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Maize yield has demonstrated significant variability both temporally and spatially.

Numerous models have been presented to explain such variability in crop yield using

data from multiple sources with varying temporal and spatial resolutions. Some of

these models are data driven, which focus on approximating the complex relationship

between explanatory variables and crop yield from massive data sets. Others are

knowledge driven, which focus on integrating scientific understanding of crop growth

mechanism in the modeling structure. We propose a new model that leverages the

computational efficiency and prediction accuracy of data driven models and incorporates

agronomic insights from knowledge driven models. Referred to as the GEM model,

this model estimates three independent components of (G)enetics, (E)nvironment, and

(M)anagement, the product of which is used as the predicted crop yield. The aim of

this study is to produce not only accurate crop yield predictions but also insightful

explanations of temporal and spatial variability with respect to weather, soil, and

management variables. Computational experiments were conducted on a data set that

includes maize yield, weather, soil, and management data covering 2,649 counties in

the U.S. from 1980 to 2019. Results suggested that the GEM model is able to achieve a

comparable prediction performance with state-of-the-art machine learning models and

produce meaningful insights such as the estimated growth potential, effectiveness of

management practices, and genetic progress.

Keywords: crop yield prediction, machine learning, crop models, temporal and spatial variability, heuristic

algorithm

1. INTRODUCTION

Crop yield prediction plays an important role in agriculture. On the economic front, agriculture
stakeholders such as farmers, insurance companies, and breeders rely on yield predictions to
make informed operational decisions. On the societal front, yield predictions help governments
and organizations make effective policies to strength global security, support famine-prevention
efforts, and protect environmental sustainability, especially in an era of global climate change and
pandemics (Messina et al., 2010; Marko et al., 2016). On the scientific front, underlying crop yield
prediction is a fundamental research question of understanding how phenotype is determined by
genotype, environment, and their interactions. In particular, the relationship between genetics,
weather, soil, and management variables and crop yield has been the topic of extensive studies.
The pursuit of more accurate crop yield prediction techniques has and will continue to motivate
innovations at the intersection of plant science, engineering, and data analytics.
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Most crop yield predictionmodels can be categorized as either
data driven or knowledge driven. Machine learning models,
epitomized by neural networks, consist of large numbers of
simple computational units that grow into complex model
structures for data driven analysis. With little pre-programmed
knowledge or biases, a machine learning algorithm treats crop
yield as an unknown function of genotype and environment and
attempts to approximate the underlying function by learning its
own lesson from large data sets. Khaki and Wang (2019) used a
deep neural network model for the 2018 Syngenta crop challenge
(Syngenta, 2020), in which participants were challenged to
predict the 2017 crop yield of 2,247 fields using historical data of
genotype, weather, soil, and yield. Their approach outperformed
other popular machine learningmethods such as LASSO, shallow
neural networks, and regression tree. Shahhosseini et al. (2019)
evaluated four machine learning algorithms and their ensembles
in predicting maize yield and nitrate losses. Using experimental
data from seven locations in four Midwestern states in the
U.S. over 5–7 years and a large scenario analysis data set
generated by the agricultural production systems simulator
(APSIM) (Holzworth et al., 2014), they achieved the following
RMSEs in bu/ac for yield prediction: 22.19 for LASSO regression,
22.42 for ridge regression, 20.82 for random forests, 20.04 for
extreme gradient boosting, and 18.44 for their optimal ensemble.
Kang et al. (2020) compared six machine learning algorithms
in predicting county level maize yield in 12 states in the U.S.
using data from 2001 to 2016. The RMSE ranged from 14.8
to 24 bu/ac. Crane-Droesch (Crane-Droesch, 2018) proposed a
semiparametric variant of a deep neural network and compared
it with multiple other machine learning algorithms using data
from 9 states in the U.S. Corn Belt from 1979 to 2016; RMSEs
for unseen years ranged from 15.9 to 19.1 bu/ac. More detailed
reviews of machine learning models for crop yield prediction can
be found in Chlingaryan et al. (2018) and van Klompenburg et al.
(2020).

Knowledge driven models, epitomized by crop models such
as APSIM (Holzworth et al., 2014) and CERES-Maize (Hodges
et al., 1987), build upon physiological understanding of plant
growth processes and develop biologically meaningful non-linear
equations to predict crop yield (among other outputs) as a
complex function of plant traits (e.g., leaf appearance rate, total
leaf number, grain fill duration, grain number, and root front
velocity) and environmental parameters (Batchelor et al., 2002;
Heslot et al., 2014; Schauberger et al., 2017). Crop models
offer biological insights into causes of phenotypic variability
by providing explicit explanations of the interactions between
traits and environmental conditions in different phases of the
crop growth cycle. As such, knowledge driven models are more
commonly evaluated based on their qualitative reflection of
crop responses to agrometeorological effects (Lalić et al., 2014)
than quantitative prediction accuracy (Kiniry et al., 1997). Blanc
(2017) built an emulators of crop yields based on an ensemble
of five crop models and evaluated its performance in replicating
spatial patterns of yields crop levels and changes overtime.
Schauberger et al. (2017) used an ensemble of nine crop models
to enhance the ability of individual process-based crop models
to represent effects of high temperature on crop yield. Durand

et al. (2018) assessed the ability of 21 crop models to capture the
impact of elevated carbon dioxide concentration on maize yield
and found evidence that more mechanistic modeling approaches
led to better performances.

Data driven and knowledge driven models have
complementary strengths and limitations. On the one hand, the
ability to approximate complex functions to fit data (Hornik
et al., 1990) enables machine learningmodels to achieve relatively
high prediction accuracy, but a major limitation is the difficulty
to explain the results. For example, many studies use a separate
model for each geographic region with different parameters;
each feature is used in hundreds or thousands of equations to
produce the final prediction, and the importance of different
features changes by year and by location (Kang et al., 2020).
As a result, when the predictions are accurate, they offer little
insights that are explainable, much less transferable temporally
or spatially; when the predictions are inaccurate, it is hard to
identify the cause of the errors. On the other hand, knowledge
driven models have the potential to propose scientifically and
biologically meaningful hypotheses that can form the basis of
experimental validation. The pre-programmed human input
in knowledge driven models can greatly simplify the learning
process while achieving a reasonable performance, but it also
restricts what can be learned from data and consequently limits
the prediction accuracy. Parameter calibration is also challenging
due to the complex structures of these models.

Attempts have been made to integrate more human
knowledge in data driven models. Khaki et al. (2020) designed
a novel machine learning model that uses convolutional
neural networks to extract interactions between weather and
soil variables and recurrent neural networks to capture time
dependencies of genetic improvement of seeds. Using data from
13 states in the U.S. Corn Belt, with 1980 to 2015 being training
years, the model achieved RMSEs of 16.48, 15.74, and 17.64 bu/ac
for the respective test years of 2016, 2017, and 2018. Coupled with
the backpropagation method, the model could reveal the extent
to which weather conditions, accuracy of weather predictions,
soil conditions, and management practices were able to explain
the variability in the crop yields. Several other studies have used
regression models with manually extracted features to estimate
effects of temperature (Zhao et al., 2017; Butler et al., 2018;
Tigchelaar et al., 2018), solar brightening (Tollenaar et al., 2017),
plant density (Lacasa et al., 2020), and flowering time (Parent
et al., 2018) on crop yield.

We propose a new model for not only predicting crop
yield but also attributing spatial and temporal yield variability
to contributions of genetics, environment, and management
variables. This is also a largely data driven model, but the
model structure was specifically designed to incorporate basic
agronomic knowledge to ensure that parameters from the
trained model can be used to explain temporal and spatial
yield variability with respect to genetic, environment, and
management components. In contrast, parameters from most
machine learning models are typically muchmore numerous and
harder to provide meaningful interpretations beyond predicted
yield. A large set of weather, soil, and management data were
collected from public sources, which covered 41 states in the U.S.
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from 1980 to 2019. The model was designed for this data set
in order to strike a balance among four competing objectives.
First, modeling resolution takes full advantage of available data
to accurately quantify the effects of daily weather changes and
variability in soil conditions and management practices on crop
yield. Second, modeling structure is based on scientific facts or
reasonable simplifying assumptions. Third, modeling results can
be used to explain causes of temporal and spatial yield variability,
allowing users to either gain meaningful insights or pinpoint
flaws in specific model components for further improvement.
Fourth, modeling parameters can be optimally calibrated using
state-of-the-art machine learning and optimization techniques
to extract useful information from data that is transferable
temporally and spatially. We focused on maize yield prediction
because maize is one of the most important food, feed, and
fuel crops in the U.S., and its production has demonstrated
temporal and spatial variability and strong sensitivity to both
environmental and management conditions (Meng et al., 2016).

2. DATA

This section provides details on the data we collected for this
study. More detailed weather, soil, or management data that were
only available at smaller temporal and spatial scales were not
included in this study. Moreover, we were not able to locate
publicly accessible data sources for seed genetics. Instead, we
used modeling techniques to estimate the genetics component
in crop yield based on available data sets. This was achieved
by using a polynomial function to explain part of the historical
yield that could not be explained by spatial or temporal variability
in soil and weather conditions. More details about the modeling
approach can be found in section 3.

2.1. Yield and Geography Data
County level corn yield in the U.S. from 1980 to 2019 were
collected from NASS (2020). After removing a few data points
with incomplete information, the entire data set contained 2,649
counties in 295 crop reporting districts of 41 states (all 50 states
in the U.S. excluding AK, CT, HI, MA, ME, NV, NH, RI, and
VT; the list of the 41 states can be found in the horizontal
axis of Figure 19) with a total of 78,169 corn yield records for
county-year combinations. Figure 1 shows the temporal trend of
national average corn yield (as well as areas planted) from 1980
to 2019. Figure 2 visualizes the spatial variability of county level
average corn yield in 6 representative years: 1980, 1990, 2000,
2010, and 2019 in approximate 10-year time lapse plus 2012,
in which year severe drought resulted in historic reductions in
corn yield.

Shape files of U.S. counties were collected from National
Weather Service (2020). This information was used to determine
the membership of counties in crop reporting districts and
states and also to locate weather stations and soil map units for
calculating average weather and soil variables within each county.

2.2. Weather Data
Daily surface weather data on a 1-km grid from 1980 to 2019
were collected from Daymet (Thornton et al., 2020). The data set

included 7 variables, the names and descriptions of which from
Thornton et al. (2020) are summarized as follows.

• dayl: duration of the daylight period in seconds per day.
• prcp: daily total precipitation in millimeters per day, sum of all

forms converted to water-equivalent.
• srad: incident shortwave radiation flux density in watts per

square meter, taken as an average over the daylight period of
the day.
• swe: snow water equivalent in kilograms per square meter.
• tmax: daily maximum 2-meter air temperature in

degrees Celsius.
• tmin: daily minimum 2-meter air temperature in

degrees Celsius.
• vp: water vapor pressure in pascals.

Figure 3 shows the temporal trends of national averages of the
7 weather variables from 1980 to 2019. Figure 4 shows the
spatial variability of these weather variables between planting and
harvesting weeks in 2019.

2.3. Soil Data
Soil data were collected from the latest version of Gridded
Soil Survey Geographic (gSSURGO) Database released in July
2020 (USDA, 2020). We used 10 soil variables measured in the
Value Added Look Up Table (Valu1) in the database, the names
and descriptions of which from USDA (2020) are summarized
as follows.

• aws: available water storage, expressed in mm, the volume of
plant available water that the soil can store in this layer based
on all map unit components. This variable was measured at 11
standard depth layers: standard zone 1 (0–5 cm depth), layer
2 (5–20 cm depth), layer 3 (20–50 cm depth), layer 4 (50–100
cm depth), layer 5 (100–150 cm depth), layer 6 (150 cm to the
reported depth of the soil profile), zone 2 (0–20 cm depth),
zone 3 (0–30 cm depth), zone 4 (0–100 cm depth), zone 5
(0–150 cm depth), and total soil profile (0 cm to the reported
depth of the soil profile).
• tka: thickness of soil components, expressed in cm for the

available water storage calculation. This variable was measured
at 11 standard depth layers.
• soc: soil organic carbon stock estimate, expressed in grams C

per square meter. This variable was measured at 11 standard
depth layers.
• tks: thickness of soil components, expressed in cm for the soil

organic carbon calculation. This variable was measured at 11
standard depth layers.
• nccpi3corn: National Commodity Crop Productivity Index

for Corn (weighted average). Values range from 0.01 (low
productivity) to 0.99 (high productivity).
• pctearthmc: National Commodity Crop Productivity Index for

major earthy components, which are those soil series or higher
level taxa components that can support crop growth.
• rootznemc: Root zone depth, expressed in mm, is the

depth within the soil profile that commodity crop roots can
effectively extract water and nutrients for growth.
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FIGURE 1 | National average corn yield and areas planted from 1980 to 2019.

• rootznaws: Root zone available water storage estimate,
expressed in mm, is the volume of plant available water that
the soil can store within the root zone based on all map unit
earthy major components.
• droughty: Drought vulnerable landscapes comprise those map

units that available water storage within the root zone for
commodity crops is less than or equal to 6 inches (152 mm),
expressed as “1” for a drought vulnerable soil landscape map
unit or “0” for a non-droughty soil landscape map unit.
• pwsl1pomu: Potential Wetland Soil Landscapes is expressed as

the percentage of the map unit that meets the PWSL criteria.

Figure 5 shows the spatial variability of these 10 soil variables.

2.4. Management Data
Data for areas planted in the 2,649 counties in the U.S. from
1980 to 2019 were collected from NASS (2020). The temporal
trend of this information was shown in Figure 1 together with
the yield trend. Figure 6 visualizes the spatial variability of areas
planted in 6 representative years. Due to limited data availability,
several important management variables were not included in the
model, such as seed genotype, irrigation, fertilization, tillage, and
disease/weed control.

Data for corn plant population density (number of plants
per acre) in the U.S. from 1980 to 2019 were collected from
NASS (2020). Data were available at the state level with more
than 60% missing values, and we used mean of non-missing data
(other years for the same state, if available) for data imputation.
Figure 7 visualizes the spatial variability of plant density in 6
representative years. Imputed data were not shown in the figure.

Planting and harvesting time data from 1980 to 2019 were
collected from NASS (2020), which were at the state level

given as percentages of planted areas having finished planting
or harvesting in each week. Although 30% data were missing,
the format of the planting and harvesting time data allowed
imputation to be done in a relatively straightforward manner
using the mean of non-missing data. Fortunately, the planted
areas of corn belt states with more complete data far exceeded
other states with more missing data, as shown in Figure 19,
which limited the negative impact of the missing data on this case
study. Figures 8, 9 visualize the spatial variability of planting and
harvesting times in 6 representative years (1980 was replaced with
1981 because no harvesting data were available for 1980).

3. MODEL

The model was designed for explaining temporal and spatial
variability of corn yield in the U.S. using available data
summarized in section 2. Compared with existing crop yield
prediction models, this model has three salient features. First, it
integrates domain knowledge of plant science in the design of
the model. Second, it deploys advanced machine learning and
optimization algorithms as solution techniques. Third, it was
designed to make data-driven discoveries on the interactions
among genetics, environment, and management variables, which
must be validated in 2,649 counties in 41 states over the past
40 years. We refer to this model as the GEM model, due to its
capability to dissect and quantify (G)enetics, (E)nvironment, and
(M)anagement components of crop yield.

3.1. Assumptions
Assumption 1: Crop yield is jointly determined by
three mutually independent components: genetics,
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FIGURE 2 | County level average corn yield in 6 representative years. The color map shows the averages of the 0–10th, 10–20th,..., 90–100th percentile intervals of

all county-year combinations from 1980 to 2019. Counties without yield data are shown in gray.

environment, and management. The environment
component, determined by weather and soil variables and
their interactions, sets a growth potential. The genetics
and management components reflect the proportion of
growth potential that is actually captured and converted to
crop yield.

Assumption 2: The genetics component within a crop
reporting district is the same for each year. This assumption
enables the model to capture the effects of seed selections in
different geographic regions; it also gives each crop reporting
district sufficient data to learn a separate model for its own
genetics trend. The change of genetic performance over the
previous year is within a subjectively estimated range of
[−2.5%, 5%].

Assumption 3: Environmental and management effects on
crop growths during different time periods are additive. As such,
the model calculates the amount of actual growth in each week
based on G, E, and M variables of a given county, and the sum of
the growths over 52 weeks gives the total yield for that county.
Similar assumptions are commonly made when analyzing the
effect of environmental variables. For example, growing degree
days and killing degree days are used to measure the cumulative
beneficial and damaging effects, respectively, of thermal time
(Butler et al., 2018).

Assumption 4: The amount of crop growth potential achieved
by management practices depends on the growth stages of the
crop. For simplicity, we consider only two stages: the vegetative
and reproductive stages, the division for which is approximated
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FIGURE 3 | Trend of national averages of 7 weather variables from 1980 to 2019.
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FIGURE 4 | County averages of 7 weather variables between planting and harvesting weeks in 2019. The color map shows the averages of the 0–10th, 10–20th,...,

90–100th percentile intervals of all county-year combinations from 1980 to 2019. Although weather data are available for all counties in all years, those without yield

data are shown in gray.
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FIGURE 5 | County averages of 10 soil variables. The color map shows the averages of the 0–10th, 10–20th,..., 90–100th percentile intervals of all county-year

combinations. Although soil data are available for all counties, those without yield data are shown in gray.
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FIGURE 6 | County averages of areas planted in 6 representative years. The color map shows the averages of the 0–10th, 10–20th,..., 90–100th percentile intervals

of all county-year combinations. Counties without such data are shown in gray.

as the first week when 100% planting has been finished in a
given county.

Assumption 5: Up to quadratic additive effects and bilinear
interactions between weather and soil variables are considered.
This assumption makes the model formulation relatively simple
for computational efficiency yet sufficiently flexible for data-
driven discovery.

3.2. Nomenclature
Known parameters:

• I: set of indices for 7 weather variables in the weather data set.
• J: set of indices for 10 soil variables in the soil data set.
• C: set of indices for 2,649 counties in the corn yield data set.

• R(c): set of indices for all counties that belong to the same crop
reporting district as county c.
• T: set of years 1980 to 2019.
• CT: set of 78,169 county-year combinations for which

historical corn yield data are available in the collected data set.
• W: set of 52 weeks in a year.
• WV(c, t): subset of 52 weeks in year t ∈ T that crop in county

c ∈ C is in or before the vegetative stage.
• WR(c, t): subset of 52 weeks in year t ∈ T that crop in county

c ∈ C is in or after the reproductive stage.
• K: the highest polynomial order of genetic progress as a

function of time. K = 10 was used in this study.
• Ac,t : area planted in county c ∈ C and year t ∈ T.
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FIGURE 7 | State level population density in 6 representative years. The color map shows the averages of the 0–10th, 10–20th,..., 90–100th percentile intervals of all

state-year combinations. States without such data are shown in gray.

Explanatory variables:

• t ∈ T: year variable.
• Wc,i,w: weather variable i ∈ I in county c ∈ C and week

w ∈ W. This variable is averaged over 7 days and across all
weather stations within county c. In case no weather stations
were located inside a small county, the nearest one was used.
• Sc,j: soil variable j ∈ J in county c ∈ C. This variable is

averaged across all soil map units within county c. In case no
soil map units were located inside a small county, the nearest
one was used.
• Dc,t : population density (number of plants per acre) in county

c ∈ C and year t ∈ T.

• Pc,w: percentage of planting finished in county c ∈ C by week
w ∈W, which monotonically increases from 0 to 100% during
the planting season and stays at 100% to the end of the year.
• Hc,w: percentage of harvesting finished in county c ∈ C by week

w ∈W, which monotonically increases from 0 to 100% during
the harvesting season and stays at 100% to the end of the year.

Response variables:

• ŷc,t : predicted corn yield in county c ∈ C and year t ∈ T.
• yc,t : observed corn yield in county c ∈ C and year t ∈ T.

Unknown parameters:

• αc,k: genetic progress parameter for tk in county c ∈ C.
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FIGURE 8 | Week numbers when 50% planting was finished in 6 representative years. The color map shows the averages of the 0–10th, 10–20th,..., 90–100th

percentile intervals of all state-year combinations. States without such data are shown in gray.

• γ
V
i,j : parameter of interaction between (weather and/or soil)

variables i ∈ I or J and j ∈ I or J on growth potential during
the vegetative stage. In particular, γV

0,0 is a constant term, γV
i,0 is

the coefficient for linear effect of variable i, γV
i,i is the coefficient

for quadratic effect of variable i, and γ
V
i,j is the coefficient for

bilinear interaction between variables i and j.
• γ

R
i,j : parameter of interaction between variables i and j on

growth potential during the reproductive stage.

3.3. Crop Yield Model
The GEM model predicts the corn yield in county c and year t
as follows:

ŷc,t =

(

K
∑

k=0

αc,kt
k

)

·





∑

w∈W(c,t)

Dc,t(Pc,w −Hc,w)Gc,w



 . (1)

The term
K
∑

k=0
αc,kt

k estimates the relative genetic performance of

seeds in county c and year t using a polynomial function of the
year number (normalized to [0, 1]). The term Dc,t(Pc,w − Hc,w)
reflects management practices of plant population density and
planting/harvesting progress, which directly affect the amount
of growth potential that can be captured and converted to
grain yield. In particular, (Pc,w − Hc,w) calculates the percentage
of crop in county c and week w that has been planted
and not yet harvested, as the crop continues to accumulate
growth. The composite variable Gc,w calculates the growth
potential in county c and week w, defined as Gc,w =

γ
V
0,0 +

∑

i∈I

γ
V
0,iWc,i,w +

∑

i1≤i2∈I

γ
V
i1 ,i2

Wc,i1 ,wWc,i2 ,w +
∑

j∈J

γ
V
0,jSc,j +

∑

j1≤j2∈J

γ
V
j1 ,j2

Sc,j1Sc,j2 +
∑

i∈I,j∈J

γ
V
i,jWc,iSc,j for all w ∈ WV(c, t)
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FIGURE 9 | Week numbers when 50% harvesting was finished in 6 representative years. The color map shows the averages of the 0–10th, 10–20th,..., 90–100th

percentile intervals of all state-year combinations. States without such data are shown in gray.

and Gc,w = γ
R
0,0 +

∑

i∈I

γ
R
0,iWc,i,w +

∑

i1≤i2∈I

γ
R
i1 ,i2

Wc,i1 ,wWc,i2 ,w +

∑

j∈J

γ
R
0,jSc,j +

∑

j1≤j2∈J

γ
R
j1 ,j2

Sc,j1Sc,j2 +
∑

i∈I,j∈J

γ
R
i,jWc,iSc,j for all w ∈

WR(c, t).
For a given county c and year t, we dissect the crop yield into

components G, E, and M as follows.

• Component E is defined as
∑

w∈W(c,t)

max{Gc,w, 0}, which is

the maximally achievable growth potential determined by
weather and soil variables and their interactions. The max
function is used to narrow the range of summation of non-
negative weekly growth potential terms during the favorable
growing season.

• Component G is defined as
K
∑

k=0
αc,kt

k. Year number t and

parameter α are normalized so that component G is within
[0, 1], indicating the proportion of component E that is
achieved by genetics. This component captures what is
not explained by environment and management variables,
which is mostly due to genetic improvement over time. This
component is estimated with a separate polynomial function
for each crop reporting district.

• Component M is defined as

∑

w∈W(c,t)

Dc,t(Pc,w −Hc,w)Gc,w

∑

w∈W(c,t)

max{Gc,w, 0}
,

where parameters D, P, and H are all normalized to [0, 1]. As
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FIGURE 10 | Predicted vs. observed corn yield for all 78,169 county-year

combinations are plotted against the 45 degree line, with the sizes of the dots

approximately proportional to the areas planted. Histograms of the two sets of

yield are also shown.

such, component M reflects the proportion of component E
that is captured by management.

By definition, predicted yield is equal to the product of
components G, E, andM.Notice that component E represents the
maximally achievable growth potential from 1980 to 2019 when
components G and M are normalized to [0, 1]. For future years
when both seed genetics and management practices continue to
improve, such growth potential may be exceeded.

3.4. Model Performance Evaluation
We used the following definition of the root mean square error
(RMSE) to measure the prediction accuracy of the model:

r(α, γ , CT) =

√

√

√

√

√

√

√

∑

(c,t)∈CT

A2
c,t(yc,t − ŷc,t)2

∑

(c,t)∈CT

A2
c,t

. (2)

Here, parameters α and γ are used in equation (1) to calculate ŷ.
Parameter Ac,t , the area planted in county c and year t, is used as
the weight.

The proposed model was evaluated based on both descriptive
and predictive performances in the case study. The descriptive
performance measures how well the model can fit the training
data and explain the spatial and temporal variability of crop yield.
Results from models (3)-(7) and (8)-(12) can provide insights on
weather and soil interactions, trends of components of G, E, and
M, and growth potential. The predictive performance evaluates
the ability of the model to predict crop yield for unseen years or

counties, for which training data have not been used to train the
model. For this purpose, we trained the GEM model 40 times in
a leave-one-year-out manner to validate its temporal prediction
performance and 2,649 times in a leave-one-county-out manner
to validate its spatial prediction performance. Moreover, the
model was also used to provide in season prediction with daily
updates of weather conditions.

Although numerous crop yield prediction models can be
found in the literature, most were designed for different sets of
explanatory variables and more focused geographic regions or
time periods. To provide a meaningful benchmark comparison,
we used the nearest-neighbor approach (Cover and Hart, 1967),
which is popular for machine learning studies and intuitive in
the crop yield prediction context. The nearest-neighbor approach
for crop yield prediction was implemented as follows. To predict
the yield of county c in an unseen year t, we identified historical
yield data for county c in the nearest-year (before or after year
t) and used that yield as the prediction. Similarly, to predict the
yield of an unseen county c in year t, we identified historical yield
data for the geographically nearest-county in the same year t and
used that yield as the prediction. As such, the nearest-neighbor
approach can be referred to more specifically as nearest-year and
nearest-county for temporal and spatial predictions, respectively.

3.5. Algorithm
The GEM model (1) is a complex nonlinear optimization
problem that is not readily solvable by standardmachine learning
algorithms. Herein, we present a heuristic algorithm that can
efficiently obtain a high quality solution (without optimality
guarantee) for unknown parameters α and γ . The strategy is not
to simultaneously optimize α and γ but to iteratively update one
of them at a time while keeping the other fixed. As such, solving
model (1) reduces to solving two smaller quadratic optimization
models multiple times, which are readily solvable by state-of-the-
art optimization solvers such as Gurobi (Gurobi Optimization,
LLC, 2021) and Cplex (IBM ILOG Cplex, 2009). Detailed steps of
the algorithm are explained as follows.

Step 0: Initialization. Pre-process data by normalizing them
to [0, 1]. Initialize the incumbent α

∗ as α
∗
c,0 = 1,∀c ∈ C, α∗

c,k =

0,∀c ∈ C, k ∈ {1, ...,K}, and γ
∗
i,j = 0,∀i, j. Go to step 1.

Step 1: Update γ
∗. Randomly select a subset CT 1 ⊂ CT

with approximately 80% samples. Solve the following quadratic
optimization model using CT 1 while keeping the incumbent α

∗

as a constant.

max
γ ,G,ŷ

∑

(c,t)∈CT
1

A2
c,t(yc,t − ŷc,t)2 (3)

s.t. ŷc,t =

(

K
∑

k=0
α
∗
c,kt

k

)

·

[

∑

w∈W(c,t)

Dc,t(Pc,w −Hc,w)Gc,w

]

∀(c, t) ∈ CT 1 (4)

Gc,w = γ
V
0,0 +

∑

i∈I

γ
V
0,iWc,i,w +

∑

i1≤i2∈I

γ
V
i1 ,i2

Wc,i1 ,wWc,i2 ,w

+
∑

j∈J

γ
V
0,jSc,j +

∑

j1≤j2∈J

γ
V
j1 ,j2

Sc,j1Sc,j2

Frontiers in Plant Science | www.frontiersin.org 13 September 2021 | Volume 12 | Article 701192

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang Explaining Variability of Maize Yield

FIGURE 11 | Training RMSEs. The color map shows the averages of the 0–10th, 10–20th,..., 90–100th percentile intervals of all county-year combinations, weighted

by the areas planted. Counties without yield data are shown in gray.

+
∑

i∈I,j∈J

γ
V
i,jWc,iSc,j ∀w ∈WV(c, t) (5)

Gc,w = γ
R
0,0 +

∑

i∈I

γ
R
0,iWc,i,w +

∑

i1≤i2∈I

γ
R
i1 ,i2

Wc,i1 ,wWc,i2 ,w

+
∑

j∈J

γ
R
0,jSc,j +

∑

j1≤j2∈J

γ
R
j1 ,j2

Sc,j1Sc,j2

+
∑

i∈I,j∈J

γ
R
i,jWc,iSc,j ∀w ∈WR(c, t) (6)

0 ≤ ŷc,t ≤ 300 ∀(c, t) ∈ CT 1 (7)

Let γ̃ denote an optimal solution and use it to define a new
incumbent candidate as γ̃

∗ = 0.2γ ∗ + 0.8γ̃ . If r(α∗, γ̃ ∗, CT) <

r(α∗, γ ∗, CT), then update γ
∗ ← γ̃

∗. Go to step 2.

Step 2: Update α
∗. Randomly select a subset CT 2 ⊂ CT

with approximately 80% samples. Solve the following quadratic
optimization model using CT 2 while keeping G∗ determined by
the incumbent γ ∗ as a constant.

max
α,ŷ

∑

(c,t)∈CT
2

A2
c,t(yc,t − ŷc,t)2 (8)

s.t. ŷc,t =

(

K
∑

k=0
αc,kt

k

)

·

[

∑

w∈W(c,t)

Dc,t(Pc,w −Hc,w)G∗c,w

]

∀(c, t) ∈ CT 2 (9)

αc,k = αd,k

∀d ∈ R(c), k ∈ {0, ...,K} (10)
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FIGURE 12 | Interactions between 7 weather variables and 10 soil variables. The top left side of the diagonal shows the interactive effects for the vegetative stage,

and the bottom right is for the reproductive stage. All weather and soil variables are normalized to [0, 1].

0% ≤
K
∑

k=0
αc,kt

k ≤ 100%

∀(c, t) ∈ CT 2 (11)

−2.5% ≤
K
∑

k=0
αc,k[t

k − (t − 1)k] ≤ 5%

∀(c, t) ∈ CT2 (12)

Let α̃ denote an optimal solution and use it to define a new
incumbent candidate as α̃

∗ = 0.2α∗ + 0.8α̃. If r(α̃∗, γ ∗, CT) <

r(α∗, γ ∗, CT), then update α
∗ ← α̃

∗.
Terminate the algorithm if the incumbent solution (α∗, γ ∗) has
not been updated for two consecutive iterations; otherwise go
back to Step 1 for a new iteration.

Remark for model (3)-(7):Minimizing the objective function
(3) is equivalent to minimizing the RMSE since the square root
function is a monotonically increasing one. With parameter α

∗

being a constant, all constraints (4)-(7) are linear. Constraint (7)
avoids the predicted yield to be negative or unrealistically high.

Remark for model (8)-(12): Constraint (10) requires that
all αc,k values in a same crop reporting district be the
same. Constraint (11) normalizes the genetic progress within
[0%, 100%]. Constraint (12) restricts the change in genetic
performance over the previous year to be between −2.5% and
5%. These lower and upper bounds were subjectively estimated to
reflect changes in genetic perform, and the optimal γ was found
to be insensitive to these parameters.

Remark for incumbent updates: The incumbent solution
(α∗, γ ∗) is not automatically updated with optimal solution
(α̃, γ̃ ) from the two quadratic optimization models. Rather, it is
only partially updated by (α̃, γ̃ ) if the new incumbent candidate
passes a cross validation. In particular, the optimal solutions
α̃ and γ̃ are obtained using random subsets of CT, then new
incumbent candidate solutions are defined as γ̃

∗ = 0.2γ ∗ +
0.8γ̃ and α̃

∗ = 0.2α∗ + 0.8α̃, which will not be accepted
unless they improve the RMSE on the entire data set CT. As
such, this technique reduces overfitting by cross validating the
generalizability of any updates made to the incumbent solution.
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FIGURE 13 | Trend of national averages of G, E, M from 1980 to 2019. The predicted yield is the product of G, E, and M.

Performance of the algorithm was found to be insensitive to the
parameters 0.2 and 0.8.

4. RESULTS AND DISCUSSIONS

Computational experiments were carried out using Matlab as the
main platform and Gurobi 9.1 as the quadratic programming
solver. The proposed heuristic algorithm took approximately 10
min to find a high quality solution on an average laptop. Data and
Matlab code used in this study were shared at https://github.com/
lzwang2017/maizeyield. Section 4.1 gives the results of fitting the

entire data set and section 4.2 presents the results of predicting
for unseen years or counties.

4.1. Descriptive Performance
4.1.1. Training Error
The RMSE of fitting the entire data set with the GEM model
is 17.84 bu/ac, which is 10.34% of the average yield in
2019. Figure 10 plots the predicted and observed yield for all
78,169 county-year combinations against the 45 degree line;
it also compares the histograms of the two sets of yields.
Figure 11 visualizes the spatial variability of training RMSEs in 6
representative years. In order to offset the potentially misleading
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FIGURE 14 | Weekly growth potential determined by weather and soil variables and their interactions. Red and green colors indicate positive and negative effects,

respectively. These potentials are positive from week 14 (late March) to week 37 (early September).

discrepancy between the geographic area of a county shown on
the map and the area planted in the county, we designed the
color map in such a way that each color represents 10 percent
of total areas planted. Similarly designed color maps are also
used in other figures. Figure 11 suggests that more than 70% of
historical yield data were explained by the GEM model within a
10% relative error; counties with larger planted areas had lower
errors than those with smaller planted areas.

4.1.2. Weather and Soil Interactions
Parameter γ from the GEM model reveals how weather and
soil variables jointly determine the growth potential in the
vegetative and reproductive stages. Figure 12 visualizes such
pair-wise interactive effects with a color map. The color square
for variables i and j shows the combined effects of γi,j +
1

16

(

γi,0 + γi,i + γ0,j + γj,j
)

. For a given set of observations for 7

weather variables and 10 soil variables of a given week, the growth
potential for that week can be calculated using information from
Figure 12 as follows. First, locate the 272 intersections with the
17 variables in vertical and horizontal directions less the diagonal.
Then determine if the crop is in vegetative or reproductive stage
in the given week. Finally, the growth potential for the vegetative
or reproductive stage can be calculated as the summation of
the 136 values at the intersections inside the 136 squares on
the top left, or bottom right, side of the diagonal, respectively.
The asymmetry in the figure reveals how maize may respond
differently to the same environmental conditions during the
vegetative and reproductive stages.

Results from Figure 12 can be used to determine the
sensitivity of crop yield to combinations of specific weather
and/or soil variables. For example, the (S4, W6) square suggests

that the combination of higher tks and higher tmin in the
vegetative stage had an unfavorable effect on crop yield, but the
effect of the same combination was negligible in the reproductive
stage, as suggested by the (W6, S4) square.

4.1.3. Trends of Components G, E, and M
Figure 13 shows the trends of the average components G, E,
and M defined in section 3.3, as well as predicted and observed
yield from 1980 to 2019. Component E shows an average growth
potential of 576 bu/ac, which fluctuates from year to year
with a slight increasing trend in the long term and a sharp
decrease in recent years. This result is consistent with recent
observations by meteorologist Takle and atmospheric scientist
Gutowski (Takle and Gutowski, 2020). Both components M
and G demonstrate clear increasing trends; the former reflects
the improvement in population density and planting/harvesting
timing, whereas the latter explains the increasing trend of yield
unaccounted for by components E and M. The product of
components G, E, and M accurately fits the observed yield
except for several years with extreme weathers (e.g., 1983,
1988, 1993, and 2012). This may be caused by the lack of
sufficient data with extreme weathers for the model to learn how
maize responds to stressful environmental conditions. Improving
prediction accuracy under extreme weather conditions has been
widely recognized as a challenging yet important topic for future
research (van der Velde et al., 2012; Eitzinger et al., 2013; Blanc,
2017; Schauberger et al., 2017), especially in the face of global
climate changes.

4.1.4. Growth Potential
Figure 14 shows the average component E for 52 weeks of
the year. Averaged across 2,649 counties and 40 years, these
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FIGURE 15 | Growth potential determined by weather and soil in 6 representative years. The color map shows the averages of the 0–10th, 10–20th,..., 90–100th

percentile intervals of all county-year combinations, weighted by areas planted. Counties without yield data are shown in gray.

growth potentials are positive from week 14 (late March)
to week 37 (early September), indicating a favorable time
window for maize growth. These results are consistent with
prior work that documented the yield benefits of earlier
planting and longer season varieties (Kucharik, 2006; Zhu
et al., 2018). Figure 15 visualizes the spatial variability of
growth potential in 6 representative years, ranging from
456 to 714 bu/ac. As a reality check, according to the
National Corn Growers Association (NCGA, 2020), the winners
of the National Corn Yield Contest in 2019 and 2020
achieved, respectively, 616 (new record) and 476 bushels
per acre.

4.2. Predictive Performance
4.2.1. Temporal Prediction
Forty experiments were conducted, for 1 year at a time, to test
how accurately the GEM model can be used to predict the yield
of an unseen year for which historical yield were held out of the
training data. Complete weather data for the target year were
provided to the prediction model. Section 4.2.3 presents results
for in season prediction with daily updated weather information.
These forty experiments took approximately seven CPU hours.

Figure 16 compares the performances of temporal prediction
of the GEMmodel and nearest-year approach, in which predicted
and observed yields for all 78,169 county-year combinations are
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FIGURE 16 | Performances of temporal prediction of the GEM model (left) and nearest-year approach (right). Predicted vs. observed corn yield for all 78,169

county-year combinations are plotted against the 45 degree line, with the sizes of the dots approximately proportional to the areas planted. Histograms of the two

sets of yield are also shown.

FIGURE 17 | RMSEs of training, test, and nearest-year models. Total planted areas were shown to illustrate the weight for each year.

plotted against the 45 degree line. The RMSEs for these two
models were 22.25 and 40.66 bu/ac, respectively. The weighted
R2 values for these two models were 0.79 and 0.30 bu/ac,
respectively. Figure 17 compares the RMSEs for training (using

full data), test (leaving 1 year out at a time) using the GEMmodel,
and test using the nearest-year approach from 1980 to 2019.
This figure shows that the GEM model clearly outperformed
the nearest-year approach. Moreover, the small gap between
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FIGURE 18 | Performances of spatial prediction of the GEM model (left) and nearest-county approach (right). Predicted vs. observed corn yield for all 78,169

county-year combinations are plotted against the 45 degree line, with the sizes of the dots approximately proportional to the areas planted. Histograms of the two

sets of yield are also shown.

FIGURE 19 | RMSEs of training, test, and nearest-county models. Total planted areas were shown to illustrate the weight for each state.

training and testing errors also indicates very little over-fitting
in the model, thanks to the integration of domain knowledge
in the design of the model as well as the large data set that

allows the model to extract temporally and spatially transferable
information. These results suggested that the proposed GEM
model can be used to produce crop yield predictions of a known
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FIGURE 20 | Predicted and observed average yield in 2019 with daily updates. Prediction model was trained using data from 1980 to 2018. There are 39 solid

curves, representing 39 predictions using historical weather scenarios from 1980 to 2018, each giving a daily updated prediction using weather data from a historical

year to impute the unobserved weather variables in 2019. The dashed flat line is the observed average yield over 1,256 counties with yield data for 2019.

county (with training data) for a new year based on its soil,
weather, and management variables.

4.2.2. Spatial Prediction
A set of 2,649 experiments were conducted, for one county at
a time, to test how accurately the GEM model can be used to
predict the yield of an unseen county for which historical yield
were held out of the training data. Complete weather data for all
years were provided to the prediction model. These experiments
took approximately 18 CPU days. Figure 18 compares the
performances of spatial prediction of the GEM model and
nearest-neighbor approach, in which predicted and observed
yields for all 78,169 county-year combinations are plotted against
the 45 degree line. The RMSEs for these two models were 19.97
and 35.67 bu/ac, respectively. The weighted R2 values for these
two models were 0.83 and 0.46 bu/ac, respectively. Figure 19
compares the RMSEs for training (using full data), test (leaving
one county out at a time) using the GEM model, and test using
the nearest-county approach for 41 states. The GEM model
demonstrated superior performance over the nearest-county
approach and very little overfitting. Therefore, the GEM model
can be used to produce crop yield predictions for a new county
based on its soil, weather, and management variables.

4.2.3. In Season Prediction With Daily Updates
Most existing methods for in season yield prediction use remote
sensing data (Teal et al., 2006; Jagmandeep et al., 2020). The
proposed GEMmodel can be used to provide daily updated yield
predictions using daily updated weather data. We demonstrated
this approach for the test year 2019 using a GEM model trained
with data from 1980 to 2018. For each day in 2019, we made a
yield prediction by combining the observed weather data (from
January 1st to that day) in 2019 with unobserved weather data

(from the next day to December 31st) from a historical year.
As such, 39 different predictions were made using 39 historical
weather scenarios from 1980 to 2018. These predictions differ
widely on day 1 and then gradually converge as more actual
weather information in 2019 has been observed. These results are
shown in Figure 20. Similar daily updated crop yield predictions
can be produced using the proposed GEM model for any known
county with specific soil and management conditions as long as
daily weather variables are available.

5. CONCLUSIONS

Crop yield is a complex trait jointly determined by numerous
genotype, environment, and management variables and their
interactions. Being able to accurately predict crop yield under
changing environmental conditions in a wide range of geographic
locations is increasingly important to agriculture stakeholders.
It also poses a formidable academic challenge, which can only
be overcome by integrating insights from crop science with data
analytical methodology.

In our attempt to explain the temporal and spatial variability
of maize yield in the U.S., we collected a large data set and
designed the GEM model to analyze the data. The data covers 40
years of yield, weather, soil, and management information from
41 states. The GEM model was specifically designed for this data
set to extract insights that are explainable and transferable both
spatially and temporally.

Computational results suggest that the GEM model is a
reasonable attempt to combine the strengths of data driven
models in prediction accuracy and the advantage of knowledge
driven models in explainability. Compared with data driven
models in the literature, the GEM model achieved a prediction
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accuracy on par with state-of-the-art machine learning models,
thus the advantage of the GEM model is the explainable
insights. For example, predicted yield is dissected into genetics,
environment, and management components. Compared with
knowledge driven models in the literature, the GEM model
has a more flexible modeling structure that allows unknown
parameters to be efficiently and optimally calibrated using
advanced computational techniques, extractingmore data-driven
information and less human biases.

The GEM model has several limitations and caveats. First,
the model was specifically designed for the current data
set and not directly applicable to other data sets without
necessary modifications, although similar modeling and solution
techniques will still be applicable. Second, several assumptions
listed in section 3.1 are the backbone of the model, which allow
the model to be constructed and solved efficiently but may also
limit the effectiveness of the model to a certain extent. Third,
several important variables (such as seed genotype, irrigation,
fertilization, tillage, and disease/weed control) were not included
in themodel due to lack of public data sources at the desired scale.

Several followup research directions deserve further
investigation. Similar modeling and solution techniques
can be applied to other crops, other regions, other time periods,
and other data sets. More crop growth stages can be considered
to incorporate more crop physiological insights and to give the
GEM model additional features. Further effort should also be

made to train the model to learn from low frequency but high
impact extreme weather scenarios.
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