 49 female lines (one out of the
above mentioned 50 lines were discarded because hybrid seed
production failed entirely) from C1S, 30 female lines from C1R,
267 F1 hybrids, and 7 commercial varieties (Julius, Colonia,
Tobak, Elixer, RGT Reform, Hystar, and Genius). The hybrids
were derived by crossing the 99 female and the 3 male lines using

a factorial mating design. For 267 of the potential 297 single-cross
hybrids, enough seeds were harvested for intensive field trials.

All 376 genotypes were evaluated in yield plots for grain yield
and plant height at 6 locations in the growing season 2018/2019.
The locations were Hadmersleben (latitude 51.98N, longitude
11.30 E), Mintraching (latitude 48.95N, longitude 12.25 E),
Adenstedt (latitude 52.20N, longitude 10.18 E), Sossmar (latitude
52.2N, longitude 10.08 E), Wohlde (latitude 52.8N, longitude
9.98 E), and Boehnshausen (latitude 51.85N, longitude 10.95)
(Supplementary Table 1). The same seeding rate of 230 grains
per m2 was used for both parental lines and hybrids. The
plot size ranged from 7.2 to 12 m². Harvesting was performed
mechanically and adjusted to a moisture concentration of 140 g
H2O kg−1. The field design was an alpha lattice with block size
11 where each environment corresponded to one replication. The
yield trials were treated with fertilizers, fungicides, and herbicides
according to farmers practice for intensive wheat production.

The quality of the outlier-controlled phenotypic data from
each environment was assessed by estimating the genomic
repeatability employing the package BGLR (Perez and de los
Campos, 2014) in the software environment R (R Core Team,
2020). For this purpose, the following genomic prediction model
was used for lines:

y = 1nµ + g + e, (2)

where y was the n-dimensional vector of phenotypic records of
each environment, 1n was an n-dimensional vector of ones, uwas
a common intercept, g was an n-dimensional vector of additive
genotypic values and e was the residual term. It was assumed that
u was a fixed parameter, g ∼ N(0,Gσ 2

g ) and e ∼ N(0, Inσ
2
e ),

where In denoted the n × n identity matrix and G denoted the
n×n genomic relationship matrix among genotypes as proposed
by VanRaden (2008). For each environment, a 5-fold cross-
validation scheme was implemented. Therefore, the population
of tested lines was randomly divided into five subsets of equal
size. One subset was predicted after the model was trained based
on the phenotypic and genotypic data from the remaining four
subsets. The correlation between the observed and predicted
values defined the prediction ability. After performing 100 5-
fold cross-validations, genomic repeatability was obtained by the
mean of the prediction abilities.

For assessing the quality of the outlier-controlled phenotypic
data for the hybrids tested in each environment, genomic
repeatability was estimated employing the following model using
the package BGLR (Perez and de los Campos, 2014) in the
software environment R (R Core Team, 2020):

y = 1nµ + ZAa+ ZDd + e, (3)

where y was the n-dimensional vector of phenotypic records of
each environment, 1nwas an n-dimensional vector of ones, µ

was the common intercept, a and ZA denoted the additive effects
and the corresponding design matrix, and d and ZD denoted
the dominance effects and the corresponding design matrix. The
cross validation of hybrids was executed in the same manner as
described for lines.
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After outlier tests, the following model was used to obtain best
linear unbiased estimations (BLUEs) across environments:

yijk = µ + gi + rj + bk + eijk, (4)

where yijk referred to the phenotypic performance of the ith
genotype at the jth location in the kth block, µ referred to the
intercept, gi referred to the genetic effect of the ith genotype, rj
referred to the effect of the jth location, bk referred to the kth
block in the jth location and eijk denoted the residual. Genotype
was treated as fixed and the remaining effects as random. Outlier
detection test was performed following the method M4r as
described by Bernal-Vasquez et al. (2016), where the standardized
residuals were used in combination with the Bonferroni-Holm
test to identify an outlier. The detected outliers (3 for grain
yield) were removed for further analysis. Moreover, we estimated
variance components with the following model:

yimfnk = µ + a+ ln + bnk + pi + g′f + g′′m + gfm

+(g′l)fn + (g′′l)mn + (pl)in + emfink, (5)

where yifmnk referred to the phenotypic performance of the ith
genotype at the nth location in the kth block, ln referred to the
nth location, bnk referred to the kth block at the nth location,
pi referred to the effect of the ith parental line, g′f referred to

the general combining ability (GCA) effect of the fth female
line, g′′m referred of the GCA effect of the mth male line, gfm
referred to the specific combining ability (SCA) effect of the fmth
genotype, (g′l)fn referred to the interaction effect between the

GCA of the fth female and the nth environment, (g′′l)mn referred
to the interaction effect between the GCA of the mth male and
the nth environment, (pl)in referred to the interaction effect of
the ith parental line and the nth environment emfink referred to
the residual. Dummy variables were used to distinguish between
checks, lines, and hybrids. Based on the variance components,
heritability (h2) was estimated separately for lines and hybrids

as h2 =
σ 2
G

σ 2
G+

σ2GxE+σ2e
l

, where σ 2
G refers to the genetic variance

of lines or hybrids, σ 2
GxE refers to the genotype-by-environment

variance σ 2
e refers to the residual variance, and l denotes the

average number of environments in which the genotypes were
tested. Linear mixed models have been executed using ASReml
version 4.0 (Butler et al., 2017) in the software environment R (R
Core Team, 2020).

GCAFemale-by-environment interaction effects were estimated
by using the samemodel as in Equation (5) to further characterize
the environments in which the genotypes were evaluated. The
GCAFemale-by-environment interaction effects were estimated
for the experiments of the growing season 2018/2019 only and
furthermore in a combined data set consisting of the training
environments of the growing seasons 2011/2012 and 2012/2013
and the test environments of the growing season 2018/2019.
The GCAFemale-by-environment interaction effects were used
to perform principal component analyses (PCA) and obtain
Euclidean distances based on which the environments were
clustered in a complete-linkage approach.

The observed response to selection was estimated as Robs = Ŝ,
where Ŝ = µsel−µpop denoted the observed selection differential,
with µsel being the phenotypic mean of the selected genotypes
and µpop being the mean of the population from which the
selected genotypes were drawn. The C1 hybrids of the underlying
RRGS breeding program have been produced using female lines
deriving from a population of 629 genotypes. The capacity for all
of the 629 genotypes to produce hybrids has not been estimated
in field experiments but only through genomic prediction. For
this reason, the mean performance of the C0 hybrids evaluated
in the growing season 2018/2019 has been considered as an
approximation for µpop.

The expected response to selection was estimated as Rexp =

i • h • σA, where i denoted the intensity of selection, h refers
to the square root of the heritability, and σA denoted the
standard deviation of the breeding values. Selection intensity was
calculated as i (N,G) = i (α) − G−N

2N(G+1)i(α) , where N was the

number of selected genotypes, G was the size of the population
from which the selected genotypes were drawn, and i (α) = i

(

N
G

)

referred to the standardized selection differential according to
tabulated values (e.g., Becker, 1975).

Selection was performed in two steps. In the first step, 60 F2
plants were selected out of a population of 629, resulting in a
selection intensity of i (N,G) = i (60, 629) = 1.78. Since the
selection was based on genomic predictions of the GCA effects
of the female lines evaluated in the HYWHEAT experiments,
the relevant variance of breeding values corresponds to σ 2

GCA ,
estimated in the experiments of the growing seasons 2011/2012
and 2012/2013 (Zhao et al., 2015). The selection was performed
in a population of F2 plants derived from crosses of genotypes
from the aforementioned population. Specifically, three F2 plants
were selected from each family. From quantitative genetic theory,
it can be inferred that half of the genetic variance can be exploited
if a selection is performed within an F2 family (Hallauer et al.,
2010). It follows that for the first step of selection, σGCA_F2 =
√

1
2σ

2
GCA = 1.2. The square root of the heritability, h, was

assessed using as a conservative estimate the prediction abilities
obtained in a chessboard-like cross-validation considering two
out of the three different test sets T2, T1, and T0: T2 test
sets included hybrids sharing both parental lines, T1 test sets
comprised hybrids sharing one parental line, and T0 test sets
contained hybrids having no parental line in common with the
hybrids in the related training sets. In the RRGS program, male
testers were not changed and thus, the C1 lines reflected a mix
between the T1 and T2 scenario with a prediction ability of 0.55
and 0.76, respectively. For simplicity, the mean of the prediction
abilities for scenarios T1 and T2 was considered, resulting in
h = 0.66.

In the second step of selection, 50 plants were selected
from a population of 382 F5 : 6 plants. While h is considered
equal to the first step, i (N,G) and σGCA changed, with
i (50, 382) = 1.63. According to quantitative genetic theory
(Hallauer et al., 2010), the σGCA exploited in the second step

amounted to σCGAF5 : 6 =

√

7
8σ

2

GCA_F2
= 1.1. The total response

to selection was the sum of the responses of the first and
second step.
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Characterization of Field Locations
In the recent decades, Germany has become more prone to
drought events with harmful effects to agro-ecosystems. Personal
communication with responsible field technicians indicated
adverse field conditions in some of the environments in which
the genotypes of the RRGS program were tested. Therefore,
GCAFemale-by-environment interaction effects were obtained
frommodel (5) to estimate Euclidean distances between each pair
of environments.

To further investigate the range in which the environments
differed regarding physical stress, we used data from
meteorological and satellite-based approaches estimating
the plant available water and the condition of the regional
vegetation, respectively. The German drought monitor provides
data on plant available water beginning from 2015. Information
for the plant available water at each location was extracted
from the German drought monitor for the growing season
2018/2019 (Zink et al., 2016). In addition, the Vegetation
Condition Index (VCI) was employed to quantify the severity
of drought stress around the test locations. Geospatial data
sets based on the MOD13Q1 images were accessed from the
Application for Extracting and Exploring Analysis Ready
Samples (https://lpdaacsvc.cr.usgs.gov/appeears/) by USGS. Data
from MOD13Q1 images were available for the growing seasons
2011/2012, 2012/2013, and 2018/2019, qualifying them for the
comparison of the HYWHEAT and RRGS environments. For
each location, an area of 500 ha centered for the coordinates
of the test site was selected. The VCI based on the Enhanced
Vegetation Index (EVI) was obtained from the equation:

VCIi =
EVIi − EVImin

EVImax − EVImin
, (6)

where VCIi referred to the VCI on day i, EVIi referred to the
EVI on day i, EVImin referred to the minimum EVI in the area
observed in the period 2010–2019, and EVImax referred to the
maximum EVI in the area observed in the period 2010–2019. The
recommended practice for drought monitoring using the VCI
was applied as suggested by the United Nations Office for Outer
Space Affairs (2021). The mean value of the selected area around
the test site was applied in further considerations.

Based on the data for PAW and VCI, matrices with
the individual weather profile of each environment were
constructed. From these matrices, principal component analyses
were performed, and complete-linkage clusters based on the
Euclidean distances were obtained to identify environments with
special conditions.

RESULTS

Analysis of Population Structure Revealed
Genomic Traces of Selection
The population structure of the 3 male tester lines, the 20
founder female lines (C0) of the RRGS program, their 30 resulting
randomly drawn (C1R) recombined, and 49 selected progenies
(C1S) was analyzed based on 4,031 polymorphic SNP markers.
The principal component analysis derived from the eigenvectors

FIGURE 1 | Principal Component Analysis (PCA) of the 20 founder wheat lines

(C0 females), the 3 male lines, the 30 female lines drawn from random after

recombining the 20 founder lines (C1R), and the 49 female lines from the first

selection cycles (C1S). PCA were derived from the eigenvectors of the 3 male

and 20 female founder lines. The proportion of variance displayed by the

principal components (PC) were presented in brackets.

of the parental lines revealed that male and female lines tended
to be separated by the first principal component (Figure 1). With
respect to the second principal component, C1R was more widely
spread than C1S. Overall, C1S appeared to be more separated
from the male parents than C1R.

Phenotypic Data Indicated Pronounced
Interactions Between Genotypes and
Environments
Genomic repeatabilities were moderate to high, ranging from
0.13 in Wohlde to 0.51 in Hadmersleben with an average
of 0.34 in lines and ranging from 0.17 in Mintraching
to 0.58 in Adenstedt with an average of 0.34 in hybrids
(Supplementary Table 1). This underlines the overall high
quality of the yield trials. Interestingly, we observed that
correlations between grain yields in each environment were
low for some pairs (Table 1). For example, grain yields of lines
and hybrids studied at Wohlde and Hadmersleben were not
significantly correlated (r = 0.09; P > 0.36 for lines; and r =

−0.08; P > 0.20 for hybrids). The grain yield trial conducted
at Hadmersleben was not an outlier but correlated significantly
with the grain yield trial conducted at Boehnshausen (r = 0.51;
P < 0.001 for the lines; and r = 0.23; P < 0.001 for the
hybrids), a second location in Saxony-Anhalt. These pronounced
differences among locations were also visible in the contribution
of genotype-by-environment interaction effects (G×E) to the
phenotypic variance (Table 2). Genotypic variances σ 2

G were
significantly greater than zero (P < 0.01, Table 2) for lines as well
as hybrids, with σ 2

G being 5.85-times smaller in hybrids than in
lines. The ratio of σ 2

GxE/σ
2
G amounted to 0.81 in lines and the

ratio of σ 2
GCA(Female)xE/σ

2
GCA (Female) to 1.13 for general combining
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TABLE 1 | Pearson moment correlations between grain yield of 109 wheat lines (below diagonal) and 264 hybrids (above diagonal) evaluated at six locations in the year

2019 to assess the selection gain of the reciprocal recurrent genomic selection program.

Inbred/hybrid Adenstedt Boehnshausen Hadmersleben Mintraching Sossmar Wohlde

Adenstedt 1.00 −0.01 0.05 0.10 −0.02 0.17**

Boehnshausen 0.42*** 1.00 0.23*** 0.15* 0.12* −0.07

Hadmersleben 0.22* 0.51*** 1.00 0.13* 0.14* −0.08

Mintraching 0.29** 0.22* 0.26** 1.00 0.14* −0.01

Sossmar 0.54*** 0.55*** 0.39*** 0.17” 1.00 −0.01

Wohlde 0.44*** 0.12 0.09 0.32*** 0.24* 1.00

”, *, **, and *** significantly different from zero at the 0.05, 0.01, 0.001, and 0.0001 level of probability.

TABLE 2 | Estimates of variance components (residual variance indicated as σe)

and heritability (h2) for winter wheat for grain yield (dt/ha).

Source Grain yield Grain yield

(dt/ha) (dt/ha)

6 locations 4 locations

Lines

σ
2
LINES 17.21*** 17.91***

σ
2
LINESxE 14.01*** 10.05***

h2 (Lines) 0.84 0.76

F1 hybrids

σ
2
SCA 1.07** 1.05

σ
2
SCAxE 6.86** 7.50

σ
2
GCA(Female) 1.73** 2.14*

σ
2
GCAxE(Female) 1.97*** 2.20*

σ
2
GCA(Male) 0.00 0.00

σ
2
GCAxE(Male) 1.57NS 1.95NS

σ
2
HYBRIDS 2.94 3.20

σ
2
HYBRIDSxE 10.40 11.65

σ
2
e 5.73*** 5.77***

h2 (hybrids) 0.54 0.44

Parents and checks were grouped together as lines. The panel was evaluated at 6
locations and comprised 109 lines (7 checks, 99 females and 3 males) and 264 hybrids. In
a further analysis, only 4 locations with no stressful growing conditions were investigated.
NS, Not significant.
*, **, and *** significantly different from zero at the 0.01, 0.001, and 0.0001 level
of probability.

ability effects of the females, which was of special interest during
the selection. This underlines the substantial contribution of
genotype-by-environment-interaction effects to the phenotypic
variance. The estimated heritability (h2) was high for lines (0.84)
and moderate (0.54) for hybrids.

Drought Stress Was Associated With the
Pattern of Genotype-by-Environment
Interactions
The pronounced differences among locations encouraged us to
investigate the pattern of interaction effects between genotypes
and environments in more detail. Due to the exploitation of
additive effects in the recurrent genomic selection program, we
focused on the interaction effects between the GCA effects of

FIGURE 2 | Dendrogram based on the Euclidean distances among six

locations estimated using the GCAFemale-by-environment interaction effects

from the grain yield trials performed in the year 2019 to assess the selection

gain of the reciprocal recurrent genomic selection program. The locations were

ADE, Adenstedt; BOE, Boehnshausen; HAD, Hadmersleben; MIN,

Mintraching; SOS, Sossmar; WOH, Wohlde.

females with environments and performed a cluster analysis.
The analysis revealed that the Boehnshausen and Hadmersleben
locations formed a distinct group, separate from the other
locations of the RRGS experiment (Figure 2). We assessed
the clustering of the locations in more detail by analyzing
two published meteorological and satellite-based parameters:
the plant available water in the soil (PAW) and vegetation
condition index (VCI). Boehnshausen and Hadmersleben were
the locations with the lowest PAW during the early growing
season (Figure 3A) and both locations also clearly clustered
separately from the remaining locations when applying a
principal component analyses based on the PAW of the entire
growing season (Figure 3B). A similar picture was observed for
the VCI profiles. Boehnshausen and Hadmersleben showed low
VCI values throughout the growing season and distinguished
from the other locations in particular during the autumn and
winter months of the growing season (Figure 3C). The principal
component analyses based on the VCI profiles of the entire
growing season separated the Boehnshausen and Hadmersleben
locations from the remaining ones (Figure 3D). Thus, the
pronounced genotype-by-environment interactions were most
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FIGURE 3 | Characterization of the locations used to assess the selection gain of the reciprocal recurrent genomic selection program. (A) Line plot of the plant

available water (PAW) in the soil and (B) a principal component analyses (PCA) based on the PAW profiles of the locations recorded in the growing season [September

1st in the year of sowing (2018) to September 1st in the year of harvest (2019)]. (C) Line plot of the mean vegetation condition index (VCI), and PCA based on the

mean VCI profiles of the locations recorded in the growing season (D). The locations were indicated as ADE, Adenstedt; BOE, Boehnshausen; HAD, Hadmersleben;

MIN, Mintraching; SOS, Sossmar; WOH, Wohlde.

likely caused by severe drought stress occurring in the region of
Saxony-Anhalt in the growing season 2018/2019.

Pattern of Genotype-by-Environment
Interactions for Integrated Phenotypic
Data of the Training and the RRGS
Populations
The HYWHEAT training population was phenotyped at five
locations in the 2011/2012 season and at six locations in the
season 2012/2013, and the RRGS program was evaluated at six
locations in the 2018/2019 season. Three overlapping locations

albeit in different years were used for both, the HYWHEAT and
for the RRGS trials. Interestingly, for the overlapping genotypes
(27 for lines and 48 for hybrids) between the HYWHEAT and
the RRGS experiments, we observed a much higher correlation
between grain yield estimated in the growing seasons 2011/2012
and 2012/2013 within the HYWHEAT experiment (r= 0.49; P <

0.00 for lines and r= 0.43; P< 0.00 for hybrids) than between the
RRGS experiment and the HYWHEAT experiment in 2011/2012
(r = −0.04; P < 0.80, for lines and r = 0.08; P < 0.80, for
hybrids) and in 2012/2013 (r = 0.05; P < 0.40 for lines and r
= −0.17; P < 0.80, for hybrids). A closer look at the correlations
between grain yield of the RRGS experiment in each environment
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TABLE 3 | Correlations of phenotypic data from single environments of the RRGS experiments (2018–2019) with phenotypic data from HYWHEAT experiments and with

single years of the HYWHEAT experiment.

RRGS: 2018–2019 Hywheat: 2012 Hywheat: 2013 Hywheat: total

Lines Adenstedt 0.24 0.30 0.40*

Boehnshausen 0.04 −0.14 −0.11

Hadmersleben 0.03 −0.30 −0.24

Mintraching 0.38 −0.07 0.11

Sossmar 0.11 −0.11 0.03

Wohlde 0.43* 0.41* 0.54**

Hybrids Adenstedt 0.37* 0.37** 0.47***

Boehnshausen -0.26” -0.27” −0.32*

Hadmersleben −0.20 −0.23 −0.32*

Mintraching −0.20 −0.04 −0.13

Sossmar −0.09 −0.07 −0.07

Wohlde 0.13 0.27” 0.24

A number of 27 overlapping lines and 48 overlapping hybrids were included into the estimation.
”, *, **, and *** significantly different from zero at the 0.05, 0.01, 0.001, and 0.0001 level of probability.

FIGURE 4 | Characterization of the environments of the HYWHEAT and RRGS experiments of the growing seasons 2011/2012, 2012/2013, and 2018/2019, based

on the phenotypic performances of overlapping tested hybrids. (A) Dendrogram based on the Euclidean distances among 17 location times year combinations

(location_year) estimated using the GCAFemale-by-environment interaction effects from the grain yield trials performed in the year 2012 and 2013 for the training

population (HYWHEAT) and in the year 2019 to assess the selection gain of the reciprocal recurrent genomic selection program. (B) PCA based on the

GCAFemale-by-environment interaction effects of 16 location times year combinations. The locations were indicated as ADE, Adenstedt; BOE, Boehnshausen; HAD,

Hadmersleben; HAR, Harzhof; HOH, Hohenheim; MIN, Mintraching; SEL, Seligenstadt; SOS, Sossmar; WOH, Wohlde.

and the HYWHEAT experiments revealed strong interaction
effects with years (Table 3). The RRGS experiment conducted
in Wohlde and Adenstedt showed the highest correlations with
the HYWHEAT experiments with a decreasing trend toward
Mintraching, Sossmar, Boehnshausen, and Hadmersleben.

A complete-linkage clustering based on the Euclidean
distances estimated using the GCAFemale-by-environment
interaction effects was performed to further investigate the
relationships among the environments of the HYWHEAT and
the RRGS experiments (Figure 4A). The location Seligenstadt in
2013, and Boehnshausen in 2012 and Harzhof in 2012 formed
outgroups. Apart from Seligenstadt in 2012, which grouped
together with the environments Seligenstadt, Boehnshausen,

Hadmersleben, Sossmar, Mintraching, and Wohlde from the
RRGS experiment, the remaining HYWHEAT environments
constituted a distinguished cluster including the environment
of Adenstedt in 2019. A PCA based on the GCAFemale-
by-environment interaction effects showed that apart from
Seligenstadt in 2013, the environments of the HYWHEAT
experiment grouped together with the RRGS environments
Adenstedt, Mintraching and Wohlde in 2019 (Figure 4B). The
RRGS environments Boehnshausen, Hadmersleben and Sossmar
grouped separately from the remaining environments of the
RRGS and the HYWHEAT experiments.

A distance matrix obtained from the VCI profiles of the 17
environments of the RRGS and the HYWHEAT experiments
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was calculated. The comparison to the distance matrix derived
from the GCAFemale-by-environment interaction effects revealed
a correlation of 0.17 which was significantly different from
zero (P < 0.01) according to a Mantel test (Mantel, 1967).
The cluster which was derived from the VCI profiles of the
17 environments indicated the presence of two subgroups
among the HYWHEAT and RRGS experiments (Figure 5A). The
environments of the RRGS experiment grouped apart from the
HYWHEAT experiments, with the environment of Mintraching
in 2019 behaving exceptionally as it was situated within the
HYWHEAT experiments. Within the HYWHEAT experiments,
the location Adenstedt of the growing season 2011/2012
appeared as outgroup. The remaining HYWHEAT environments
formed two subgroups distinguished mostly by the year of the
evaluation. A PCA was executed based on the VCI profiles of
all environments in which the genotypes were tested during the
HYWHEAT and RRGS experiments (Figure 5B). This analysis
exposed shifts of the growing conditions across the growing
seasons in which the genotypes were evaluated. Based on the 1st

principal component, the environments in the RRGS experiment
showed to be largely separated from all remaining environments
from the HYWHEAT experiments. Only Mintraching situated
closely to some of the HYWHEAT experiments. The 2nd

principal component separated the RRGS experiments into three
groups: Mintraching and Seligenstadt, Sossmar and Adenstedt,
and Boehnshausen and Hadmersleben. The first principal
component explained 32.71% of the variance, the second
principal component explained 16.78% of the variance.

Selection of Test Locations Affected the
Assessment of Breeding Success
Evaluation of effectiveness of RRGS was conducted at six
locations during the 2018/2019 growing season, between which
pronounced genotype-by-environment interaction effects were
observed. Moreover, the 2018/2019 growing season locations
showed high genotype-by-year interactions compared to the
HYWHEAT experiments conducted in the 2011/2012 and
2012/2013 growing seasons, based on which the genomic
selection model was trained. In particular, the Boehnshausen
and Hadmersleben locations of the 2018/2019 growing season
showed low correlations to the environments of the HYWHEAT
experiment (Table 3). By comparing the BLUEs for the
overlapping genotypes of the RRGS experiment with the BLUEs
from the HYWHEAT experiment, correlations of 0.13 and−0.10
were observed for lines and hybrids, respectively. After excluding
the locations Boehnshausen and Hadmersleben from the RRGS
experiment, correlations between the RRGS experiment and
the HYWHEAT experiment based on overlapping genotypes
increased to 0.37 for lines and 0.21 for hybrids. Furthermore,
exclusion of the Boehnshausen and Hadmersleben locations
resulted in a drop of σ 2

GxE/σ
2
G from 1.13 to 1.02 for the

GCA of the female lines, indicating a lower proportion of
genotype-by-environment interactions among the remaining
locations of the RRGS experiment (Table 2). These findings
encouraged us to investigate the influence of genotype-by-
environment interactions on the selection gain of the RRGS

breeding programs. To this end, we estimated the selection
gain based on phenotypic data collected in all six environments
of the RRGS experiment and alternatively we excluded two
environments with negative average correlations to the single
environments of the HYWHEAT data set and estimated the
selection gain based on the remaining four locations.

Including all six environments from the growing season
2018/2019, the randomly drawn female lines of the C1 cycle
showed comparable (P > 0.1) average yields as the female parent
lines of the C0 cycle (Figure 6A). The genomically selected
females showed no significant differences of 1.0 dt ha−1 (P> 0.1)
average yields compared to the randomly selected female lines.
Surprisingly, genomically selected female lines of the C1 cycle
showed lower (P > 0.1) average yields than the female lines of
the C0 cycle. Both differed by 1.15 dt ha−1. The average yield of
the C0-hybrids, the genomic-selected fraction of the C1-hybrids
(C1S) and the randomly drawn fraction of the C1-hybrids (C1R)
did not show any significant (P > 0.1) difference. The midparent
heterosis was not significantly (P > 0.1) larger for C1S (10.3%)
as compared to C1R (9.7%) and C0-hybrids (9.8%) (Figure 7A).
The same was observed for better parent heterosis (Figure 7C).

Excluding the two outlier locations from the growing season
2018/2019, randomly drawn female lines of the C1 cycle showed
comparable (P > 0.1) average yields as the female parent lines
of the C0 cycle (Figure 6B). Genomically selected female lines
of the C1 cycle and randomly selected female lines of the C1

cycle showed no significantly different (P > 0.1) grain yield
performance. The female parent lines of the C1 cycle performed
comparable (P > 0.1) to the female parent lines of the C0 cycle.
While C1R hybrids showed no significant difference (P > 0.1) in
average yield performance compared to C0 hybrids, C1S hybrids
outperformed (P < 0.05) C0 hybrids by 1.0 dt ha−1, achieving
a selection gain of 1%. Moreover, C1S hybrids outperformed (P
< 0.1) C1R hybrids by 0.7 dt ha−1. Midparent heterosis was
not significantly different (P > 0.1) in C1R (11.5%) compared
to C0 (11.3%), while C1S (12.8%) showed a clear advancement
and performed significantly better than C0 (P< 0.05) and C1R (P
< 0.05) (Figure 7B). A different pattern was observed for better
parent heterosis. C0 (11.3%) and C1R performed comparable (P
> 0.1). C1S (10.0%) did not perform significantly different from
C0 (P > 0.1) and C1R (P > 0.1) (Figure 7D).

The observed selection differential and hence the observed
response to selection varied depending on which environments
were considered for the evaluation. When all six environments
were included, it amounted to Robs_6E = −0.4 dt ha−1.
When environments with severe stress conditions were excluded
and only four environments were considered, the observed
selection differential and hence observed response to selection
was Robs_4E = 1.0 dt ha−1.

DISCUSSION

We conducted one cycle of an RRGS program in wheat, including
field evaluation of the resulting hybrids, which took a total of
6 years from the first crosses. It is important to note that each
subsequent selection cycle lasts only one additional year at most,
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FIGURE 5 | Characterization of the environments of the HYWHEAT and RRGS experiments of the growing seasons 2011/2012, 2012/2013, and 2018/2019, based

on satellite-based images. (A) Dendrogram based on the mean vegetation condition index (VCI) profiles of 16 location times year combinations (location_year) used to

perform grain yield trials in the year 2012 and 2013 for the training population and in the year 2019 to assess the selection gain of the reciprocal recurrent genomic

selection program. (B) PCA based on the mean VCI profiles of 16 location times year combinations. The locations were indicated as ADE, Adenstedt; BOE,

Boehnshausen; HAD, Hadmersleben; HAR, Harzhof; HOH, Hohenheim; MIN, Mintraching; SEL, Seligenstadt; SOS, Sossmar; WOH, Wohlde.

FIGURE 6 | Grain yield performance depending on the status of genotypes evaluated in the 2019 experiment. (A) Performances of the fractions from the breeding

population with all six environments of 2018/2019 included. (B) Performances of the fractions from the breeding population with only 4 environments of 2018/2019

included. Status indicates the affiliation of each group of genotypes to a specific fraction within the breeding program. Female parent lines from the C0 cycle are

indicated as C0F, female parent lines from the randomly selected fraction of the C1 cycle are indicated as R, female parent lines from the genomic-selected fraction of

the C1 cycle are indicated as S, checks are indicated as “check,” hybrids from the C0 cycle are indicated as C0H, hybrids from the randomly selected fraction of the

C1 cycle are indicated as C1R, hybrids from the genomic-selected fraction of the C1 cycle are indicated as C1S.

which illustrates the great opportunity to accelerate classical RRS
programs. The RRGS program focused exclusively on the female
pool and can be viewed as a special case of RRGS in which only
the allele frequencies in the pool of female parent lines have been
shifted with respect to the frequencies of favorable alleles in the
pool of male parent lines.

This situation implies consequences for the determination
of selection directions, especially in the case of overdominance,

k > 1, with k = d
a , where d denotes the dominance effect

and a denotes the additive effect. If overdominance is present
at a given locus, RRGS aims to fix different alleles in the pool

of female parental lines and in the pool of male parental lines,
thus guarantees the desired complementarity among the two
heterotic groups. For loci with k > 1, at which the pool
of male parent lines has a fixed allele, RRGS will result in
the fixation of the complementary allele in the pool of female
parent lines. If the allele is not fixed in the pool of the male
lines, and no selection is applied to the pool of male parental
lines, complementarity among the heterotic groups cannot
be achieved.

If 0 < k ≤ 1, i.e., in the presence of partial dominance, RRGS
aims to ultimately fix the favorable allele in both heterotic groups.
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FIGURE 7 | Midparent heterosis (MPH) and better parent heterosis (BPH) for hybrids generated in the reciprocal recurrent selection program. MPH [%] estimated

based on trials performed (A) at 6 locations and (B) 4 locations, excluding 2 stress environments. BPH [%] estimated based on trials performed (C) at 6 locations and

(D) 4 locations, excluding 2 stress environments.

In the case where the male heterotic group is not fixed for the
favorable allele, the optimal configuration cannot be achieved if
the male heterotic group is not subject to selection.

For loci that exhibit negative dominance, i.e., k < 0, the
desired selection direction is to fix the favorable allele in both
heterotic groups. Complications arise when the unfavorable allele
is present in the male heterotic group. Furthermore, if k < −1,
i.e., negative overdominance is present, RRGS is directed toward
fixation of the favorable allele only if the frequency, p, of the
favorable allele is above the threshold p > (k + 1)/2k (Rembe
et al., 2019).

In the present breeding program, the male heterotic group
was kept constant between the C0 and the C1 cycle. As described
above, this approach would not be expedient to reach the
ideal allelic configurations between the two heterotic groups.
However, the applied selection scheme is capable to evaluate
the effectiveness of a selection that is conducted with respect to
the allele frequencies within both heterotic groups. Therefore,
the experimental design can serve as a model case for an RRGS
breeding program.

The results of the field trials indicate that heterosis increased
through RRGS (Figure 7). The selected fraction of the C1S
hybrids showed significantly higher midparent heterosis than
the C0 hybrids, but no significantly different better parent
heterosis. In contrast, the C1R hybrids did not show increased
midparent or better parent heterosis compared to the C0

hybrids. These findings highlight that the implemented selection
models, which focused on additive and dominance effects,
had an impact.

To evaluate the success of the RRGS program in more
detail, the expected response to selection was compared to
the observed response to selection. The expected response
considering genomic selection at the F2 and F5 : 6 levels was
Rexp = 2.6 dt ha−1, which was much lower than the
observed response considering all six environments (Robs_6E =

−0.4 dt ha−1) or the four environments (Robs_4E = 1.0 dt ha−1).
The difference between Robs_6E and Robs_E clearly suggests that
different growing conditions in the environments impacted the
assessment of the response to selection. But even Robs_4E was
2.6 times smaller than the expected response of selection Rexp,
indicating that the implemented RRGS breeding program falls
short of expectations. This observation can be mainly attributed
to a high amount of genotype-by-year interactions between the
2011/2012, 2012/2013, and 2018/2019 experiments as highlighted
in the detailed analyses of the interaction between genotypes and
years (Figures 4, 5). Multi-year testing could be an option to
reduce the risk of unsuitable selection decisions.

So far, there are no experimental studies that have evaluated
the effectiveness of an RRGS breeding program in cereals.
In an RGS breeding program in wheat for the less complex
trait grain fructans compared to grain yield, significant
genotype-by-environment interactions were observed with little
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effects on prediction accuracies (Veenstra et al., 2020). In
contrast, in an RRS program in tropical maize focusing
on grain yield, Kolawole et al. (2018) also observed that
genotype-by-environment interactions negatively affected the
observed response to selection.

As an alternative approach to estimate the expected response
of selection, realized prediction ability was examined as the
correlation between predicted average hybrid performances and
the observed average hybrid performance of the 30 randomly
drawn female parent lines from the C1 cycle. When all six
environments of the season 2018/2019 were included in the
analysis, a realized prediction ability of 0.13 was observed.
Excluding environments with stressful growing conditions for
the 2018/2019 data set resulted in a realized prediction ability
of 0.27. These realized prediction abilities of the 2018/2019
growing season are substantially lower than the prediction
abilities estimated by cross validations based on the data
of the HYWHEAT experiment conducted in the 2011/2012
and 2012/2013 growing seasons (Zhao et al., 2015). This can
only partly be explained by the small sample size of 30
randomly drawn female parent lines from the C1 cycle used
to estimate the prediction abilities. Moreover, it is unlikely that
the low realized prediction abilities have been caused through
recombination.More likely, the lower realized prediction abilities
are due to interaction effects between genotypes, locations,
and years.

When the prediction abilities estimated based on the 30
randomly drawn female parent lines from the C1 cycle are used
to estimate the expected response to selection, the value decreases
to Rexp_6E = 0.09 dt ha−1 and Rexp_4E = 1.22 dt ha−1,
depending on whether stressful environments are included or
not. In this case, Robs_4E was only 1.22 times smaller than the
expected response of selection Rexp. Consequently, it is pivotal
to obtain genome-wide prediction models that are not biased
due to interaction effects between genotypes, locations, and
years. One promising approach to achieve this, is to account
for interaction effects between genotypes and environments
by implementing environmental cofactors into genome-wide
prediction models (de los Campos et al., 2020). This facilitates to
reduce the adverse effects due to interactions between genotypes
and environments and to develop more sustainable genome-
wide prediction models. In addition, aggregation of available

medium size genomic and phenotypic data across different
projects and perhaps even breeding programs into large data
sets can help substantially to reduce confounding effects of
genotype-environment interactions (Zhao et al., 2021). These
adjustments seem urgently needed to further leverage the
potential of RRGS.
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