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Fumonisin-contaminated maize (Zea mays L.) products are a major health concern 
because of their toxic effects in humans and animals. Breeding maize for increased 
mycotoxin resistance is one of the key sustainable strategies for mitigating the effects of 
fumonisin contamination. Recent studies suggest a link between fumonisin accumulation 
and plant lipid and oxylipin profiles. However, the data collected so far do not reveal a 
cause-and-effect relationship. In this study, to decipher the multifactorial nature of 
mycotoxin resistance and plant–pathogen interaction mechanisms, we examined the 
oxylipin and complex lipid profiles of two maize hybrids (H21 and H22, the latter showing 
significantly lower FBs content) grown in the open field in two locations over 3 years. 
Untargeted ultra-high performance liquid chromatography coupled with quadrupole-time-
of-flight (UHPLC-Q-TOF), together with chemometrics analysis, successfully distinguished 
between the two hybrids as having low- and high-level fumonisin contamination. 
Considering that H21 and H22 were exposed to the same environmental factors, the 
higher activation of lipid signaling systems in H22 suggests that other routes are enabled 
in the less susceptible hybrids to limit fumonisin B (FB) accumulation. Our results highlighted 
the crucial role played by oxylipin and sphingolipid signaling in modulating the complex 
maize response to F. verticillioides infection. Overall, our results returned a global view on 
the changes in lipid metabolites related to fumonisin accumulation under open field 
conditions, and revealed a strong activation of the lipid signaling cascade in maize in the 
presence of FB1.
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INTRODUCTION

Climate change has been recognized as the major driver of the increase in mycotoxin occurrence/
co-occurrence in food and feed commodities worldwide (Battilani et  al., 2016; Leggieri et  al., 
2020). Additionally, the current environmental conditions have altered the prevalence of pathogens 
as well as their interactions with diverse plant species in the field, leading to quantitative and 
qualitative yield losses and the accumulation of mycotoxins in crop plants.
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Fusarium verticillioides, the main member of the Gibberella 
fujikuroi species complex (GFSC), is a fungus that causes ear 
rot in maize (Zea mays L.) in the field, and produces a wide 
spectrum of fumonisins, among which fumonisin B1 (FB1), FB2, 
and FB3 are the most relevant to food and feed safety, on account 
of their toxic effects and abundance (Knutsen et  al., 2018).

Several strategies have been considered to control pathogen 
infection and mycotoxin contamination in maize, both at 
pre- and postharvest stages (Palumbo et  al., 2020; Logrieco 
et al., 2021), including the use of resistant cultivars, improved 
agronomic practices (Mesterházy et  al., 2012), crop rotation, 
and fungicide and insecticide application (Folcher et al., 2009; 
Mazzoni et  al., 2011; Alberts et  al., 2016). Nevertheless, a 
strategy that could prevent FB contamination is not yet 
available. Therefore, breeding for mycotoxin resistance is so 
far considered as one of the most promising and sustainable 
approaches for preventing FB contamination in maize 
(Gaikpa and Miedaner, 2019; Mesterhazy et  al., 2020).

Upon fungal infection, a multicomponent defense response 
is activated in maize (Lanubile et  al., 2017). This response has 
been investigated over time using a number of different “omics” 
techniques, including next-generation sequencing (Lanubile 
et al., 2014; Wang et al., 2016; Stagnati et al., 2019), proteomics 
(Pechanova and Pechan, 2015), metabolomics (Wang et  al., 
2016; Ciasca et al., 2020), and lipidomics (Dall’Asta et al., 2015; 
Giorni et  al., 2015; Righetti et  al., 2019).

To date, metabolomics has been applied to the field of 
mycotoxin research, mainly to the Fusarium graminearum–
wheat/barley system, with the aim to understand the role of 
trichothecenes, particularly deoxynivalenol, in pathogenesis 
(Gunnaiah and Kushalappa, 2014; Atanasova-Penichon et  al., 
2016; Richard-Forget et  al., 2021). Only few studies have 
considered the F. verticilliodes–maize system using a targeted 
approach. These studies show that phenolic compounds, 
carotenoids, and phenylpropanoids are the major metabolite 
groups correlated with F. verticillioides pathogenesis in maize 
(Picot et  al., 2013; Sampietro et  al., 2013). Many of these 
compounds are responsible for cell-wall reinforcement, 
antimicrobial activity, apoptosis, and reactive oxygen species 
(ROS)-related process modulation.

Recent studies suggest a link between FB accumulation and 
the so-called plant lipid signature. The oxidation products of 
fatty acids, and the metabolic cascade thereof, seem to be involved 
in the host plant response. Some fatty acid hydroperoxides 
generated through the plant lipoxygenase pathways presumably 
mimic the fungal oxylipins, known as psi-factors, and are 
detected by the fungus, thus affecting mycotoxin biosynthesis 
and sporulation (Brodhagen and Keller, 2006; Kumari et  al., 
2011). Products derived from the action of 13-lipoxygenase 
(13-LOX) on linoleic acid repress the biosynthesis of aflatoxin, 
whereas those related to the 9-LOX pathway promote aflatoxin 
production (Burow et  al., 1997).

The role of fungal linoleate diol synthase-coding gene, lds-1, 
and plant lipoxygenase 3 coding gene, LOX3, has been investigated 
extensively, demonstrating that LOX3 is a major susceptibility 
factor in maize and is induced by fungal LDS1-derived oxylipins 
to suppress the jasmonate (JA) cascade (Scala et al., 2014, 2017; 

Battilani et  al., 2018). In addition, the plant LOX3-mediated 
signaling promotes the biosynthesis of virulence-promoting 
oxylipins in the fungus. Therefore, diverse species of lipids 
and oxylipins has emerged as the key classes of compounds 
involved in the regulations of host–pathogen interactions.

Among the “omics” approaches, untargeted lipidomics coupled 
with a robust bioinformatic workflow, may serve as a powerful 
tool for the identification of biological pathways involved in 
plant–pathogen interaction. Although several attempts have been 
made to define the plant lipid signature using a targeted approach 
(Dall’Asta et al., 2015), only the use of a fully untargeted approach 
allowed for a more detailed picture (Righetti et  al., 2019).

To date, plant resistance studies have preferentially been 
performed on inbred lines under environmentally 
controlled conditions. On the contrary, very few studies have 
focused on maize response to pathogens in the field, given 
the high variability in environmental conditions due to a 
number of co-occurring biotic and abiotic factors. Such 
conditions, although challenging, may offer a unique 
opportunity for exploring the real metabolic shift occurring 
in the plant upon fungal colonization under natural conditions 
(Giorni et  al., 2015).

In our previous study, untargeted lipidomics was applied 
to a set of maize genotypes grown under open-field conditions 
in different geographical areas over a single harvest season 
(Righetti et al., 2019). Results showed that the hybrid genotype 
and environmental conditions have a significant influence on 
FB accumulation. Data analysis pointed out that the plant−
pathogen interaction mainly affects glycerophospholipid and 
linoleic acid metabolic pathways. These findings suggested the 
involvement of oxylipin signaling as an early response in infected 
maize that precedes accumulation of FB. However, the preliminary 
study covered only 1 year of observation in the field, and 
allowed us to annotate only 30 metabolites.

Starting from the previous basis, we designed a more robust 
open field study, considering two maize hybrids, with a different 
susceptibility toward FB1 accumulation, collected at two 
geographical areas over three harvest seasons. A comprehensive 
mapping of oxylipins and complex lipid signature was performed, 
and data were used for interpretation. This study aimed to 
further unravel the relevance of the biological pathways so 
far identified in the multifactorial maize response to GFSC 
infection, and to strengthen our comprehension of the molecular 
mechanisms underlying plant–pathogen interactions.

MATERIALS AND METHODS

Chemicals and Reagents
Polytetrafluoroethylene (PTFE) 15-ml centrifugation cuvettes 
were obtained from Greiner Bio-One (Kremsmünster, Austria). 
HPLC grade methanol, ethanol, dichloromethane, 2-propanol, 
and hexane were purchased from Merck (Darmstadt, Germany). 
Ammonium formate and formic acid were purchased from 
Sigma-Aldrich (St. Louis, MO, United States). Water was purified 
using the Milli-Q purification system (Millipore, Bedford, MA, 
United  States).
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Plant Material
Maize samples (N = 84) were collected over 3 years (2015, 2016, 
and 2017) in varietal field trials conducted in two northern 
Italian regions, Lombardia (N = 42) and Piemonte (N = 42), similarly 
to Righetti et  al. (2019). Two mid-season hybrids, coded as H21 
and H22 (FAO classes 500 and 600, respectively), were used in 
this study. The maize hybrid name was not reported because of 
the short market life of hybrids and the aim of collecting data 
not related to a specific hybrid or commercial brand but extendable 
to all hybrids (Dall’Asta et  al., 2012). A fully balanced sampling 
was designed, with seven samples (n = 7) for each hybrid at each 
location and at each harvest time, thus accounting for a total 
of 84 samples (N = 7 × 2 × 2 × 3 = 84). For each sample, two biological 
replicates were considered accounting for the non homogeneous 
distribution of fumonisins (NTOT = 84 × 3 = 252).

At maturity, ears were harvested manually from each 15-m2 
plot (around 100 plants plot) to obtain a representative grain 
sample for the analyses. The ears were then dried at 60°C to 
approximately 14% humidity and shelled using an electric 
sheller. Kernels from each plot were mixed thoroughly to obtain 
a random distribution and then ground using a ZM 200 Ultra 
Centrifugal Mill (Retsch GmbH, Haan, Germany) fitted with 
a 1-mm sieve. The resulting whole maize meal was stored at 
4°C until needed for subsequent experiments.

A representative subset of maize samples (five samples per 
geographical area per year; N = 5 × 2 × 3 = 30) was selected for 
lipidomic analysis.

Fumonisin Determination
Fumonisins determination was performed according to our previous 
well-established protocol (Dall’Asta et  al., 2012), further adapted 
over time following instrumental advances, and recently described 
in Rabaaoui et  al. (2021). Briefly, 2 g of ground maize sample 
was mixed with 8 ml of water: methanol (30:70, v/v) in an 
Ultraturrax T25 high-speed blender (IKA, Stauffen, Germany) 
at 6,000 rpm for 3 min. The resulting homogenous mixture was 
filtered through 0.45-μm nylon filters, and 1 ml of the filtrate 
was analyzed by LC-electrospray ionization (ESI)-MS/MS. The 
total FB content was expressed as the sum of FB1, FB2, and FB3.

The analysis was carried out using an UHPLC Dionex 
Ultimate 3000 separation system coupled to a triple quadrupole 
mass spectrometer (TSQ Vantage; Thermo Fisher Scientific Inc., 
San Jose, CA, United  States) equipped with an electrospray 
source (ESI). For the chromatographic separation, XBridge 
Amide BEH column (Waters, Wilmslow, United Kingdom) with 
2.10 × 100 mm and a particle size of 2.6 μm heated to 40°C 
was used. The technical and quality parameters are reported 
in Rabaaoui et  al. (2021), and are therefore given as 
Supplementary Material.

Occurrence data for FB1, FB2, and FB3 are given as mean ± SD 
in the Supplementary Material (Supplementary Table S1).

Untargeted Lipidomics
Sample Preparation and Detection
Maize samples were ground into a fine powder using a ball 
mill (MM 301 Retsch, Haan, Germany). Then, 1 g of the ground 

maize sample was extracted with 10 ml of dichloromethane: 
methanol (50:50, v/v) first by manually shaking the sample 
for 1 min and subsequently using an automatic shaker (IKA 
Laboratortechnik, Germany) at 240 strokes/min for 30 min. 
Maize extracts were then centrifuged at 13,416 × g for 5 min 
at 20°C (Rotina 35 R, Hettich Zentrifugen, Germany). Prior 
to analysis, 1 ml of the extract was evaporated under a gentle 
stream of nitrogen gas, and the residue was reconstituted in 
1 ml of 2-propanol: methanol: water mixture (65:30:5, v/v/v).

Lipidomics analysis was carried out using ultra-high 
performance liquid chromatography coupled with quadrupole-
time-of-flight mass spectrometry (UHPLC-Q-TOF-MS), as 
described previously (Righetti et  al., 2019). Briefly, the 
chromatographic separation of the extract was performed using 
1290 UHPLC system (Agilent Technologies, Santa Clara, CA, 
United  States), equipped with BEH C18 analytical column 
(2.1 mm × 100 mm, 1.7 μm) maintained at 60°C. The mobile 
phase was a binary mixture of solvent A [5 mM ammonium 
formate and 0.1% formic acid in water: methanol (95:5, v/v)] 
and solvent B [5 mM ammonium formate and 0.1% formic 
acid in 2-propanol: methanol: water (65:30:5, v/v/v)]. A multi-
step elution dual-mode gradient was optimized from 10 to 
100% B over a 17.5-min run. The sample injection volume 
was 1 μl, and the autosampler temperature was maintained at 
5°C. Untargeted acquisition was performed using 6550 iFunnel 
QTOF mass spectrometer detector (Agilent Technologies, Santa 
Clara, CA, United  States) with positive polarity (scan, 
100–1,000 m/z range at a rate of 0.8 spectra/s) and extended 
dynamic range mode.

To perform tandem MS spectra acquisition, a data-dependent 
Auto MS/MS method was employed. Product ion spectra (m/z 
range = 50–1,200), were acquired for the 10 most intensive ions 
in each survey spectrum, with the following parameters: collision 
energy = 35 V; collision energy spread = ±15 V.

The in-batch sequence of samples was random (established 
on the basis of random number generation) to avoid any 
possible time-dependent changes during UHPLC-Q-TOF-MS 
analysis, which could result in false clustering. Each set of 
samples was preceded by three blank controls: Milli-Q water, 
methanol, and no sample. The quality control (QC) sample, 
prepared by pooling an aliquot of the extract from each sample, 
was injected at the beginning of the sequence and after every 
10 sample injections.

Details of acquisition parameters have been reported previously 
(Righetti et  al., 2019).

Data Processing and Chemometrics Analysis
Fumonisin-target quantification data were statistically analyzed 
using multi-factor ANOVA (MANOVA), followed by Tukey’s 
post hoc test (α = 0.05), using the year, the hybrid, and the 
harvesting area as factors. The analysis was carried out on 
the full dataset (N = 252) using Statistica 13 (TIBCO Software 
Inc., Paolo Alto, CA, United  States).

Raw untargeted lipidomic data were deconvoluted using the 
Profinder B.07 software (Agilent Technologies). The expansion 
of values for chromatogram extraction was set to 10 ppm, and 
single-ion identification was excluded. Data pre-processing (mass 
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and retention time alignment and compound filtering), 
normalization, and baselining were conducted in Profinder B.07 
(Righetti et  al., 2019).

The filtered dataset was then exported into MetaboAnalyst 
4.0 (Chong et  al., 2019), log-transformed, and Pareto-scaled 
before evaluating the quality of the unsupervised and supervised 
models. Principal component analysis (PCA) was performed 
to assess natural sample grouping. Significant variables were 
selected, according to the volcano plot (fold change > 2; FDR 
corrected value of p < 0.01).

Compound annotation was carried out using the Profinder 
B.07 software, based on the “find-by-formula” algorithm. Putative 
identification was achieved based on the database exported 
from METLIN,1 KEGG,2 LIPID MAPS,3 and using the entire 
isotopic profile (monoisotopic mass, isotope spacing, and ratio), 
with a maximum mass accuracy of 5 ppm for each centroid 
mass in the isotopic cluster. To achieve a higher degree of 
confidence in annotation, a further identification/confirmation 
step was carried out from QCs in MS-DIAL 3.98 (Tsugawa 
et  al., 2015). This step was performed using publicly available 
MS/MS experimental spectra built into the MassBank of North 
America (MoNA) repository and MS-Finder in-silico 
fragmentation data of compounds in Lipid Maps and PlantCyc 
(Tsugawa et  al., 2016). Therefore, annotation was carried out 
according to “level III” (putatively characterized compounds) 
and when possible “level II” (putatively identified compounds), 
corresponding to compounds identified by UHPLC–HRMS/
MS, and matched to spectra from databases and literature, as 
set out by the Metabolomic Standard Initiative (MSI Board 
Members et  al., 2007).

Differential compounds were subjected to fold-change 
analysis by comparing the H21 and H22 groups, and then 
uploaded into the Omics Viewer pathway tool of PlantCyc4 
to identify pathways and processes from the metabolite list 
(Paley et  al., 2017).

RESULTS AND DISCUSSION

Fumonisin Accumulation
All samples were found to be  fumonisin-contaminated, with 
the sum of FB1, FB2, and FB3 ranging from the limit of detection 
(LOD: 10 μg/kg) to 32,386 μg/kg. The results are reported in 
the Supplementary Material (values are given as mean and 
SD). We  investigated the effects of the three main factors 
(harvest season, geographical area, and hybrid) on FB1 and 
total FBs, because FB2 and FB3 are less abundant than FB1 
ant their amount is strictly correlated with FB1. For statistical 
calculation, the full dataset was used, considering each biological 
replicate as a single datapoint (NTOT = 252).

The level of FB1 accumulation varied significantly with all 
three factors (year, p < 0.000; area, p < 0.000; and hybrid, p = 0.017), 

1 http://metlin.scripps.edu
2 http://www.genome.jp/kegg/genome.html
3 https://lipidmaps.org/
4 https://plantcyc.org/

whereas total FBs accumulation varied significantly with the 
geographical area (p < 0.000) and harvest year (p < 0.000; Table 1). 
These results are consistent with previous studies and our 
preliminary study (Righetti et  al., 2019) showing the strong 
effect of environmental factors (mainly related to climate 
conditions) on FBs contamination. However, it must be  noted 
that the hybrid as well as its interaction with the harvest year 
were found to exert significant effects on FBs contamination 
of maize in the current study.

Lipidomics Analysis
Given the large variability in FB accumulation over years and 
across different geographical areas, we selected a representative 
subset of maize samples for untargeted lipidomics analysis, 
with the identification of plant biochemical pathways affected 
by FBs as the main goal. The samples were tagged according 
to the hybrid code (H21 vs. H22), and the range and median 
values of FB1 concentration were calculated for each group, 
as follows: H21, median = 14,054 μg/kg (range: 4,175–21,416 μg/
kg); H22, median = 779 μg/kg (range: LOD–6,293 μg/kg). Since 
F. verticillioides infection has not been measured in the present 
study, we  cannot directly correlate the FBs accumulation to 
the infection rate. However, we  can argue that a low FBs 
accumulation in H22 was due to a lower infection rate or to 
a lower ability of the fungus to produce FBs in the host. It 
must be  underlined that the lower FBs accumulation in H22 
was conserved in the open field over three harvest years and 
two geographical areas. Therefore, we  could reasonably argue 
that H22 can be regarded as a more resistant hybrid than H21.

Samples were analyzed by UHPLC-Q-TOF-MS under a fully 
untargeted approach using the same conditions as reported in 
our previous work (Righetti et al., 2019) to allow data comparison. 
The raw data were subjected to PCA to obtain an overview 
of the trend in an unsupervised manner and to determine 
putative outliers. After a quality assessment, the data were 
filtered by choosing entities present with a rate of 100% in 
at least one sample group, resulting in a reduced dataset of 
2,940 features.

Samples were divided into two major groups, according to 
the contamination level, indicating a correlation between FB 
accumulation and the maize lipidome signature (Figure  1A). 
Samples from the H22 group were randomly arranged over the 
95% confidence ellipse, whereas the H21 samples were tightly 
clustered. No clusters were detected for the harvest year or 
geographical area (Supplementary Figure S1). Although our 
lipidomic approach covered only a small portion of the whole 
plant metabolome, clear differences between the two groups 
were evident, suggesting the strong involvement of the lipid 
fraction in the response to FB accumulation in the two hybrids.

Next, we  inspected and validated the supervised models 
and then discriminated the metabolites based on a combination 
of value of p (<0.05) and fold-change (FC > 2). The supervised 
clusterization is reported in Figure 1B. Overall, 361 significant 
metabolites were annotated; the tentative identification, 
pseudomolecular ion, retention time, and composite spectrum 
of these metabolites are summarized in Supplementary Material 
and Supplementary Table S2. Volcano plot analysis (Figure 2) 
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showed that glycerolipids, such as glycerophosphoethanolamine 
(PE), glycerophosphoserine (PS), and their lyso-forms were 
higher in the resistant H21 hybrid than in H22 samples; whereas 
glycerophosphoinositol (PI) and glycerophosphocholine (PC) 
were lower in H21 than in H22 samples. Compared with H22 
samples, sphingoid bases and folate-related compounds were 
higher in H21, whereas hydroxycinnamate amides such as 
feruoyltryptamine and di-4-coumaroylputrescine were less 
abundant in H21 samples.

Functional Enrichment and Pathway 
Analysis
To further identify metabolic pathways involved in the plant 
response associated with FB contamination, we  performed 
functional enrichment analysis using PlantCyc. The most 
significant pathways (p ≤ 0.01) are listed in Table  2; these 
included pathways involved in the biosynthesis of lipids, such 
as glycerophospholipids, glycerolipids (diacylglycerol and 
triacylglycerol), and fatty acids.

TABLE 1 | Multi-factor ANOVA (MANOVA) analysis performed on fumonisin accumulation in hybrid maize samples grown in different geographical regions over 3 years 
(full dataset, NTOT = 252).

Total FBs† Fumonisin B1 (FB1)†

Mean concentration (μg/kg) Range (μg/kg) Mean concentration (μg/kg) Range (μg/kg)

Year 2015 9,256b 79–32,702 7,089a LOD–19,637
2016 5,309b LOD–26,871 4,073b LOD–22,250
2017 10,558a 1,459–26,435 7,921a 727–21,060

value of p < 0.000 < 0.000
Area LM 11,549a 255–32,702 8,829a 433–22,250

PM 5,245b LOD–21,892 3,861b LOD–19,448
value of p < 0.000 < 0.000

Hybrid H21 8,588 6,596a 209–22,250
H22 8,371 6,263b LOD–17,967

value of p 0.061 0.017
year*area value of p 0.181 0.001
year*hybrid value of p 0.104 0.004
area*hybrid value of p 0.224 0.176
area*hybrid*year value of p 0.231 0.189

†Different lowercase letters indicate significant differences (p < 0.05).
n.s., non-significant; LOD, limit of detection, 10 μg/kg.

A B

FIGURE 1 | Unsupervised (left) and supervised (right) statistical models of H21 and H22 samples. (A,B) Principal component analysis (PCA) score plot (A) and 
Orthogonal Partial Least-Square Discriminant Analysis (OPLS-DA; R2

ycum = 0.826, Q2 = 0.807) score plot (B) constructed using filtered data and colored according to 
the level of fumonisin contamination. Red and blue colors represent H21 and H22 samples, respectively.
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To identify metabolic pathways differentially modulated 
between H21 and H22, leading to differential accumulation 
of FBs at harvest, we  performed compound annotation and 
enrichment analysis, following data processing. The results 
showed that oxidized fatty acids, oxylipins, sphingolipids, and 
glycerophospholipids were the main lipid classes disrupted by 
fungal infection (discussed below).

Oxylipins
Lipid peroxidation is known to be a key factor in the regulation 
of mycotoxin production (Fabbri et  al., 1983). Through the 
formation of oxygenated fatty acids or oxylipins, ROS are 
responsible for the activation of the plant defense frontline during 
the infection process (Scala et  al., 2014; Oldenburg et  al., 2017).

In the current study, several 9- and 13-oxylipins as well as 
oxidized fatty acid precursors were annotated. However, none 

of these compounds showed a statistical significance in sample 
clusterization, according to the volcano plot. The lack of 
significance of oxylipins may be  ascribable to the fact that 
oxylipins spike following infection is expected at an early stage 
upon seed development; while at harvest they could have been 
already catabolized.

Although a change (decrease or increase) in metabolite 
abundance only by a factor of 2 was considered significant 
in this study, the data on 13-oxylipin accumulation can 
be interpreted in terms of tendency. We found that 13-oxylipins, 
such as 12,13-diHODE, 13-oxoODE, and 
13(S)-hydroperoxylinolenic acid (13-HPLA), were less abundant 
in H21 than in H22 samples (Figure  3), suggesting that when 
FBs are accumulated to high levels in maize following pathogen 
infection, 13-oxylipins are consumed by the plant to activate 
the JA signaling pathway, as reported previously (Mosblech 
et  al., 2009; Wasternack and Feussner, 2017). Although the 
biological relevance to resistance against F. verticillioides is 
currently unclear, based on our data, we can suggest a regulatory 
role of 13-oxylipins in the considered pathosystem. Because 
our lipidomic analytical conditions were not suitable for JA 
analysis, this hypothesis deserves further investigation. However, 
it must be noted that 13-oxylipins are involved in the regulation 
of fungal growth and mycotoxin production in Aspergillus 
(Deboever et  al., 2020), and fungal oxylipins are able to hijack 
plant oxylipin processes to facilitate the onset of disease and 
the production of mycotoxins (Gao and Kolomiets, 2009). 
Unfortunately, we  were unable to map significant changes in 
the 9-oxylipin pathway. In particular, 9-HODE has been 

FIGURE 2 | Important features selected by volcano plot analysis, based on the thresholds of fold change [x-axis; log2(FC) = 2] and t-test [y-axis; −log10(p) = 0.01]. 
Data were adjusted according to the false discovery rate (FDR). Colored circles represent features above the thresholds; features accumulated to higher levels in 
H21 are indicated in red, whereas those accumulated to higher levels in H22 are indicated in blue. The further its position from the (0,0) point, the more significant 
the feature. PC, glycerophosphocholine; PE, glycerophosphoethanolamine; PG, glycerophosphoglycerol; PI, glycerophosphoinositol; TAGs, triacylglycerols; DAGs, 
diacylglycerols; and THF, tetrahydrofolate.

TABLE 2 | List of metabolic pathways involved in the response of maize plants 
to fumonisin accumulation.

Pathway p

Superpathway of phospholipid biosynthesis 1.6E-07
Diacylglycerol and triacylglycerol biosynthesis 1.6E-06
Choline biosynthesis 3.5E-05
Amine and polyamine biosynthesis 3.8E-05
Fatty acid and lipid degradation 4.1E-05
Phosphatidylethanolamine biosynthesis 9.5E-05
Phosphatidylserine biosynthesis 7.8E-04
Sphingolipid biosynthesis 9.6E-04
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acknowledged as a mycotoxin-susceptibility factor (Scala et  al., 
2014). However, it must be noted that C18:2 and C18:3 derived 
oxylipins are linked to early FBs accumulation stages as recently 
reported by several authors (Christensen and Kolomiets, 2011; 
Dall’Asta et  al., 2012; Beccaccioli et  al., 2021).

The oxylipin cascade is known as a non-stress-specific 
signaling pathway activated by the plant under biotic and 
abiotic stress conditions (Wasternack and Feussner, 2017). 
Therefore, many different stressors may stimulate the oxylipin 
signaling pathway in maize grown in the open field, regardless 
of GFSC infection and FB accumulation. Notwithstanding, 
oxylipin signatures are reported to change from the early to 
late phase of plant response and to exhibit different dynamics 
as a function of both the organ considered and the senescence 
status of those organs (Ghanem et al., 2012; Muñoz and Munné-
Bosch, 2020). As reported previously, several oxylipins are 
produced by both the fungus and the plant. The extent at 
which each organism genotype determines the pattern of specific 
oxylipin accumulation, is strongly affected by the stage of 
disease progression (Battilani et al., 2018). In the present study, 
seeds at the harvest stage were considered for fingerprinting, 
and this could have prevented the detection of significant 
changes in the oxylipin profile. Therefore, to better understand 
the events occurring in the field, the maize metabolic fingerprint 
should be  further studied at different time points after fungal 
infection when seeds are not matured yet and they are 
metabolically responsive to infection.

Furthermore, it must be considered that plants adopt efficient 
processes to prevent the accumulation of peroxidation products, 
as these could potentially damage cellular membranes. 
Hydroperoxides, a peroxidation product, are cleaved into volatile 

aldehydes and an oxo fatty acid by hydroperoxide lyase, rather 
than being metabolized further by divinyl ether synthase and 
allene oxide synthase and other sub-branches of the LOX 
pathway (Mosblech et  al., 2009). In parallel, non-enzymatic 
chemical reactions involving singlet oxygen and other ROS 
also occur and contribute to the oxylipin signature by producing 
hydroperoxides, phytoprostanes, hydroxyalkenals, and ketols 
(Mosblech et al., 2009). Nonetheless, oxylipins have been reported 
to be  esterified by a number of other molecules in the cell 
(Mosblech et  al., 2009). This intricate set of diverse enzymatic 
and non-enzymatic reactions produces metabolites not detected 
by mass spectrometric analyses and undergoes dynamic changes 
in response to the progression of fungal infection and leaf 
senescence, as well as in response to different environmental 
conditions (Blée, 2002). In addition, it must be  noted that 
oxylipins may be esterified to complex membrane lipids, which 
were not measured in this study. Taking this information into 
account, it is not surprising that oxylipins did not show 
significant differences in our study, where a number of diverse 
factors were included in the experimental design to mimic 
real-case scenarios. In fact, oxylipins are biochemical 
intermediates, and therefore they can be  easily converted into 
different forms as an effect of environmental factors 
(Eckardt, 2008; Hou et  al., 2016).

Sphingolipids and Glycerophospholipids
Sphingolipids are well-known to function as anchors for 
membrane proteins (Futerman, 1995), as well as secondary 
messengers for multiple cellular functions (Berkey et  al., 2012; 
Beccaccioli et  al., 2019). Sphingolipids are formed by the 
reduction and subsequent N-acetylation of long-chain sphingoid 

FIGURE 3 | Boxplot analysis of selected metabolites. Black dots represent the normalized abundance of selected features in all samples. The notch indicates 95% 
CI around the median of each group, defined as ±1.58*IQR/sqrt(n). The mean concentration is indicated with a yellow diamond.
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FIGURE 4 | Identification of plant metabolic processes impaired by FB accumulation. Differential pathways and their fold-change (FC) values were determined 
using the Omics Viewer Dashboard of the PlantCyc Pathway Tool software. Large dots represent the mean of all log2(FC) values of the pathways, and small dots 
represent the log2(FC) values of different biochemical classes of metabolites included in a specific pathway. The x-axis represents each set of subcategories, while 
the y-axis corresponds to the cumulative log2(FC). The value of p is reported in white at the top of each bar. Syn, biosynthesis; Deg, degradation; FA/Lip, fatty acids 
and lipids; Amines, amines and polyamines; Sec Metab, secondary metabolites synthesis; AA, amino acids; Nucleo, nucleotides; Cell-Struct, compounds 
responsible for cell structure; C1 util, consumption of carbon sources; Act/Inact/Inter, activation, inactivation, and interaction pathways; and Cpds, compounds.

bases, such as sphingosine, and may further react to form 
complex sphingolipids, including inositol phosphorylceramides 
and glucosylceramides. Ceramide synthase (CerS) catalyzes the 
N-acetylation of sphingoid bases, also known as a long-chain 
base (LCB; Merrill et  al., 2015). The class is usually grouped 
according to the length of the fatty acid chain, being the 
long-chain fatty acids (LCFAs) those with 12–18 carbon atoms 
(C12–C18), and the very LCFAs (VLCFAs) those with 20–30 
carbon atoms (C20–C36). It has been demonstrated that CerS 
activity, is strongly disrupted by FB1.

It has been recently demonstrated that, among CerS isoforms, 
maize homologs of CerS2 are preferentially targeted by FBs, 
increasing therefore the formation of LCFA-sphinganine 
structures over VLCFA-phytosphingosine ones (Zitomer et  al., 
2008; Beccaccioli et  al., 2021). Very recently, Beccaccioli et  al. 
(2021) suggested that FB-driven massive increase in free sphingoid 
bases and S-LCFA may represent a key signal for controlling 
programmed cell death in maize infected seedlings.

In the present study, free sphingoid bases were more abundant 
in H21 than in H22 maize samples (Figure  3). This is in 
agreement with the disruption of CerS by FBs and the subsequent 
reduction in phytoceramide synthesis in highly contaminated 
samples, as previously reported by many authors (Zitomer 
et  al., 2008; Dall’Asta et  al., 2015; Beccaccioli et  al., 2021). In 
agreement with Beccaccioli et  al. (2021), we  observed an 
accumulation of S-LCFA in highly contaminated samples, thus 
confirming the preferential disruption of CerS2 homologs 
in maize.

Because of the disruption of sphingolipid biosynthesis, the 
metabolism of glycerophospholipids was also altered in H21 
samples, consistent with previous studies (Rubert et  al., 2017; 
Righetti et al., 2019). Glycerophospholipids (GPLs), phosphate-
containing glycerol-based lipids, are the major components of 
cellular membranes, thus constituting the structural barrier of 
cells. GPL species are involved in multiple membrane-associated 
processes, such as membrane trafficking and signal transduction 

(Meijer and Munnik, 2003). The generation of different GPL 
classes is strongly interconnected as well as connected to the 
production of diacylglycerides. Because GPLs are involved in 
hormone signaling and cell membrane function, their metabolism 
is strongly affected by pathogen infection. This is consistent 
with our results, which showed a significant disruption of all 
phospholipid classes upon FB accumulation.

Lyso-glycophospholipids are generated by the selective cleavage 
of oxidized fatty acid chains from GPLs (Soo et  al., 2014). 
The removal of oxidized fatty acids from the phospholipid 
backbone may reflect metabolite rearrangement for cellular 
signaling to either overcome cell damage or trigger oxylipin 
biosynthesis in response to FB contamination. In the current 
study, lyso-forms of all GPL species were found in both H21 
and H22 samples. The higher abundance of GPL lyso-forms 
in H21 samples may be  connected to greater turnover of 
oxylipin biosynthesis as a consequence of higher FB accumulation.

Among all GPL species, PIs were particularly abundant in 
H22 compared with H21 samples. These molecules play a crucial 
role in the plant-pathogen interaction, inducing ROS production 
as a defense response (Gonorazky et  al., 2008). PI have been 
reported to also play a role in pathogen plant cell internalization 
(Yaeno et  al., 2011) and in activating resistance genes related to 
sialic acid (Antignani et  al., 2015). The higher PI abundance in 
the susceptible H21 may be  ascribable to higher activation of 
plant defense strategies to counteract higher FB accumulation. 
Furthermore, considering that PI-derived precursors act as 
important regulators of multiple processes during plant growth 
and development (Meijer and Munnik, 2003), the relatively low 
PI content in H21 samples may suggest an impairment of growth-
related processes at higher FB concentration.

Other Pathways
In addition to the pathways reported above, enrichment analysis 
confirmed the significant modulation of pathways identified 
in our previous study (Righetti et  al., 2019). A graphical 
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representation of the overall metabolic processes impaired upon 
FB accumulation is depicted in Figure 4, while a more detailed 
representation of the involved pathways is shown in Figure  5.

The activation of both synthesis and degradation pathways 
suggests that compounds are synthesized to be readily channeled 
into another target pathway. In the case of fatty acids and lipids, 

FIGURE 5 | Summary of plant metabolic pathways impaired by FB accumulation. Differential pathways and their FC values were determined using the Omics 
Viewer Dashboard of the PlantCyc Pathway Tool software. Large dots represent the mean of all log2(FC) values of the pathways, and small dots represent the 
log2(FC) values of different biochemical classes of metabolites included in a specific pathway. The x-axis represents each set of subcategories, while the y-axis 
corresponds to the cumulative log2(FC). The value of p is reported in white at the top of each bar.
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their production and simultaneous degradation can be  related 
to the activation of the signaling cascade (i.e., oxylipins including 
the defense hormone JA). Polyamines are known to play important 
roles in almost all environmental stresses, including salt, drought, 
extreme temperature, flooding, heavy metal, acidic pH, and 
oxidative stresses (Shi and Chan, 2014). The biosynthesis and 
degradation of polyamine were mirrored in a general depletion 
of amino acid related metabolism (mean log10FC = −0.600). 
Interestingly, the “C1 pool by folate” pathway was activated in 
H21 samples. In agreement with our previous study (Righetti 
et  al., 2019), 5-methyltetrahydrofolic acid was accumulated to 
significantly higher levels in samples with high FB contamination 
than in those with low levels of contamination. Folates act as 
both donors and acceptors of one-carbon groups in one-carbon 
transfer reactions, supporting the regulation of gene expression 
as well as the synthesis of lipids, proteins, chlorophyll, and lignin. 
In plants, folates are involved in ROS-mediated oxidation and 
cellular respiration. Recently, the negative effect of the folate 
metabolic pathway on plant immunity was elucidated in Arabidopsis 
thaliana (Gonzalez and Vera, 2019). The detoxification pathway 
was also activated in H21 compared with the H22 hybrid, with 
the degradation of ROS driving the pathway (mean log10FC = 1.17).

A general activation of fatty acid and lipid biosynthesis 
(FA/lip syn; mean log10FC = 1.63) and degradation (FA/lip deg.; 
mean log10FC = 3.50) was observed in H21 samples compared 
with H22. Similarly, amine biosynthesis (mean log10FC = 1.20) 
and degradation (mean log10FC = 0.602) were increased in H22 
samples, with the activation of choline and betaine synthesis 
and the putrescine pathway.

A general decrease in secondary metabolite biosynthesis 
(mean log10FC = −0.311), together with an increase in secondary 
metabolite degradation (mean log10FC = 0.918), was observed 
in H21 samples compared with H22. However, when the effect 
on each pathway is observed independently (Figure  5), it can 
be noticed that only the phenylpropanoid biosynthesis pathway 
was strongly downregulated in H21 samples compared with 
H22. Given that phenylpropanoids are involved in cell wall 
reinforcement (Miedes et  al., 2014; Lanubile et  al., 2017), our 
results can explain the higher FB accumulation in H21 hybrid 
compared with H22. However, further studies should be carried 
out to carefully map the phenylpropanoid profile and confirm 
this preliminary observation.

CONCLUSION

To the best of our knowledge, this is the first comprehensive 
attempt to map the lipidomic response of maize hybrids to 
FB1 accumulation under real open field conditions and over 
3 years of observation.

Altogether, the results of this study demonstrate that the 
strong activation of the lipid signaling cascade in the presence 
of FB1 already seen in controlled experiments occurs under 
open field conditions as well. The activation of such a frontline 
plant defense machinery may derive from a direct induction 
following fungal infection in the field, leading to the elicitation 
of a non-specific lipid-based plant response toward biotic and 

abiotic stressors. Because this study was carried out under open 
field conditions, we  could not determine whether the direct 
induction was exerted by FB1 itself or by other fungal metabolites 
synthesized at the infection stage. It must be  stressed out the 
F. verticillioides infection rate was not determined in H21 and 
H22  in this study. Reasonably, the infection rate in H22 was 
lower than in H21, and this might be  caused by the higher 
activation of lipid signaling systems observed in H22. Since the 
role played by FB1 in eliciting the plant lipid signature remains 
unclear, future studies are needed to better understand the 
triggering phase of the plant–pathogen interaction. However, 
our observation collected in an open field study, are of upmost 
relevance to validate and connect the biological evidence returned 
by model systems to the real agronomic conditions.

Considering that H21 and H22 samples were exposed to 
the same environmental factors (i.e., location and harvest 
season), the higher activation of lipid signaling systems in 
H22 suggests that other routes are enabled in the less susceptible 
hybrids to limit FBs accumulation. Despite the evidence 
supporting the role of the hybrid in limiting FBs accumulation 
in our study, the genotype-driven specific resistance factors 
likely act by limiting the initial event (i.e., fungal infection) 
and are therefore no longer detectable at the harvest stage.

To elucidate the metabolic pathways involved in specific 
resistance responses, susceptible and resistant maize hybrids 
should be  further compared in time-course experiments. 
Comparing the metabolome fingerprint of maize hybrids at 
the initial fungal infection event, and subsequently during the 
growth season, will help map the modulation of different 
metabolic routes over time.
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