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Rice disease has serious negative effects on crop yield, and the correct diagnosis of

rice diseases is the key to avoid these effects. However, the existing disease diagnosis

methods for rice are neither accurate nor efficient, and special equipment is often

required. In this study, an automatic diagnosis method was developed and implemented

in a smartphone app. The method was developed using deep learning based on a

large dataset that contained 33,026 images of six types of rice diseases: leaf blast,

false smut, neck blast, sheath blight, bacterial stripe disease, and brown spot. The core

of the method was the Ensemble Model in which submodels were integrated. Finally,

the Ensemble Model was validated using a separate set of images. Results showed

that the three best submodels were DenseNet-121, SE-ResNet-50, and ResNeSt-50,

in terms of several attributes, such as, learning rate, precision, recall, and disease

recognition accuracy. Therefore, these three submodels were selected and integrated

in the Ensemble Model. The Ensemble Model minimized confusion among the different

types of disease, reducing misdiagnosis of the disease. Using the Ensemble Model to

diagnose six types of rice diseases, an overall accuracy of 91% was achieved, which

is considered to be reasonably good, considering the appearance similarities in some

types of rice disease. The smartphone app allowed the client to use the Ensemble Model

on the web server through a network, which was convenient and efficient for the field

diagnosis of rice leaf blast, false smut, neck blast, sheath blight, bacterial stripe disease,

and brown spot.

Keywords: convolutional neural network, rice disease, ensemble learning, diagnosis, deep learning

INTRODUCTION

Rice is an important crop in agriculture. However, crop diseases can significantly reduce its yield
and quality, which is a great threat to food supplies around the world. Thus, disease control is
critical for rice production. The key for successful disease control is a correct and fast diagnosis of
diseases, so that pesticide control measures can be applied timely. Currently, the most widely used
method to diagnose rice crop diseases is manual judgment based on the appearance of diseases
(Sethy et al., 2020). There are not enough people across the region with skills to perform such tasks
in a timely manner. Therefore, a more efficient and convenient method for disease diagnosis of rice
is required.

Over the past decades, researchers have used computer vision technology in agriculture for
estimating crop yields (Gong et al., 2013; Deng et al., 2020), detecting crop nutritional deficiencies
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(Xu et al., 2011; Baresel et al., 2017; Tao et al., 2020), estimating
geometric sizes of crop (Liu et al., 2019), and recognizing weeds
(Jiang et al., 2020). Several different approaches of computer
vision have also been used for the diagnosis of crop diseases,
such as image processing, pattern recognition, support vector
machine, and hyperspectral detection (Ngugi et al., 2020). Multi-
spectral remote sensing images of tomato fields were used for
cluster analysis to differentiate healthy tomatoes from diseased
ones (Zhang et al., 2005). The shape and texture features of
rice bacterial leaf blight, sheath blight, and blast were extracted
using a support vector machine. A genetic algorithm and a
support vector machine were used to detect the diseased leaves
of different crops (Singh and Misra, 2017). Islam et al. (2018)
detected the RGB value of an affected portion, and then used
Naive Bayes to classify rice brown spot, bacterial blight, and blast.
Infrared thermal imaging technology that provides temperature
information of crop has also been used to detect tomato mosaic
disease and wheat leaf rust (Zhu et al., 2018). Although some of
these existing methods could achieve reasonably high accuracies
for crop disease diagnosis, most of them rely on manual
extraction of disease features. As a result, the expression ability
is limited, and it is difficult to generalize when results are applied.
Also, some methods need special equipment that is not always
readily available to users. All these drawbacks make it difficult to
apply these methods for crop disease diagnosis.

Deep learning technology can be implemented in crop disease
diagnosis methods to overcome the drawbacks. In recent years,
deep learning has been widely used in image classification, object
detection, and content recommendation. In fact, there have
been researchers who used deep learning to detect diseases of
various crops. Lu et al. (2017a) proposed an in-field automatic
disease diagnosis system, which could achieve identification and
localization for wheat diseases. Ozguven and Adem (2019) first
applied a convolutional neural network (CNN), Faster R-CNN,
to images of sugar beet leaves to detect spot disease. Karlekar
and Seal (2020) proposed SoyNet that was applied to soybean
leaf images for disease diagnosis. Deep learning also plays an
important role in disease diagnosis of many other crops, such
as tomato (Rangarajan et al., 2018; Agarwal et al., 2020), cassava
(Sambasivam and Opiyo, 2020), tulip (Polder et al., 2019), and
millet (Coulibaly et al., 2019). Deep learning has also been applied
for detecting rice crop diseases. For example, Kamal et al. (2019)
combined a depthwise separable convolution architecture with
Reduced MobileNet. In terms of recognition accuracy, there
have been various claims. Chen et al. (2020) used Enhanced
VGGNet with Inception Module through migration learning,
which had an accuracy of 92% in the classification of rice
diseases. Rahman et al. (2020) proposed a two-stage small CNN
architecture, which achieved 93.3% accuracy with smaller model
sizes. Some efforts have been made to improve the accuracy.
For instance, Picon et al. (2019) used a dataset of five crops, 17
diseases, and 121,955 images, then proposed three different CNN
architectures that incorporate contextual non-image meta-data.
Arnal Barbedo (2019) proposed a method of image classification
based on individual lesions and spots, testing 14 plants and 79
diseases, which improved the accuracy compared with using
original images.

Relying on a single predictive model may cause machine
learning algorithm to overfit (Ali et al., 2014; Feng et al., 2020).
To solve this problem, ensemble learning with a set of algorithms
to combine all possible predictions was used (Dietterich, 2000).
With the development of computer technology, ensemble
learning was used for prediction in disease diagnosis (Albert,
2020), soybean yield (Yoosefzadeh-Najafabadi et al., 2021),
protein binding hot spots (Hu et al., 2017), and wheat grain
yield (Fei et al., 2021). Since the above studies have proven the
feasibility of ensemble learning, ensemble technology would be
used in this research to improve the accuracy of disease diagnosis.

In summary, deep learning is a promising technology for
disease diagnosis of various crops with which high accuracy can
be achieved. Existing research on the use of deep learning for
rice diseases dealt with a limited number of rice diseases. Various
types of rice diseases have been observed in rice fields, such as
rice leaf blast, false smut, neck blast, sheath blight, bacterial stripe
disease, and brown spot. The aim of this study was to increase the
accuracy, efficiency, affordability, and convenience of rice disease
diagnosis. The specific objectives of this study were to (1) develop
a deep learning network model for diagnosing six different types
of rice diseases, (2) evaluate the performance of the model, and
(3) implement the diagnosis method in a cloud-based mobile app
and test it in an application.

MATERIALS AND METHODS

Model Development and Testing
Data Acquisition
Deep learning requires a large number of training images to
achieve good results (Barbedo, 2018). Thus, a total of 33,026
images of rice diseases were collected over a 2-year period for
the development of a disease diagnosis model. Among these
images, 9,354 were for rice leaf blast, 4,876 were for rice false
smut, 3,894 were for rice neck blast, 6,417 were for rice sheath
blight, 6,727 were for rice bacterial stripe, and 1,758 were for
rice brown spot diseases. The characteristics of rice leaf blast
are large spindle-shaped lesions with grayish centers and brown
edges. For false smut disease, the pathogen is fungal that infects
rice flowers and turns them into rice false smut balls, which is
the only visible feature of rice false smut. For rice neck blast
disease, node and neck lesions often occur at the same time and
have a similar characteristic, a blackish to a grayish brown color.
For rice sheath blight disease, lesions on the leaves are usually
irregular in shape, and after a period of infection, the center is
usually grayish white with brown edges. For rice bacterial stripe
disease, on young lesions, the bacteria ooze dew and dry out the
plant, leaving yellow beads that eventually develop orange-yellow
stripes on the leaves. For rice brown spot disease, the spots are
initially small round, dark brown to purplish brown, and fully
developed spots are round to elliptic with light brown to gray
centers and reddish-brown edges. Example images of each disease
are in the Supplementary Material. The images were from four
locations in China: (1) Baiyun Base of The Guangdong Academy
of Agricultural Sciences, Guangzhou, Guangdong, (2) Laibin,
Guangxi, (3) Binyang, Guangxi, and (4) the Chinese Academy of
Sciences, Hefei, Anhui. These images were taken using mobile
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FIGURE 1 | Steps of the image preprocessing for expanding dataset and reducing the overfitting of models.

phones with high resolution (more than 1 megapixel), so that
the characteristics of rice diseases could be clearly captured. To
prepare for model development, the images were split into a
training set, a validation set, and a test set with a ratio of 7:2:1.
This ratio was randomly applied to all the six disease categories;
thus, the corresponding image numbers of these sets were 23,096;
6,684; and 3,246.

Image Preprocessing
Image preprocessing and data enhancement are performed to
reduce the overfitting of models, as illustrated in Figure 1. Before
the model reads the image, the short side of the image was scaled
to 256 pixels, and the long side was scaled proportionally to
reduce the computational pressure of the model. Then, random
affine transformation was applied to the image, which could
randomly translate, rotate, scale, deform, and cut the image. At
the same time, Gaussian blur and image flipping were applied
randomly. Finally, the resized image was randomly cropped to
a 224× 224 pixels square area as the actual training image. These
processes favored expanding the data set and reducing the over-
fitting of the model on the original dataset without modifying the
characteristics of rice diseases.

Next, the mean and standard deviation of the ImageNet
dataset were applied for normalization to make image color
distribution as similar as possible. As the number of images
of different types of diseases was not equal, an over-sampling
operation was adopted for a small number of rice brown spot
images in the preprocessing, with a ratio of three times. This
process was repeated for each training epoch; therefore, the
number of images that each model read was different in each
training epoch, and the number of image samples in the dataset
was increased in this way.

Convolutional Neural Network (CNN) Models
The structure of the convolutional neural network has a crucial
influence on the performance of the final model. It was necessary
to compare the performance of different networks in the
diagnosis of rice diseases. Five network structures were selected

and tested, and they were: ResNet, DenseNet, SENet, ResNeXt,
and ResNeSt. These networks are described below.

ResNet (He et al., 2016) is a widely used network model,
which uses residual blocks to enhance the depth of the CNN.
The structure of the residual block is shown in Figure 2A.
By directly connecting the input and the output, ResNet can
reduce the problems of gradient disappearance and gradient
explosion, thus deepening the number of network layers and
achieving better effects. DenseNet (Huang et al., 2017) uses a
dense connection, which connects each layer to every other
layer (Figure 2B). Since DenseNet allows features to be reused,
this can generate many features with a small number of
convolution kernels. As a result, it can reduce gradient loss
and enhance the propagation of features, and the number of
parameters is greatly reduced. SE-ResNet (Hu et al., 2020)
presents the “Squeeze-and-Excitation” block, which can establish
the relationship between channels and adaptively recalibrate the
responses of the channel-wise feature. The SE block can be
added in different networks. Figure 2C shows the SE block with
ResNet. ResNeXt (Xie et al., 2017) is an improved version of
ResNet that was designed to have a multi-branch architecture
and grouped convolutions to make channels wider (Figure 2D).
ResNeXt can improve accuracy without increasing parameter
complexity while reducing the number of super parameters.
ResNeSt (Zhang et al., 2020) proposes Split-Attention blocks
based on SENet, SKNet, and ResNeXt, which makes attentions
grouped (Figure 2E). This structure combines channel attention
and feature map attention to improve performance without
increasing the number of arguments.

Based on the five network structures above, five network
models were selected for subsequent training, and they
were ResNet-50, DenseNet-121, SE-ResNet-50, ResNeXt-50,
and ResNeSt-50. The MACs (multiply–accumulate operation
number) and Params of the five network models above
are shown in Table 1. MACs is an evaluation index of
the computational force of the model, and Params is used
to count the number of model parameters. Except for
DenseNet-121, the number of calculations and parameters
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FIGURE 2 | Structures of different convolutional neural network (CNN) models tested. (A) Residual Block, (B) Dense Block, (C) SE Block with ResNet, (D) ResNeXt,

(E) ResNeSt Block.

of the other models is very close. This means that their
speed and model size are close to each other. Despite
the small number of Params and MACs in DenseNet-121,
due to the reuse of features, the occupation of training

resources is still close to the other models, but it is more
economical in model inference. Therefore, comparing these
network models could eliminate the negative effect of hardware
resource utilization.
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TABLE 1 | Parameters of the models.

Model MACs (G) Params (M)

ResNet-50 4.109 23.520

DenseNet-121 2.865 6.960

SE-ResNet-50 4.118 26.035

ResNeXt-50 4.257 22.992

ResNeSt-50 5.398 25.447

Evaluation of the Models
The performance of the five network models was compared,
so that the best models could be selected. For each network
model, the results of disease prediction were given in four
categories, and they were true positive (TP): correctly predicted
the type of disease; false positive (FP): other types of diseases
were predicted as this disease; true negative (TN): correctly
predicted the disease not being other types of disease; and
false negative (FN): the disease was predicted to be another
type of disease. These outputs were used to determine the
performance indicators: accuracy, precision, recall rate, F1 score,
and Matthews correlation coefficient (MCC), as shown in
Equations (1–5). The accuracy and MCC were evaluated for all
the types of diseases, and the other indicators were evaluated for
a single type of disease:

A =

6∑

i=1
TPi

N
(1)

Pi =
TPi

TPi + FPi
(2)

Ri =
TPi

TPi + FNi
(3)

F1i =
2 · Pi · Ri
Pi + Ri

(4)

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(5)

where N is the number of all test images, A is accuracy, P is
precision, R is recall rate, F1 is a score, i is the ith type of
disease, and TPi, FPi, and FNi are the numbers of true positives,
false positives, and false negatives, respectively, in the ith type of
disease. MCC is essentially the correlation coefficient between the
observed and predicted binary classifications; it returns a value
between−1 and+1. The coefficient+1means perfect prediction,
0 means no better than random prediction, and −1 means
complete discrepancy between prediction and observation.

Loss value is another indicator to evaluate the models.
Different from the other indicators, loss is an evaluation of the
fitting degree of the training set instead of test set. Although
it cannot directly represent the performance of the model,
the fitting condition of the model can be estimated through
the changes in loss during the training process Here, we selected
the cross entropy loss function (De Boer et al., 2005).

Fine-Tuning of the Models
The models were fine-tuned using the transfer learning method
to reduce training time. Transfer learning means applying the
knowledge learned from one dataset to another, which has been
proven to be effective for plant disease recognition (Kaya et al.,
2019; Chen et al., 2020). In transfer learning, models fully trained
on the ImageNet dataset were trained again on the rice disease
dataset. Since 1,000 classes of ImageNet do not correspond to
the number of disease categories identified for rice crop in this
study, the last layers of all the models were modified to output
six classes. Therefore, before the training for rice diseases, the
parameters of the models were set as the pre-trained models
except for the last layers. The weights of the last layers were
initialized with the method used by He et al. (2015), and biases
of the last layers were modified by uniform distribution.

After the pre-training, the models trained using the rice
disease dataset were able to extract basic features such as edges
and contours of leaves and spots; thus, themodels could converge
faster. The training policies of the five models were the same,
where the batch size was 64, the data loader process number
was eight, the max epoch was 200, the optimizer was stochastic
gradient decent (SGD) with 0.9 momentum, and the initial
learning rate was 0.001. To make the model converge quickly
in the early stage and continue to improve in the later stage, a
variable learning rate was applied. In the first five epochs, warm
up was used, i.e., the learning rate increased linearly from 0 to the
initial learning rate, which enabled the model to stabilize rapidly
on a large data set. Subsequently, the learning rate decreased
to 0 after 30 epochs according to the cosine function, and then
returned to the initial learning rate, which decreased repeatedly
until the max epoch was reached.

Ensemble Learning
Ensemble learning combines multiple submodels into a single
model so if a submodel fails, the others can correct the errors
(Caruana et al., 2004). In this study, ensemble learning was
achieved by combining the three best network submodels, which
were selected out of the five submodels after comparisons of the
performance of the five submodels. The type of the ensemble
algorithm implemented here was voting. For the output of each
selected network submodel, the Softmax function (Equation 6)
was used to normalize first, and then the output scores of all three
submodels were averaged to obtain the final scores of all classes,
as illustrated in Figure 3. The class that had the highest score was
the diagnosed disease for the input image.

σ (z)i =
ezi

∑K
j=1 e

zj
(6)
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FIGURE 3 | Architecture of the Ensemble Model for rice disease diagnosis.

where z is a vector of K real numbers, zi and zj are the ith and
jth number of z respectively, and σ (z) is the output vector whose
value is between 0 and 1.

Model Implementation and Application
The Ensemble Model was implemented in an app consisting of
software architecture and user interface. The software system
had two parts: the client and the server. The client runs on the
smartphone, while the server runs on a server computer. As
the Ensemble Model was trained and run under PyTorch 1.5.0
with CUDA 9.2 that is based on the Python language (Paszke
et al., 2019), the Python language was chosen for the server-
side development. Django, a Python-based free and open-source
web framework, was used to build a stable web server. The
client transmits a rice disease image to the web server. When
the server receives a POST request from the client, the server
invokes the Ensemble Model to detect the image and returns
results to the client in JSON format (Figure 4). The results
include status information, disease category, and probability
score. After the client receives the JSON data, it parses and
displays the data on the screen for the client to view. This
structure of front end and back-end separation can help with
subsequent functional expansion and support for more platforms
in future development.

The user interface for the mobile client was written using
Flutter. Flutter is a cross-platform open-source software kit
developed by Google, which can be used to develop applications
for Android, iOS, Windows, Mac, Linux, and Google Fuchsia.
Therefore, the app developed in this study can be used in the
Android platform and also in other operating systems after
some compilations.

To test the generalization of the Ensemble Model, the app was
utilized to recognize rice diseases using a different test set of rice
disease images sourced from Google and provided by Shenzhen
SenseAgro Technology Co. Ltd. (Shenzhen, Guangdong, China).
This set of images includes 50 images for each of the six types of
disease, totaling 300 images. With these images, the performance
of the EnsembleModel in practical application was evaluated. For
the purpose of distinction, this image set was called independent
test set, while the images from the original data set was called split
test set.

RESULTS

Model Training and Testing Results
Performance Comparisons of the Five Network

Submodels
After fine-tuning and training, the loss value was low for all
the five submodels, and the minimum loss values of all the
submodels were below 0.002 (Figure 5A). The learning rate was
the same for all the submodels, and it was in the range of 0–0.001
(Figure 5B). The disease diagnosis accuracy on the training set
of rice disease images was high for all the submodels, meaning all
the submodels had fit the training set well, but that SE-ResNet-50,
DenseNet-121, and ResNeSt-50 had better accuracies (over 99%)
(Figure 5C). When the submodels were applied on the validation
set and test set of images, the disease diagnosis accuracy was
also high for all the submodels, particularly for the SE-ResNet-
50, DenseNet-121, and ResNeSt-50 submodels, which achieved
accuracies of over 99% (Figure 5D).

Confusion matrix is a specific table that makes it easy to see if
themodel is mislabeling one class as another. The performance of
the five submodels can be visualized using the confusion matrix.
Figure 6 shows the confusion matrixes in the split test set of
images for the six types of rice diseases. The rows of confusion
matrixes are the actual types of disease, while the columns are
the predicted type of disease. The diagonal values represent
the correct recognition from the model in the categories of
true positives (TP) and true negative (TN). The off-diagonal
values represent the incorrect recognition in the categories of
false positives (FP) and false negative (FN), and smaller values
means fewer misrecognitions occurred. The diagonal values were
large, and the other values were small, which showed that all
the submodels were quite effective in diagnosing all the various
types of rice diseases. The depth of the color indicates the
proportion of the number at that position to the total of the row,
therefore the color on the diagonal represents the recall rate of
the disease. According to the confusion matrix, the DenseNet-
121, SE-ResNet-50, and ResNeSt-50 submodels overperformed
the other two submodels in the confusion of different diseases,
especially for the leaf blast, false smut, and sheath blight
rice diseases.

To further verify the effect of the confusion matrix results,
the MCC of the diseases corresponding to each model
were also calculated, as shown in Table 2. According to the
MCC values, which are shown in Table 2, the DenseNet-121,
SE-ResNet-50, and ResNeSt-50 submodels overperformed the
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FIGURE 4 | Software architecture of the system.

FIGURE 5 | Comparisons in performance of the five different submodels. (A) Loss value, (B) learning rate, (C) validation accuracy, and (D) training accuracy.

other two submodels in the confusion of different diseases,
especially for the leaf blast, false smut, and sheath blight
rice diseases.

The precision, recall, and F1 score of each submodel on
recognition of each disease were determined using Equations (2–
4). Figure 7 below visually compares the boxplots of precision,
recall and F1 score values for each of the five models,
namely, ResNet-50, DenseNet-121, SE-ResNet-50, ResNeXt-50,
and ResNeSt-50. The boxplots suggest that the DenseNet-121
model is significantly better than the other four submodels,
whether it is compared with precision, recall, or F1 score. Except
for the DenseNet-121 model, SE-ResNet-50 and ResNeSt-50 are
better than ResNet-50 and ResNeXt-50 in terms of precision or
recall and F1 score. In summary, DenseNet-121, ResNeSt-50,

and SE-ResNet-50 had better overall performance among the five
submodels tested.

Visualization of the Three Best Submodels
Based on the discussion above, the three best submodels
were DenseNet-121, ResNeSt-50, and SE-ResNet-50. Their
performance was further demonstrated by visualization
methods: Grad CAM (Selvaraju et al., 2016), Grad CAM++
(Chattopadhyay et al., 2017), and Guided Backpropagation
(Springenberg et al., 2015). The CAM is class activation map,
which can show the areas most relevant to a particular category
and map them to the original image (Zhou et al., 2015). The
Grad CAM is calculated by the weighted sum of the feature map
and the weight of the corresponding class, which can generate

Frontiers in Plant Science | www.frontiersin.org 7 August 2021 | Volume 12 | Article 701038

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Deng et al. Automatic Diagnosis of Rice Diseases

FIGURE 6 | Confusion matrixes of the five different submodels; images used were from the split test set. (A) ResNet-50, (B) DenseNet-121, (C) SE-ResNet-50,

(D) ResNeXt-50, and (E) ResNeSt-50.
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TABLE 2 | MCC values of the five different submodels.

Disease name

MCC ResNet-50 DenseNet-121 SE-ResNet-50 ResNeXt-50 ResNeSt-50

Rice leaf blast 0.978 0.995 0.994 0.978 0.995

Rice false blast 0.986 0.996 0.995 0.985 0.996

Rice neck blast 0.977 0.997 0.993 0.976 0.994

Rice sheath blight 0.979 0.996 0.997 0.982 0.990

Rice bacterial stripe 0.989 0.993 0.996 0.983 0.992

Rice brown spot 0.949 0.994 0.988 0.950 0.991

FIGURE 7 | Boxplots of precision, recall, and F1 score of the different submodels.

CAM without changing the structure of model. Grad CAM++
is an improved version of Grad CAM, which introduces
the weighting of the output gradient for the pixel level at a
particular location, and it has better effects than Grad CAM.
Guided Backpropagation uses backpropagation to calculate the
output-to-input gradient, and it restricts the backpropagation
of gradients less than 0 to find the points of the picture that
maximizes the activation of a feature. In the results, these points
are usually represented as the contours of features. Also, to
make the Guided Backpropagation images clearer, high-pass
filters using the Sobel operator were taken to post-process the
images. The maps of these three visualization methods were
generated for each of the three selected submodels on each of
the six types of diseases (Figure 8). In the Grad CAM and Grad

CAM++maps, the red area represented activation areas, and the

model paid more attention to this area in the diagnosing process,

whereas the blue area had no positive effect on the result. In

the Guided Backpropagation map, the contours, in which the

model was interested, were highlighted. It is obvious to find the

basis of diagnosis using this map. When comparing the maps

among the three submodels, the general shapes and locations of

active areas (red areas) in the Grad CAM and Grad CAM++
maps are similar. However, the boundaries of the active areas
from DenseNet-121 (Figure 8A) are not as defined as those from

the two other submodels (Figures 8B,C). Also, it seemed that the
locations of the active areas from SE-ResNet-50 better reflect the
disease locations shown in the original images (Figure 8C). In
the Guided Backpropagationmap, contours of interesting objects
from DenseNet-121 (Figure 8A) are not as obvious as those
from ResNeSt-50 (Figure 8B), and those from SE-ResNet-50
(Figure 8C) are intermediate in this regard. Overall, all the three
selected submodels have a good disease identification ability, as
visually observed, and they would complement each other in the
Ensemble Model.

Performance of the Ensemble Model
To show the performance of the Ensemble Model, which is
a combination of DenseNet-121, ResNeSt-50, and SE-ResNet-
50, the confusion matrix was calculated. The diagonals of the
confusion matrix indicated high values of TP (Figure 9A),
meaning the Ensemble Model had an accuracy of over 99%. The
boxplots of the performance indicators of the Ensemble Model:
precision, recall, and F1 score, are shown in Figure 9B. The
boxplots show that the Ensemble Model did not have outliers
in precision, recall, and F1, indicating that the performance of
the model in identifying diseases is very stable. These results
demonstrate that the Ensemble Model had a good performance
in recognizing all the six types of rice diseases.
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FIGURE 8 | Visualization of rice disease diagnosis results from the three best submodels: (A) DenseNet-121, (B) ResNeSt-50, and (C) SE-ResNet-50.

Frontiers in Plant Science | www.frontiersin.org 10 August 2021 | Volume 12 | Article 701038

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Deng et al. Automatic Diagnosis of Rice Diseases

FIGURE 9 | Test results of the Ensemble Model for different types of rice

disease with the split test set of images. (A) The confusion matrix and (B) the

boxplots of the precision, recall, and F1 score for the Ensemble model in

diagnosing six rice diseases.

Application of the Ensemble Model
In the rice disease diagnosis app, the user interface is composed of
several parts, as shown in Figure 10. The main interface was for
taking photos or uploading existing pictures. The photo interface
was used for taking disease images and uploading them. The
picture-selecting interface was used to select the existing disease
pictures in the mobile phone for uploading. Considering the time
required for network uploading, a wait interface was provided
to improve user experience. After the client received the data
returned by the server, the result interface displayed the results
of the recognition of the disease image by the model.

To test the performance of the app in a practical application,
a test set of images from different sources (Google images and
SenseAgro) was used to verify the generalization of the Ensemble
Model and the performance of the app. The boxplots of precision,
recall, and F1 scores for the Ensemble Model are shown in
Figure 11. The boxplots illustrate that the Ensemble Model had
a small degree of dispersion in precision, recall, and F1 score,
indicating that the performance of the model in identifying
diseases is relatively stable. The F1 score varied from 0.83 to 0.97
when the EnsembleModel was used to diagnose different types of
disease. As for the overall performance, the results showed that
the accuracy for all the diseases was 91%. As the F1 scores are

over 0.8 and the accuracy is over 90% for all the diseases, the rice
disease diagnosis app is considered to be good.

DISCUSSION

Rice leaf blast, rice false smut, rice neck blast, rice sheath blight,
rice bacterial stripe, and rice brown spot are common diseases
during the growth of rice. The identification of these diseases is of
practical importance and can provide ideas for the identification
of other rice diseases in the future. In this study, the dataset was
split into a training set, a validation set, and a test set using a ratio
of 7:2:1. From the training results, the ratio made full use of the
data obtained from the collection and enabled the model to learn
the important features of each disease. Considering that the test
set obtained from splitting this dataset has a large similarity with
the training set, various disease images from different sources
were collected to form an independent test set. The test results of
the independent test set demonstrate that the network designed
in this study is generalizable and can be applied in practice.
Therefore, the division of the data set and the selection of the test
set are appropriate for this study.

Comparison of the Submodels
The convergence speeds of DenseNet-121, ResNeSt-50, and SE-
ResNet-50 were high (Figure 5), and they reached a stable
level when about 30 epochs were iterated, while ResNet-50 and
ResNeXt-50 were relatively stable after 100 epochs. Throughout
all the training processes, DenseNet-121, ResNeSt-50, and SE-
ResNet-50 were more accurate than ResNet-50 and ResNeXt-50.
The accuracy curves and the loss curves of the three submodels
were also smoother. This indicates that DenseNet-121, ResNeSt-
50, and SE-ResNet-50 have faster convergence speeds, higher
accuracy rates, and more stable convergence states.

The confusion matrixes show that most diagnosis results were
correct, and that some diseases were more easily misrecognized
than the others (Figure 6). There was a confusion between rice
leaf blast and brown spot diseases in some of the submodels,
because the early characteristics of rice leaf blast and rice brown
spot were very similar. Both diseases consist of small brown
spots, which are difficult to distinguish by naked eyes. Rice false
smut and rice neck blast are also easily confused because they
both appear at the ear of rice, which could sometimes lead to
misjudgment by the submodels.

Figure 7 provides a more intuitive view of the performance
of the different submodels on different diseases. DenseNet-121,
ResNeSt-50, and SE-ResNet-50 perform better than the other
two submodels; the gap is most pronounced in rice brown
spot. Each of the three submodels have internal advantages
for different diseases. DenseNet-121 performed better with
rice neck blast and rice brown spot; SE-ResNet-50 performed
better with rice bacterial stripe; and ResNeSt-50 was more
balanced with different diseases. Therefore, considering the
better performance of DenseNet-121, ResNeSt-50, and SE-
ResNet-50, these three submodels were selected as the submodels
of the Ensemble Model.
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FIGURE 10 | Components of the user interface in the rice disease diagnosis app.

FIGURE 11 | Boxplots of precision, recall, and F1 score for the Ensemble Model, tested with the independent test set of images.

Visualization Analysis of the Models
The learning conditions of different networks to different
diseases can be found (Figure 8). For rice leaf blast disease,
characterized by large spindle-shaped lesions with grayish centers
and brown edges, all three submodels are more sensitive to
the whole spot area, so all of them could accurately learn the
characteristics of this disease. In detail, the areas on Grad CAM
and Grad CAM++ of ResNeSt-50 were the most precise, and
in the Guided Backpropagation maps, the spots were the most
obvious. Therefore, the feature extraction of ResNeSt-50 for rice
blast was the best.

For rice false smut disease, the pathogen is fungal that infects
rice flowers and turns them into rice false smut balls, which are
the only visible feature of rice false smut. The heatmap of the
three submodels is very close, the part that includes the rice
false smut ball is focused, while the surrounding normal rice is
ignored, which means that the learned characteristics of rice false
smut are the same.

For rice neck blast disease, node and neck lesions often occur
at the same time and have a similar characteristic, a blackish to
a grayish brown color. DenseNet-121 and SE-ResNet-50 mainly
focus on the neck and node of rice, while ResNeSt-50 mainly

focus on the node of rice, which means that the feature extraction
ability of ResNeSt-50’ in rice neck blast is poor compared with the
other two submodels, as the latter submodel did not fully learn all
the characteristics in the node and neck.

For rice sheath blight disease, lesions on the leaves are usually
irregular in shape, and after a period of infection, the center is
usually grayish-white, and the edges are usually brown. The Grad
Cam heatmaps of the three submodels are also similar, and all the
lesions are of concern.

For rice bacterial stripe disease, on young lesions, the
bacteria ooze dew and dry the plant out, leaving yellow beads
that eventually develop orange-yellow stripes on the leaves.
DenseNet-121 and SE-ResNet-50 focus on most of the spots,
while ResNeSt-50 focuses only on the upper spots, which means
ResNeSt-50 is weaker than the other two submodels in feature
extraction of rice bacterial stripe disease.

For rice brown spot disease, the spots are initially small round,
dark brown to purplish brown, and fully developed spots are
round to elliptic with light brown to gray centers and reddish-
brown edges. DenseNet-121 performs poorly in feature learning
and is only sensitive to some features, while the other two
submodels contain most of the disease spots.
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It should be noted that these heatmaps can only indicate
which features the model paid more attention to, indicating that
the model learned the features of the spots rather than other
unrelated features. However, this is not exactly consistent with
the final classification score of the model, because different types
of diseases interact with each other. It is not enough to learn
the characteristics of a disease. Learning the characteristics of
the differences between various diseases also affects the final
classification performance. Therefore, although the heatmaps of
some models are not perfect for some diseases, they can still
be well-classified.

Performance of the Ensemble Model
The results of the Ensemble Model tested with the split test set
of images (Figure 9) showed that by combining the scores of
the different models, the confusion between different diseases
was greatly reduced. This explains that the Ensemble Model
combines the advantages of each model to solve the problem
of a single model misjudging some diseases. Meanwhile, the
precision, recall, and F1 scores of the Ensemble Model were also
more stable than those of the single model.

The F1 scores of the Ensemble Model for each disease were
tested using the independent test set of images, and the overall
accuracy of the Ensemble Model in the independent test set was
91% (Figure 11). Compared with the results of the previous test
in the split test set, it can be found that although there was a
reduction in accuracy, it was still high. The best recognition effect
was on the rice sheath blight and rice bacterial stripe diseases;
their indicator scores were close to one, which was close to
the results from the test using the split test set of images. This
means that the Ensemble Model has the best generalization for
these two diseases. The indicators of rice leaf blast, rice false
smut, and rice neck blast were all around 0.9, which was mainly
caused by the confusion between diseases, and the samples
from different sources also had some influence. The F1 score of
brown spot disease was close to 0.8. On one hand, the training
samples of rice brown spot were least in all the diseases, although
data enhancement was performed. On the other hand, rice leaf
blast and rice brown spot have similar characteristics, which
may cause confusion easily. In general, the performance of the
Ensemble Model in the independent test set was satisfactory,
which indicated that the rice disease diagnosis app is reliable to
be applied in the field.

Since the dataset used for training and testing in this study
is different from that in previous studies and the diseases
targeted by the study are different, a direct comparison cannot
be made. However, the Ensemble Model designed in this study
performed better on the split test set than the previous study
on the corresponding dataset (Lu et al., 2017b; Rahman et al.,
2020), which indicates that the Ensemble Model designed in this
study is effective. The results on the independent test set also
demonstrate the good generalization of the Ensemble Model.
Therefore, as compared with previous applications, the proposed
smartphone app can provide higher accuracy, which is the most
important performance indicator of the application. To facilitate
the implementation of the app, easy operation and simplicity are
the key features for farmers to quickly adopt the app. Finally, the

cost is a barrier to commercialization of any technology. The low
cost of the app will attract many users.

CONCLUSION

In this study, a dataset containing 33,026 images of six types
of rice diseases was established. Based on these images, five
submodels, ResNet-50, ResNeXt-50, DenseNet-121, ResNeSt-
50, and SE-ResNet-50 were trained and tested, achieving over
98% accuracy and over 0.95 F1 score. Among them, DenseNet-
121, SE-ResNet-50, and ResNeSt-50 performed well. Visual
analysis confirmed the good learning status of the submodels on
the characteristics of rice diseases. Subsequently, the Ensemble
Model, an integration of these three submodels, produced
accurate judgment of confusable diseases, according to the
confusion matrixes analysis. As a result, the F1 scores reached
more than 0.99 for each of the six types of disease. Being tested
by independently sourced images, the Ensemble Model achieved
91% accuracy, indicating that it has enough generalization ability
to be implemented in a rice disease diagnosis app for field
applications. With a software system that included both servers
and clients, the smartphone app provided high accuracy, easy
operation, simplicity, and low-cost means for the recognition of
rice diseases. The limitation was that the Ensemble Model has
many parameters, which may affect the speed of identification.
Future studies will be carried out on network pruning to reduce
the number of parameters.
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