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Wood is the most abundant biomass produced by land plants and is mainly used for 
timber, pulping, and paper making. Wood (secondary xylem) is derived from vascular 
cambium, and its formation encompasses a series of developmental processes. Extensive 
studies in Arabidopsis and trees demonstrate that the initiation of vascular stem cells and 
the proliferation and differentiation of the cambial derivative cells require a coordination 
of multiple signals, including hormones and peptides. In this mini review, we described 
the recent discoveries on the regulation of the three developmental processes by several 
signals, such as auxin, cytokinins, brassinosteroids, gibberellins, ethylene, TDIF peptide, 
and their cross talk in Arabidopsis and Populus. There exists a similar but more complex 
regulatory network orchestrating vascular cambium development in Populus than that in 
Arabidopsis. We end up with a look at the future research prospects of vascular cambium 
in perennial woody plants, including interfascicular cambium development and vascular 
stem cell regulation.
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INTRODUCTION

Vascular plants, particularly tree species, undergo two distinct phases of growth and development. 
During primary growth, shoot apical meristems (SAMs) and root apical meristems (RAMs) are 
responsible for the aboveground and underground organ growth, respectively. At the peripheral 
region of SAM, procambium cells produce primary vascular bundles (Figure  1; also see Nieminen 
et  al., 2015). After the primary vascular system is established, fascicular cambium located at the 
center of primary vascular bundles undergoes extension into the interfascicular region, forming a 
ring of vascular cambium (Figure  1; Nieminen et  al., 2015). Vascular cambium is a cylindrical 
secondary meristem whose activity gives rise to the secondary growth. Like SAM and RAM, 
vascular cambium contains bifacial cambium stem cells in Arabidopsis (Shi et  al., 2019; Smetana 
et al., 2019). However, stem cell activities of the three types of meristems are preferentially regulated 
by different members of the WUSCHEL-RELATED HOMEOBOX (WOX) and CLAVATA3/EMBRYO 
SURROUNDING REGION-RELATED (CLE) gene families: SAM is associated with WUSCHEL 
(WUS) and CLAVATA3 (CLV3; Mayer et  al., 1998; Schoof et  al., 2000), RAM with WOX5 and 
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CLE40 (Sarkar et  al., 2007; Berckmans et  al., 2020), and vascular 
cambium with WOX4 and CLE41/44 (Hirakawa et  al., 2010; 
Ji  et  al., 2010).

Secondary xylem (wood) and phloem are the inner and 
outer derivative products of the vascular cambium. Xylem is 
mainly comprised with dead cells with thickened cell walls 
rich in cellulose, hemicelluloses, and lignin and responsible 
for providing mechanical support and conducting water and 
minerals for the plant. Phloem transports photoassimilates and 
signaling molecules, including phytohormones and peptides, 
from the source organs to the sink organs. Fusiform initials 
and ray initials are morphologically distinct meristematic cells 
in vascular cambium of woody stems (Mauseth, 2016). The 
fusiform initials (>90% of the vascular cambium) are oriented 
longitudinally relative to the stem and undergo periclinal 
divisions that produce phloem and xylem mother cells (Mizrachi 
and Myburg, 2016; Fischer et  al., 2019). The ray initials are 
isodiametric and produce the radially orientated ray cells that 
serve radial transport and storage.

The activity of the vascular cambium is regulated by 
endogenous developmental programs and environmental cues. 
In recent years, considerable progress in the molecular mechanism 
of the development of vascular cambium has been achieved 
in the model plants Arabidopsis and Populus. It has been shown 

that the establishment and maintenance of vascular cambium 
involve the coordination of multiple regulators, including 
hormones, peptides, and transcription factors (Figure  2; also 
see the reviews by Miyashima et al., 2013; Mizrachi and Myburg, 
2016; Chiang and Greb, 2019). However, our knowledge about 
the development and regulation of vascular cambium, compared 
to SAM and RAM, is limited. This mini review focuses on 
recent progresses in the regulatory networks responsible for 
the vascular cambium identity and activity in poplar.

ESTABLISHMENT OF THE VASCULAR 
CAMBIUM

Because vascular procambial cells are imbedded under layers 
of other tissues in stems, our current understanding of 
procambium initiation and regulation is derived from studies 
in Arabidopsis embryos, RAMs, and leaf venation systems. 
Functional characterization of a serial of Arabidopsis mutants 
shows that vascular cambium initiation requires the cross talk 
regulation of multiple hormones (Figure  2A). Auxin plays a 
central role in regulating the initiation and maintenance of 
procambial stem cells (Ibañes et al., 2009; Weijers and Wagner, 
2016). In pre-procambial strands, MONOPTEROS (MP)/AUXIN 
RESPONSE FACTOR 5 (ARF5) is activated in response to 
auxin and positively regulates the number of vascular initial 
cells through induction of the expression of the auxin efflux 
carrier gene PIN-FORMED1 (PIN1; Wenzel et al., 2007). Periodic 
auxin maxima controlled by polar transport but not overall 
auxin levels is required to determine the radial pattern of 
vascular bundles in postembryonic growth (Ibañes et al., 2009). 
MP/ARF5 positively regulates TARGET OF MONOPTEROS 
5 (TMO5), which forms a dimer complex with LONESOME 
HIGHWAY (LHW) to control the procambium cell divisions 
in roots (De Rybel et al., 2014; Ohashi-Ito et al., 2014). MP/ARF5 
activates ATHB8-targeted PIN1  in response to auxin, forming 
a self-reinforcing mechanism of auxin flow during the formation 
of vein procambium (Donner et  al., 2009). ATHB8, a HD-ZIP 
III transcription factor, is shown to restrict preprocambial cell 
specification to a narrow zone and stabilize preprocambial cell 
fate (Baima et  al., 2001; Donner et  al., 2009). REVOLUTA is 
another member of the Arabidopsis HD-ZIP III gene family, 
and its Populus ortholog, PopREVOLUTA, influences  
vascular cambium initiation in Populus stems (Robischon 
et  al., 2011).

Cytokinin (CK) is another major hormone that regulates 
procambium identity and activity in Arabidopsis (Figure  2A). 
Mutation of three CK receptor genes CYTOKININ RESPONSE 
1 (CRE1), ARABIDOPSIS HISTIDINE KINASE 2 (AHK2), and 
AHK3 results in a severely reduced numbers of periclinal 
divisions in the procambium cells of the primary roots (Inoue 
et  al., 2001). Accordingly, transgenic Arabidopsis plants 
overexpressing CYTOKININ OXIDASES/DEHYDROGENASES 
2 (CKX2), a CK degrading enzyme gene, under the control 
of CRE1 promoter show the cre1ahk2ahk3 phenotype 
(Mähönen  et  al., 2006). Moreover, the establishment of 

FIGURE 1 | A schematic view of vascular tissue organization in shoot, stem, 
and root of vascular plants. Xylem and phloem tissues are initiated from 
procambium in vascular plants. Shoot apical meristems and root apical 
meristems are two primary meristems, and vascular cambium is a cylindrical 
secondary meristem in stems. The xylem is represented in orange, the 
phloem in brown, and the cambium in yellow.
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procambium cell identity requires a mutually inhibitory 
interaction between CK and auxin signaling (Figure  2A). 
Reduced CK signaling changes the subcellular polarity of PIN1, 
PIN3, and PIN7, while auxin is able to activate the expression 
of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER 6 (AHP6), 
an inhibitor of CK signaling (Mähönen et  al., 2006; Bishopp 
et al., 2011). Auxin-induced TMO5/LHW dimer directly activates 
LONELY GUY 4 (LOG4) that encodes for a rate-limiting enzyme 
in CK biosynthesis (De Rybel et  al., 2014). CK-dependent 
procambium cell divisions are controlled by the DOF transcription 
factor DOF2.1 downstream of TMO5/LHW (Smet et al., 2019).

Brassinosteroids (BRs) serve as a key promoting signal for 
procambial division during primary growth (Figure  2A). In 
the stem of Arabidopsis, the number of vascular bundles (VB) 
is obviously increased in gain-of-function BR-signaling mutants, 
such as brassinosteroid insensitive 2 (bin2) and brassinazole-
resistant 1-1D (bzr1-1D), while loss-of-function BR-signaling 
mutant brassinosteroid insensitive 1-116 (bri1-116) and BR 
synthesis mutant constitutive photomorphogenesis and dwarfism 
(cpd) have fewer VBs than wild-type plants (Ibañes et al., 2009).

REGULATION OF VASCULAR CAMBIUM 
ACTIVITY

Trees display prominent secondary growth in the stem and 
root, with similar vascular cell types to Arabidopsis 

(Mizrachi  and  Myburg, 2016). Studies in Arabidopsis stems 
and roots indicate an important regulatory function for hormones 
(auxin, CK, and ethylene) and TRACHEARY ELEMENT 
DIFFERENTIATION INHIBITORY FACTOR (TDIF) peptide 
in the proliferation of vascular cambium (Ortega-Martinez 
et  al., 2007; Matsumoto-Kitano et  al., 2008; Suer et  al., 2011; 
Fischer et al., 2019; Smetana et al., 2019). WOX4 is considered 
to be  a central regulator of vascular cambium division 
(Figure  2A), because it activates a cambium-specific 
transcriptional network and integrates auxin, ethylene, and 
TDIF-PXY (PHLOEM INTERCALATED WITH XYLEM) 
signaling for cambium division (Hirakawa et  al., 2010; Ji et  al., 
2010; Suer et  al., 2011; Etchells et  al., 2012; Brackmann et  al., 
2018; Zhang et al., 2019). WOX4 is required for auxin-dependent 
stimulation of cambium activity (Suer et  al., 2011). Auxin-
induced MP/ARF5 directly attenuates the activity of the stem 
cell-promoting WOX4 gene, and cell-autonomously restricts 
the number of stem cells in stems (Brackmann et  al., 2018). 
The TDIF peptides encoded by CLE41 and CLE44 are synthesized 
in the phloem and travel to the cambium where they bind 
and activate PXY, stimulating WOX4 transcription and promoting 
cambium proliferation in stems (Hirakawa et al., 2010). Ethylene 
and TDIF signaling converge at WOX4 to regulate cambium 
activity (Etchells et  al., 2012; Yang et  al., 2020b). BIN2-LIKE 
1 (BIL1), a glycogen synthase kinase 3, functions as a mediator 
that links auxin-CK signaling with TDIF-PXY signaling for 
the maintenance of cambial activity (Han et  al., 2018). 

A

B

FIGURE 2 | Coordination of multilayered signaling pathways on vascular cambium. (A) In Arabidopsis, vascular cambium initiation and the proliferation and 
differentiation of cambia derivative cells require a coordination of multiple signals, including auxin, cytokinin (CK), brassinosteroid (BR), gibberellin (GA), ethylene (ET), 
and TDIF-PXY. TDIF peptides are synthesized in the phloem and move to the cambium at which they bind to the PXY receptor. (B) Cross talk regulation of cell 
division and differentiation by multiple signals in the vascular cambium of Populus (Pt) and tomato (Sl) stems. There is a similar but more complex regulatory network 
orchestrating vascular cambium development in Populus than that in Arabidopsis.
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Phosphorylation of MP/ARF5 by BIL1 enhances its negative 
effect on the activity of vascular cambial, which upregulates 
ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) and ARR15, 
two negative regulators of CK signaling. BIL1 activity is inhibited 
by PXY, attenuating the effect of MP/ARF5 on ARR7 and 
ARR15 expressions and increasing vascular cambial activities.

Regulation of vascular cambium activity by auxin, CK, 
ethylene, and TDIF-PXY signaling is relatively conserved between 
trees and Arabidopsis (Figure  2). Auxin shows the highest 
level at the cambium zone, and its level declines near the 
mature xylem cells during wood formation in trees (Nilsson 
et  al., 2008; Immanen et  al., 2016). Overexpression of the 
stabilized form of INDOLE ACETIC ACID 3 (IAA3) that 
perturbs auxin signaling in hybrid aspen represses periclinal 
division of cambial cells but enlarges cell file harboring anticlinal 
cell division (Nilsson et al., 2008). Auxin-responsive PaC3H17-
PaMYB199 module promotes cambium division by a dual 
regulatory mechanism in Populus stems (Tang et  al., 2020). 
Auxin promotes direct repression of PaMYB199 expression by 
PaC3H17 and also enhances the PaC3H17-PaMYB199 
interaction, attenuating PaMYB199 inhibition of cambial cell 
division. Consistent with this, dominant repressors of PaC3H17 
or overexpression of PaMYB199 result in a reduction in the 
number of cambial cell layers, while transgenic poplars 
overexpressing PaC3H17 or repressing PaMYB199 have the 
opposite phenotype. In addition, the regulation of vascular 
cambium activity is associated with feedback mediation of 
auxin homeostasis in trees. Downregulation of the Populus 
HD-ZIP III gene PtrHB4 enhances PtrPIN1 expression and 
causes drastic defects in interfascicular cambium, indicating 
that PtrHB4 induces interfascicular cambium formation during 
the development of the secondary vascular system (Zhu et  al., 
2018). VASCULAR CAMBIUM-RELATED MADS 1 (VCM1) 
and VCM2 inhibit vascular cambium proliferation activity and 
secondary growth through direct upregulation of PtrPIN5 
expression in Populus stems (Zheng et al., 2021). These findings 
indicate more fine regulation of cambial activity by auxin 
signaling in trees than in Arabidopsis.

CK is another important regulator of cambial activity during 
wood formation (Figure  2B). Inhibition of cambial CK signaling 
by overexpression of Arabidopsis AtCKX2 under the promoter of 
a birch CRE1 gene leads to a reduced number of cambial cells 
in poplar stems, while increased vascular division is observed in 
transgenic poplars expressing the Arabidopsis CK biosynthetic gene 
ISOPENTENYL TRANSFERASE 7 (IPT7) under the control of 
the cambium-specific PttLMX5 promoter (Nieminen et  al., 2008; 
Immanen et  al., 2016). Elevated CK levels cause an increase of 
auxin level at the cambium zone, highlighting the interconnected 
nature of auxin and CK gradients (Immanen et  al., 2016). A 
recent study uncovers the mechanism of CK signaling associated 
with its spatial enrichment to regulate vascular development in 
Populus (Fu et al., 2021). The local CK signaling in the developing 
secondary phloem regulates the activity of vascular cambium in 
a non-cell-autonomous manner.

In addition to auxin and CK, gibberellin (GA), ethylene, and 
TDIF-PXY signaling promote cambial cell division and radial 
growth in trees (Figure 2B). Transgenic poplar lines overexpressing 

GA 20-OXIDASE, encoding a GA biosynthesis enzyme, promote 
over-production of GA and cambium proliferation (Eriksson 
et  al., 2000). Ethylene-overproducing and ethylene-insensitive 
poplars show increased and reduced cambium division, respectively 
(Love et  al., 2009). Overexpression of PttCLE41, a TDIF-like 
peptide, together with its receptor PttPXYa affects the rate of 
cambial cell division and woody tissue organization in both 
hybrid aspen and poplar (Etchells et  al., 2015; Kucukoglu et  al., 
2017). PttWOX4 stimulates the cambium proliferation downstream 
of TDIF-PXY signaling, as is similar to the manner of the 
Arabidopsis TDIF-PXY-WOX module. One difference is that in 
Populus, PttWOX4a/b expression is not responsive to auxin 
treatments, but upstream genes, such as PttPXYa and PttCLE41a/d, 
are responsive (Kucukoglu et al., 2017). The cross talk of hormones 
in regulation of cambium activity was also found in trees. For 
instance, GA coordinates with auxin for inducing cambium 
division through upregulating 83% of auxin-responsive genes, 
including PttPIN1, while auxin treatment upregulates GA 
biosynthesis genes and downregulates GA degradation genes in 
wood-forming tissues (Björklund  et  al., 2007).

REGULATION OF CAMBIUM DERIVATIVE 
CELLS DIFFERENTIATION

The regulatory roles of auxin, BR, and GA in cell differentiation 
in the vascular cambium are studied in Arabidopsis or/and 
trees (Figure  2). Since 20 years ago, the IAA12/BODENLOS 
(BDL)-ARF5/MP module in auxin signaling has been identified 
to control provascular specification and patterning during 
embryo-genesis in Arabidopsis (Hardtke and Berleth, 1998). 
Recently, the PtoIAA9-PtoARF5 module from Populus has been 
validated to mediate auxin-triggered cell differentiation of early 
developing xylem (Xu et  al., 2019). With auxin treatment, 
PtoIAA9 protein is degraded, inducing PtoARF5-activated gene 
expression, and the activated PtoIAA9 switches-off auxin signaling 
in a self-controlled manner during wood formation. BRs play 
a regulatory role in differentiation of vascular tissues, in addition 
to inducing cambium initiation during primary growth. Mutation 
of both BRI-LIKE 1 (BRL1) and BRL3, two Arabidopsis vascular-
specific BR receptors, causes expanded phloem development 
at the expense of xylem in stems (Cano-Delgado et  al., 2004). 
bri1-ethylmethylsulfone-suppressor 1-D (bes1-D), a gain-of-
function BR-signaling mutants, exhibits an increase of xylem 
differentiation (Kondo et  al., 2014). Similarly, inhibition of BR 
synthesis results in decreased secondary vascular differentiation 
and cell wall biosynthesis, while elevated BR levels cause 
increases in secondary growth in Populus (Du et  al., 2020). 
A recent study indicates that BR signaling is tightly connected 
with local intracellular auxin homeostasis during cell 
differentiation in the vascular cambium of tomato stems (Lee 
et al., 2021). BZR1/BES1-activated WALLS ARE THIN1 (WAT1), 
an auxin efflux carrier, facilitates cell differentiation in the 
vascular cambium by enhancing local auxin signaling. In 
addition, GA is shown to induce vascular cell differentiation 
and lignification downstream of WOX14 gene in the stem of 
Arabidopsis (Mauriat and Moritz, 2009; Denis et  al., 2017).
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TDIF-PXY signaling is a mediator that induces cell differentiation 
in the vascular cambium in Arabidopsis (Figure  2A). Transgenic 
plants overexpressing CLE41 or CLE44 display abnormal vascular 
patterning with a xylem intermixed with phloem phenotype during 
both primary and secondary growths (Fisher and Turner, 2007; 
Etchells and Turner, 2010). TDIF signaling regulation of xylem 
differentiation is fine-tuned by the NAC transcription factor XYLEM 
DIFFERENTIATION AND ALTERED VASCULAR PATTERNING 
(XVP; Yang et al., 2020a). XVP negatively regulates the TDIF-PXY 
module, and it also forms a complex with TDIF co-receptors 
PXY-BAK1 (BRI1-associated receptor kinase 1). XVP expression 
is suppressed by TDIF by a feedback mechanism. Overexpression 
of PttCLE41 or PttPXY (the orthologs to Arabidopsis CLE41 and 
PXY, respectively) in hybrid aspen or poplar causes defects in 
the patterning of the vascular tissues and shows inhibited plant 
growth (Etchells et  al., 2015; Kucukoglu et  al., 2017), suggesting 
a similar regulation of xylem differentiation by the TDIF-PXY 
module in trees. The cross talk between TDIF-PXY signaling 
module and BR or auxin occurs in controlling vascular cell 
differentiation in Arabidopsis (Figure 2A). PXY physically interacts 
with BIN2 at the plasma membrane, and the treatments by TDIF 
peptide enhance the activity of BIN2 in a PXY-dependent manner 
(Kondo et al., 2014). Transcriptional regulatory network mediated 
by PXY comprises 690 transcription factor-promoter interactions, 
of which a feed-forward loop containing WOX14, TMO6 and 
their downstream gene LATERAL ORGAN BOUNDARIES 
DOMAIN4 (LBD4) determines the arrangement of vascular tissue 
(Smit et  al., 2020).

The HD-ZIP III and NAC transcription factors are important 
regulators of vasculature organization. In Arabidopsis vascular 
tissues, mutation of one or several members of HD-ZIP III family 
results in an amphicribal vascular bundle pattern (phloem 
surrounding xylem), whereas gain-of-function mutants display 
amphivasal bundles (McConnell et  al., 2001; Emery et  al., 2003; 
Ramachandran et al., 2017). PtrHB5 and PtrHB7 are the orthologs 
of Arabidopsis POPCORONA and AtHB8 in Populus, respectively. 
Both genes correspondingly induce cambium activity and xylem 
differentiation in stems during secondary growth (Du et al., 2011; 
Zhu et  al., 2013). Interestingly, PtrHB7 was identified as a direct 
target of the PtrIAA9-PtrARF5 module during xylem cell 
differentiation (Xu et al., 2019). This places PtrHB7 in the regulatory 
network of auxin-induced xylem differentiation in woody stems. 
The Arabidopsis NAC genes VASCULAR-RELATED NAC DOMAINs 
(VNDs) act as master regulators of xylem differentiation capable 
of switching on the developmental program (Kubo et  al., 2005; 
Zhou et  al., 2014), while other members of this family, NAC 
SECONDARY WALL THICKENING PROMOTING FACTOR 1, 
3 (NST1, 3), can promote fiber differentiation in stems (Zhong 
et  al., 2006; Mitsuda et  al., 2007). Four Populus orthologs of 
NST1/3 redundantly control SCW formation in xylem fibers, 
phloem fibers, and xylem ray parenchyma cells (Takata et  al., 
2019), indicating a conserved role of these NACs in wood formation. 
Some NAC genes impede xylem differentiation and secondary 
wall deposition involving PagKNAT2/6b and PtoTCP20 in Populus 
(Hou et  al., 2020; Zhao et  al., 2020). PagKNAT2/6b directly 
activates PagXND1a expression but represses PagNST3s and 
PagVND6 expression in wood-forming tissues (Zhao et al., 2020). 

PtoTCP20 interacts with PtoWOX4a to control vascular cambium 
proliferation and also activates PtoWND6 expression to promote 
secondary xylem differentiation (Hou et  al., 2020).

FUTURE OUTLOOK

Wood formation of tree species involves a complex regulatory 
network underlying cambial initiation, tissue patterning, and cell 
differentiation. Understanding the vascular cambium development 
is a basis for genetic modification of wood biomass and properties 
in trees. Extensive studies in the model tree Populus indicate the 
cross talk regulation of vascular cambium development by multiple 
signals, including auxin, CK, BR, and TDIF-PXY, similar to regulatory 
programs of Arabidopsis vascular development (Figure 2). However, 
based on genome sequences, it is predicted that 1.4~1.6 Populus 
homologs correspond to each Arabidopsis gene (Tuskan et  al., 
2006). These Populus duplicated genes may undergo divergent fates, 
such as nonfunctionalization (loss of original functions), 
neofunctionalization (acquisition of novel functions), or 
subfunctionalization (partition of original functions). This may 
explain the emerging more complex mechanisms underlying vascular 
cambium maintenance and differentiation in trees than in Arabidopsis.

In recent years, the studies on the vascular cambium formation 
and regulation in trees have been greatly facilitated by new 
technologies, such as the genome-editing, integrated-omics, and 
more advanced microscopy. Therefore, the following key questions 
are anticipated to be  addressed in the near future.

1. How do the interfascicular cambial cells function in 
woody stems?

With the onset of the secondary growth, fascicular cambia 
are interconnected with interfascicular cambia located between 
the vascular bundles, forming a complete vascular cambium in 
woody stems (Figure  1). The interfascicular cambia are known 
to originate from the parenchymatic cells in the interfascicular 
region. Currently, our understanding regarding how the 
parenchymatic cells differentiate and develop into new procambium 
strands in the interfascicular region is limited, compared with 
extensive studies on fascicular cambia. To our knowledge, the 
HD-ZIP III gene PtrHB4 is the only gene that is shown to induce 
interfascicular cambium division in Populus stems (Zhu et  al., 
2018). Analysis of time-spatial features of parenchymatic cells 
action and mining the related genes in trees are essential in the 
future. The application of single-cell RNA sequencing, computational 
modeling, or biosensor may be helpful for addressing this question.

2. How is the vascular cambium activity maintained in trees?
Vascular cambium of trees is able to ensure both increased 

stem girth and annual renewal of vascular tissues over its 
lifespan. Even in 667-year-old Ginkgo biloba trees, the vascular 
cambium still maintains activity (Wang et  al., 2020). A key 
question for wood biology is how vascular cambium activity 
maintained? In Populus, multiple signals mediate the coordinated 
regulation of vascular cambium activity, as is more complex 
than that in Arabidopsis (Figure  2). It is therefore critical to 
investigate what signals and how these signals drive the activity 
of cambial stem cells under certain circumstances? Identification 
of reliable cell-specific makers thus to analyze gene expression 
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in each layer of cambial cells is essential for understanding 
the gene regulation of vascular stem cells in trees.
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