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Phosphorus (P) availability is usually low in soils around the globe. Most soils have a
deficiency of available P; if they are not fertilized, they will not be able to satisfy the
P requirement of plants. P fertilization is generally recommended to manage soil P
deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils
restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant
environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF),
phosphate–solubilizing bacteria (PSB), and the addition of silicon (Si) are effective
and economical ways to improve the availability and efficacy of P. In this review the
contributions of Si, PSB, and AMF in improving the P availability is discussed. Based
on what is known about them, the combined strategy of using Si along with AMF
and PSB may be highly useful in improving the P availability and as a result, its
uptake by plants compared to using either of them alone. A better understanding
how the two microorganism groups and Si interact is crucial to preserving soil fertility
and improving the economic and environmental sustainability of crop production in P
deficient soils. This review summarizes and discusses the current knowledge concerning
the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by
plants in sustainable agriculture.

Keywords: phosphorus availability, silicon fertilizer, silicate solubilization, silicate-solubilizing bacteria,
synergistic interactions

INTRODUCTION

There is a growing need to improve food production to meet the requirements of the increasing
world population. This may be done in either of two ways: increasing the area under cultivation
or enhancing the yield per unit area. The former is not possible in many countries of the world
due to a number of restrictions including the availability of water or soil resources, climate change,
drought, and soil salinization (Etesami and Noori, 2019). On the other hand, one of the ways to
increase the yield per unit area is to improve the nutritional properties of the soil. As an essential
plant nutrient, P is required for carbon metabolism, energy generation, energy transfer, enzyme
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activation, membrane formation, and nitrogen (N2) fixation
(Schachtman et al., 1998). P also forms key biological molecules
like ATP, nucleic acids, and phospholipids (Marschner, 1995).
P deficiency is a significant limiting factor for the growth and
yield of crops that affects approximately 50% of all agricultural
ecosystems around the world (Lynch, 2011; Ringeval et al.,
2017; Etesami, 2020). To address this issue, there has been an
enormous worldwide increase in the use of P fertilizers. The high
agricultural P demand has put the sustainability of P mining
for fertilizer production into question (Elser, 2012). P fertilizers
often lead to the addition of a large excess of P in agricultural
soils. Unfortunately, >80% of the P fertilizers applied to the
soil is lost due to adsorption and fixation processes (de La Vega
et al., 2000; Vance et al., 2003) or it is transformed into organic
forms (Holford, 1997), which represent 40–80% of total soil P
(Bünemann et al., 2010), with phytates as the most common form
(Menezes-Blackburn et al., 2014). Therefore, the availability of
this added P to plants is limited (about 0.1% of the total P).

P is usually absorbed by the plant in a limited range of soil
conditions, i.e., pH 6.5–7 as H2PO4

− and HPO4
2−. When the

soil pH exceeds 7.0, inorganic phosphate (Pi) is predominantly
mineralized and immobilized as calcium phosphates. At lower
soil pH levels, P is usually bound/adsorbed by soluble aluminum
(Al), iron (Fe), manganese (Mn), or the associated hydrous
oxides (Brady and Weil, 1999). At neutral pH, Pi adsorbs to
weathered silicates such as clay minerals (Rajan, 1975). Thus,
the P concentration in soils with pH < 6.5 or pH > 7 is
suboptimal, and is generally about 1–10 µM (Schachtman et al.,
1998), which can result in crop yield depressions of 5–15%
(Shenoy and Kalagudi, 2005).

The theoretical increase in plant growth efficiency from
adding chemical P fertilizers has peaked so that additional
chemical P fertilization cannot be expected to significantly
increase plant yield (Etesami, 2020). Twenty-two million tons
of P (3–4% of the total P demand) are annually extracted
from natural sources (i.e., non-renewable phosphate rocks),
according to the US geological survey (Gaxiola et al., 2011),
which puts the natural P sources in risk of depletion (Cordell
et al., 2009). Therefore, a more efficient use of P is needed,
including maximizing P acquisition and utilization efficiencies
(Veneklaas et al., 2012).

Some plants can efficiently acquire and/or use P to maintain
metabolism and growth (Lambers et al., 2010; Aziz et al.,
2014). Some plant mechanisms for improving P acquisition
efficiency include (Ramaekers et al., 2010; Johri et al., 2015):
(i) increased expression of high affinity P transporters; (ii) soil
exploration at a minimal metabolic cost; (iii) topsoil foraging;
(iv) stimulation of root hair growth; (v) redistribution of growth
among root types; (vi) increase of the root-to-shoot ratio; (vii)
the secretion of organic acids (e.g., citrate, malate, or oxalate)
from roots to the soil; (viii) the activation of an advanced bio-
molecular system; and (xi) enhanced acid phosphatase (rAPase)
or phytase secretion.

Plants have also developed some biotic interactions with
diverse soil microorganisms that promote plant growth.
Arbuscular mycorrhizal fungi (AMF) and plant growth-
promoting bacteria (PGPB) are the most common such

microorganisms. AMF and PGPB, and especially the phosphate-
solubilizing bacteria subgroup (PSB), are known to help
overcome P deficiency in plants. PSB and AMF are a part of
the key biogeochemical cycling processes (Sharma et al., 2013;
Etesami, 2020).

Phosphate–solubilizing bacteria exist in most soils (Rodrìguez
and Fraga, 1999). In in vitro conditions, they can improve
P bioavailability by lowering the soil pH, solubilizing Pi,
activating synthesized phosphatases, mineralizing organic P,
and/or chelating P from Al3+, Ca2+, and Fe3+ (Rodrìguez and
Fraga, 1999; Browne et al., 2009; Sharma et al., 2013; Etesami,
2020). Nearly all soils also contain AMF, which associate with
approximately 80% of all plant roots (Smith and Read, 2008;
Brundrett and Tedersoo, 2018). The ability of AMF to promote
plant growth and yield and enhance P uptake has been well
documented (Miransari, 2010; Jansa et al., 2011; Smith et al.,
2011; Smith and Smith, 2011; Nadeem et al., 2014; Brundrett and
Tedersoo, 2018; Etesami, 2020).

As a consequence of variable soil conditions, microorganisms
may change crop productivity. Climate change also has a
substantial impact on the effectiveness of microorganisms.
One way to increase the efficiency of microorganisms under
adverse environmental conditions is the co–inoculation of
microorganisms (Nadeem et al., 2014; Etesami et al., 2015b;
Etesami and Maheshwari, 2018; Ghorchiani et al., 2018) that
stimulates plant growth through various mechanisms (Bashan
et al., 2004). AMF and PGPB can work together to yield
sustainable plant growth in malnourished environments (Zarei
et al., 2006; Mohamed et al., 2014; Nadeem et al., 2014; Lee
et al., 2015; Xun et al., 2015). Combinations of AMF and PGPB
are commonly used to increase crop yields (Mäder et al., 2011;
Ghorchiani et al., 2018), improve fruit quality (Ordookhani et al.,
2010; Bona et al., 2016), boost phytoremediation, enhance the
fertilizer nutrient use efficiency (Xun et al., 2015), lower chemical
fertilization application requirements (Adesemoye et al., 2009),
and increase salinity tolerance (Gamalero et al., 2009).

The use of silicon (Si) fertilizer has also been proposed as
an environmentally friendly, ecologically compatible method
of improving plant growth and the resistance to multiple
environmental stresses including nutritional imbalances
(Etesami and Jeong, 2018, 2020; Etesami et al., 2020). Previous
studies have reported that Si increases plant uptake of P (Kostic
et al., 2017; Neu et al., 2017; Rezakhani et al., 2019a,b; Schaller
et al., 2019). Combining Si and microorganism applications
has been proposed to effectively induce improved plant growth
and nutrition (Etesami, 2018; Etesami and Adl, 2020). Previous
studies have observed that AMF and Si work together to improve
plant growth regardless of the stress conditions (Hajiboland
et al., 2018; Moradtalab et al., 2019), and that PSB and Si
synergistically help plants better uptake P (Rezakhani et al.,
2019a,b). However, how AMF, PSB and Si interact to affect
P availability for plants is poorly understood. Thus, a better
understanding of the interactions of AMF, PSB and Si would
allow growers to rely less on chemical P fertilizers and instead
utilize biological processes to maintain fertility and enhance
plant growth. Hence, this review discusses the mechanisms
which AMF, PSB, and Si, individually and together, use to
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increase plant uptake of P in agricultural systems where proper
nutrition might otherwise suggest heavy use of P fertilizers.
This review also highlights future research needs regarding
how to improve plant uptake of P using AMF, PSB, and Si.
In addition, the role of silicate-solubilizing bacteria (SSB),
which convert insoluble silicate forms to available forms for the
plant, in increasing P and Si availability and their uptake by
plants is discussed.

PLANT RESPONSES TO P SCARCITY

Plants exhibit a complex array of biochemical, morphological,
and physiological adaptations to deal with P deficiency, which
are generally known as “P starvation responses” (Plaxton, 2004)
and endeavor to increase P acquisition capacity and to preserve
plant vitality (Pang et al., 2015). Some P deficiency responses
are as follows. A preferential carbohydrate allocation toward
the roots, higher density of root hairs, greater root surface
area and length, as well as root cluster formations alter the
root structure and lead to reduced plant growth and increased
root-to-shoot ratio (Gilroy and Jones, 2000; Liao et al., 2001;
Sánchez-Calderón et al., 2006; Lynch, 2007; Niu et al., 2013;
Aziz et al., 2014; Lambers and Plaxton, 2015). The greater
surface area provided by the larger root system allows for better
absorption of nutrients, including P, through increased contact
with the soil (Römer and Schenk, 1998; López-Bucio et al., 2003;
Lynch, 2007). Another important response to P deficiency is an
increase in the root organic acid exudations, i.e., carboxylates
(mainly citrate and malate) to the rhizosphere to increase the
rhizospheric inorganic P availability (Neumann and Römheld,
1999; Vance et al., 2003; Raghothama and Karthikeyan, 2005;
Johnson and Loeppert, 2006; Pang et al., 2015). Plants also
exhibit an increased efficiency of cellular P uptake. Inorganic
P in soils is generally very immobile, so that the uptake of
rhizospheric Pi is affected by the high–affinity Pi/H+ symporters
associated to the plasma membranes that belong to the PHT1
gene family (Gu et al., 2016). Previous studies observed that
P deficiency induced the expression of Pi transporters in
wheat (Gilroy and Jones, 2000; Tittarelli et al., 2007; Miao
et al., 2009; Jia et al., 2011; Kostic et al., 2015; Kostic et al.,
2017). Plants also induce enzymes that scavenge and recycle
Pi, such as acid phosphatase, which catalyzes Pi hydrolysis
from Pi–monoesters; nuclease, which degrades extracellular DNA
and RNA; and phosphodiesterase, which liberates Pi from
nucleic acids (Duff et al., 1994; Plaxton and Carswell, 1999;
Gaume et al., 2001; Plaxton, 2004). Plants may also induce
alternate cytosolic glycolysis pathways (Plaxton and Carswell,
1999), tonoplast pyrophosphatase that pumps H+, and different
respiratory electron transport pathways (Gonzàlez-Meler et al.,
2001; Plaxton, 2004). Plants also remobilize the internal P from
one plant part to another (Gill and Ahmad, 2003). Plants
modify the carbohydrate partitioning between source and sink,
photosynthesis, sugar metabolism in response to P deficiency
(Sánchez-Calderón et al., 2006), the cations in carbon metabolism
and alternate respiratory pathways (Uhde-Stone et al., 2003),
and/or membrane biosynthesis to require lower amounts of P

(Uhde-Stone et al., 2003; Lambers et al., 2006). Moreover, plants
establish mycorrhizal symbioses, beneficial associations between
soil fungi and plant roots (Smith and Read, 2008).

AMF AND THEIR MECHANISMS OF P
UPTAKE/MOBILIZATION

Arbuscular mycorrhizae are endomycorrhiza where the fungal
hyphae penetrate the root cell walls and get in touch with
the plasmalemma. AMF are commonly found in all of earth’s
ecosystems with plants (Redecker et al., 2013). The formation of
arbuscular mycorrhiza has allowed plants to survive and grow in
natural habitats for millions of years without fertilizers, pesticides
and irrigation. AMF belong to the subphylum Glomeromycotina
(Bruns et al., 2018), encompassing 340 described species1.

Having evolved 400–450 million years ago, this symbiosis
is likely the oldest type of mycorrhiza, and it involves a wide
variety of plants (Smith and Read, 2008). AMF are obligate
symbionts and acquire all of their organic carbon requirements
from their plant partners. The symbiosis is often mutualistic
based largely on carbon exchange from the plant (4–20%
of photosynthetically fixed carbon) and P delivered by the
fungi (Wright et al., 1998; Smith and Smith, 2011). More
than 80% of earth’s plant species are estimated to be able
to form this mycorrhizal symbiosis (Wang and Qiu, 2006).
The benefits of the arbuscular mycorrhizae in various plants
(mostly in crops) have been proven (Smith and Read, 2008).
AMF increase plant resistance to abiotic stresses, improve
mineral uptake (particularly of P), enhance water relations, and
provide protection against soil-borne pathogens to promote
plant growth (Smith and Read, 2008). On top of significantly
aiding the P supply to plants, AMF can help plants acquire
macronutrients and micronutrients like Cu, K, Mg, N, and
Zn, especially when they’re present in less soluble forms in
soils (Meding and Zasoski, 2008; Smith and Read, 2008).
These fungi penetrate the root cortical cell walls and establish
arbuscules, which are haustoria–like structures, that mediate
the metabolite exchanges between the host cell and the fungi
(Oueslati, 2003). AMF enhance the root zone absorption area
by 10–100% and improve the plant ability to utilize more soil
resources. Mycorrhizal roots are able to reach a greater soil
volume than non-mycorrhizal ones, thanks to the extraradical
hyphae that facilitate the nutrient absorption and translocation
(Smith and Read, 2008). AMF increase the nutrient absorption
by increasing the absorption area of the roots, and also release
chemicals such as glomalin, a glycoprotein secreted by hyphae
and spores of AMF. Glomalin in the soil aids the uptake
of nutrients such as Fe and P that are difficult to dissolve
(Smith and Read, 2008; Miransari, 2010; Emran et al., 2017;
Begum et al., 2019). P is easily absorbed from soil particles and
therefore Pi-free zones are readily formed around the roots.
Extraradical hyphae of the mycorrhizal roots extend beyond these
P-depleted zones, taking up the bio-available Pi that is otherwise
inaccessible to plants.

1http://www.amf-phylogeny.com
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The roots of arbuscular mycorrhizal plants have two pathways
to absorb P. The first pathway is common to both arbuscular
mycorrhizal plants and non-arbuscular mycorrhizal plants,
where P is directly absorbed from the root epidermis and
hairs. The second pathway involves P entering the root cortical
cells (intraradical mycelium) (Smith and Smith, 2011), where
symbiotic interfaces are provided by arbuscules or hyphal coils,
through the fungal hyphae (P uptake from the interfacial apoplast
by cell-specific Pi transporter gene expression in the mycorrhizal
roots) (Benedetto et al., 2005; Balestrini et al., 2007; Gomez-Ariza
et al., 2009; Tisserant et al., 2012; Fiorilli et al., 2013). This is a
rapid P translocation over many centimeters. New physiological
and molecular evidence suggests that for P, regardless of plant
growth responses, the mycorrhizal pathway is operational (Smith
and Smith, 2011). The function of the transporters and the
translocation of Pi in the fungi and the transfer of Pi to the host
plants have been well reviewed (Johri et al., 2015; Ezawa and
Saito, 2018).

As mentioned above, the low solubility of P in acidic and
alkaline soils (e.g., lower than 10 µM) results in a very low
mobility (Schachtman et al., 1998). Therefore, when P is absorbed
by the roots, its replacement from bulk soil is very slow,
which leads to the establishment of P-depletion zones, where
all the available P has been utilized quickly from around the
roots, thereby reducing P uptake by the root epidermis hairs
(the first pathway of P absorption) (Schachtman et al., 1998;
Smith and Smith, 2011). Therefore, for improved P acquisition,
plants must overcome these depletion areas and display root
activities in other parts of the soil. The result of this effort for
P (and other relatively immobile soil resources) acquisition is
determined by the root system surface area. The most important
role of the hyphae in mycorrhizal fungi is the increase of the
root surface area (depletion is lower around small–diameter
arbuscular mycorrhizal fungal hyphae) (Smith and Smith, 2011).
In addition, mycorrhizal plants are able to exude organic
acids such as citrate and malate that chelate Al3+ (Klugh and
Cumming, 2007; Klugh-Stewart and Cumming, 2009) and Ca2+

and dissolve aluminum and calcium phosphates. By enhancing
the soil contact area through AMF hyphae, plants are granted
improved access to Pi and orthophosphates in the soil solution
(Bouhraoua et al., 2015), as the roots are able to directly take up
the released Pi with the help of arbuscular mycorrhizal fungal
hyphae. Arbuscular mycorrhizal roots do not establish a fungal
sheath, and theoretically are able to use both of the nutrient
uptake pathways. It has been proposed that the two nutrient
uptake pathways act additively in the arbuscular mycorrhizal
symbiosis (Bücking et al., 2012). However, approximately 80%
of P uptake in a mycorrhizal plant is estimated to be supplied
by the fungi (Marschner and Dell, 1994). AMF also increase
the ability of legumes to fix N2 and reduce the amount of
inorganic N that leaches (Veresoglou et al., 2012). Nitrogen
is a component of chlorophyll and thus is important for
photosynthesis. The transfer of photosynthetic materials to the
roots results, in turn, in increased activity of soil microorganisms
including AMF and PSB.

In general, AMF can increase P uptake in P-deficient soils by
(i) increasing the P uptake rate (P influx) per unit of arbuscular

mycorrhizal root. This increased P uptake rate with AMF is due to
the high effectiveness with which hyphal surfaces absorb P from
the soil, compared to the cylindrical root surfaces (Sharif and
Claassen, 2011); (ii) expanding the mycorrhizal hyphal network
to reach beyond the rhizosphere, absorbing Pi by AMF hyphae via
fungal Pi transporters up to 25 cm around the roots, translocating
the Pi to intracellular fungal structures in the root cortical cells
(Smith et al., 2011; Garg and Pandey, 2015); (iii) storing P in
the form of polyphosphates, such that the fungi can keep the
internal Pi levels relatively low, effectively transferring P from
soil to plant-based hyphae through appressoria and from the
extraradical mycelium to the intraradical mycelium (Pepe et al.,
2020); (iv) having hyphae with a small diameter (2–20 µm) that
allow the fungi to access small soil cores for P, and achieve
greater P influx rates for a given surface area (Jakobsen et al.,
1992; Jakobsen et al., 2001); and (v) decreasing the depletion
zone around the roots or hyphae (decreasing the impact of
rhizospheric Pi depletion) (Smith et al., 2011; Garg and Pandey,
2015). In one study, P depletion around the roots of Capsicum
annuum L. plants or the hyphae of Glomus mossea only extended
to about 0.06 cm and thus only∼7% of the soil P was positionally
available to the roots. But for the hyphae it was ∼100%, of the
soil was positionally available because the half distance between
neighboring hyphae was only 0.01 cm (Sharif and Claassen,
2011). As a general conclusion, the high effectiveness of hyphal
surfaces to absorb P from soils may be enough in most cases to
explain how AMF improve the uptake of available P from the soil.

PSB AND THEIR MECHANISMS OF P
UPTAKE/MOBILIZATION

Rhizospheric P mineralization and solubilization are important
mechanisms by which PSB increase the nutrient availability
for plants (Glick, 2012). PSB play a major role in all three
main parts of the soil P cycle (dissolution–precipitation,
mineralization–immobilization, and sorption–desorption).
There are various mechanisms by which PSB can change the
insoluble phosphates into available forms (Gyaneshwar et al.,
2002; Khan et al., 2007; Sharma et al., 2013; Etesami and
Maheshwari, 2018; Etesami, 2020). PSB strains belong to various
genera (e.g., Achromobacter, Actinomadura, Aerobactor,
Agrobacterium, Alcaligenes, Arthrobacter, Azotobacter,
Azospirillum, Bacillus, Chryseobacterium, Delftia, Enterobacter,
Gordonia, Klebsiella, Pantoea, Phyllobacterium, Pseudomonas,
Rhizobium, Rhodococcus, Serratia, Streptomyces, Thiobacillus,
Xanthobacter, Xanthomonas) (Sharma et al., 2013; Etesami,
2020) and can solubilize insoluble Pi compounds including
dicalcium phosphate, hydroxyapatite, tricalcium phosphate, and
rock phosphate, and mineralize organic phosphate compounds
to forms that can be absorbed by plants (i.e., H2PO4

− and
HPO4

2−) (Khan et al., 2009; Ramaekers et al., 2010; Alori et al.,
2017; Etesami, 2020). Each phosphate–solubilizing bacterium
may employ multiple mechanisms to solubilize insoluble
P. Some of the most significant bacterial mechanisms that
increases P availability for plants are briefly discussed in the
following sections.
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Production of Organic Acids
Most P uptake occurs in the pH range 6.5–7. However,
because of equilibrium reactions such as sorption/desorption and
the dissolution of P-bearing minerals are pH-dependent, PSB
solubilize Pi in neutral to alkaline soils by excreting protons and
producing organic and inorganic acids (Farhat et al., 2009; Jones
and Oburger, 2011). NH4

+ assimilation by plants and PSB leads
to hydrogen ion (H+) excretion to maintain electroneutrality
(Parks et al., 1990; Wu et al., 2008). Organic acids (e.g., 2–
ketogluconic, aspartic, citric, gluconic, lactic, malic, malonic,
oxalic, succinic, and tartaric acid) are produced by bacterial
metabolism, mainly due to oxidative respiration or carbon
source fermentations, such as periplasmic glucose oxidizing into
gluconic acid and being released into the soil solution, or the
oxidation of organic matter or animal fertilizers added to the
soil (Gyaneshwar et al., 2002; Trolove et al., 2003; Goldstein,
2007; Jones and Oburger, 2011). Organic acids can solubilize
P from mineral surfaces via ligand-promoted dissolution or
ligand exchange (Jones and Oburger, 2011; Oburger et al.,
2011). In addition, PSB can indirectly reduce the pH of the
rhizosphere and increase P levels by affecting the root system
and, consequently, increasing the root exudates. Since root
exudates contain different chelating agents and organic acids,
they can increase the rhizospheric P availability. Organic acids (or
organic anions) can enhance the rhizospheric P levels by lowering
the pH, as PSB generally release the dissociated organic acids
with protons, which allows them to preserve electroneutrality
(Whitelaw et al., 1999; Castagno et al., 2011; Jones and Oburger,
2011). Organic acids compete with phosphates for fixation sites,
or even replace the adsorbed phosphates on the soil clays surfaces,
such as amorphous aluminum oxides, goethite, kaolinite, and
montmorillonite. Chelating agents present in the root exudates
(e.g., siderophores) can improve P availability to plants by
promoting the chelation of P-bound Al3+, Ca2+, and Fe3+,
or establishing soluble complexes with metal ions associated
with insoluble P, which circumvents Pi precipitation (Figure 1)
(Whitelaw, 1999; Rashid et al., 2004; Osorio Vega, 2007). On the
other hand, root exudates come from different carbon sources
(e.g., amino acids, mucilage, nucleotides, organic acids, phyto–
siderophores, sugars, and vitamins) and have different signals,
which lead to the attraction of microbial flora at the root level,
including PSB. Increases in the microbial population result in
the production of more rhizospheric organic acid production
and subsequently decreases the rhizospheric pH (Khan et al.,
2007; Pothier et al., 2007; Badri and Vivanco, 2009; Drogue et al.,
2013; Sharma et al., 2013; Etesami et al., 2015b; Etesami, 2020;
Figure 1).

Production of Inorganic Acids
Mineral acids like carbonic acid (H2CO3), hydrochloric acid
(HCl), nitric acid (HNO3), and sulfuric acid (H2SO4), in addition
to organic acids, have been reported to contribute to solubilizing
insoluble Pi (Sharma et al., 2013). Sulfur–oxidizing bacteria
(SOB) such as those belonging to the genus Thiobacillus and
nitrifying bacteria (NB) like those belonging to the genera
Nitrosomonas and Nitrobacter, oxidize sulfur and ammonia and

lead to the formation of inorganic acids and, consequently,
reduce the pH, which ultimately increases the rhizospheric P
availability (Stamford et al., 2003). SOB oxidize reduced sulfur
compounds to produce sulfuric acid in the presence of oxygen to
obtain energy while NB get their energy by oxidizing inorganic
nitrogen compounds. Carbon dioxide (CO2) resulting from
microbial respiration and organic matter decomposition, after
combining with water, becomes carbonic acid which can also
reduce the rhizospheric pH and lead to increased P availability
(Figure 1). In general, the role of inorganic acids in the
solubilization of P is lower than that of organic acids and is less
frequently reported. Since the ability of PSB to lower the pH in
certain instances is not always associated with Pi solubilization
ability, acidification cannot be the only mechanism for dissolving
insoluble Pi (Bashan et al., 2013).

Siderophore Production
Plants and microorganisms in low-iron conditions produce
siderophores which are low molecular weight (200–2000 Da)
organic compounds with an iron–chelating ability (Ahmed and
Holmström, 2014). The primary role of siderophores is to chelate
Fe(III) under various environmental conditions making the
element available to plants and microorganisms. Siderophores
can bind to a variety of metals besides Fe(III) including Al, Ca,
Cd, Co, Cu, Mn, Mo, Ni, Pb, and Zn, albeit with a lower affinity
(Ahmed and Holmström, 2014). PSB have also been shown
to be capable of producing siderophores (Vassilev et al., 2006;
Caballero-Mellado et al., 2007; Hamdali et al., 2008; Karimzadeh
et al., 2020) which can promote the dissolution of insoluble
mineral P (Sharma et al., 2013). Siderophores can improve
P availability for plants by ligand exchange and chelating the
elements (e.g., Al3+, Ca2+, and Fe3+) that form a complex with
P (Figure 1).

Indole–3–Acetic Acid (IAA) and
ACC-Deaminase Production
One mechanism that plants employ to deal with P deficiency is
to allocate a large portion of the photosynthetic substrates to root
growth, to develop fine roots with small diameters with greater
surface area. Fine roots, especially root hairs, are associated
with scavenging soil P with their high surface area (Rengel
and Marschner, 2005). PGPB, including PSB, can improve a
plant’s P capturing capacity by promoting root growth through
branching, hormonal stimulation, or root hair development
(phytostimulation; e.g., production of IAA or enzymes that
modify plant ethylene precursors, like 1-aminocyclopropane 1-
carboxylic acid (ACC) deaminase) (Richardson et al., 2009;
Hayat et al., 2010; Emami et al., 2019). A plant’s response
to P starvation stress can result in a decrease in the number
of root hairs (Borch et al., 1999). The ACC deaminase
enzyme can degrade the precursor for the ethylene production
and influences how P affects the root growth; ethylene can
adjust the root architectural response to soil P availability
(Etesami and Maheshwari, 2018).

The abundance and length of the root hairs are positively
correlated with the immobile element uptake. Modified root
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FIGURE 1 | The part that phosphate solubilizing bacteria (PSB) play to improve plant’s ability to acquire the soil phosphorus by altering the sorption equilibria that
may increase the net orthophosphate ion transfer into the soil solution. Protons and metal chelating agents are especially effective in solubilizing precipitated
phosphorus forms (aluminum phosphates and iron phosphates in acidic conditions, and calcium phosphates in alkaline conditions). Le Chatelier’s principle states
that increasing a certain substance’s concentration leads to the balance shifting such that consumption of that substance increases, and lowering the concentration
of a material promotes the balance toward the production of the said material. Chelating agents (organic anions, siderophores, etc.) remove Al3+, and Ca2+, and
Fe3+ ions from the reaction and cause the balance to shift such that more H2PO4

− and HPO4
2− are produced. The addition of H+ ion also causes the balance to

be adjusted to encourage the reduction of H+ ions, leading to more H2PO4
− and HPO4

2− to be produced.

morphology of inoculated plants may enhance P uptake (Rengel
and Marschner, 2005). Many PSB genera in soils are known to
secrete IAA (Ahemad and Khan, 2010; He et al., 2010; Ahemad,
2012; Misra et al., 2012; Oves et al., 2013; Etesami and Alikhani,
2016a,b; Etesami and Maheshwari, 2018; Emami et al., 2019;
Karimzadeh et al., 2020) that plant roots absorb, leading to
increased endogenous pool of IAA in plants (Glick et al., 2007). In
addition, many PSB are also reported to produce ACC deaminase
(Iqbal et al., 2012; Sarathambal and Ilamurugu, 2013; Etesami
et al., 2014; Shahzad et al., 2014; Etesami and Alikhani, 2016a;
Karimzadeh et al., 2020).

Bacterial IAA can promote the development (architecture,
branching, etc.) of the root system and increase root exudation.
Organic acids in root exudates lead to rhizosphere acidification
(Dakora and Phillips, 2002; Amir and Pineau, 2003; Jones
et al., 2003) and also play an important part in forming and
increasing the mobility of complexes with essential ions for plant
uptake (Figure 1; Etesami et al., 2015a). For example, Hinsinger
(2001) reported the role of exuded carboxylates in solubilizing
various P complexes. Exuded organic acid anions may also be
the growth substrates for microorganisms. Root exudates are

a more effective nutrient source than soil organic matter that
are easily degradable for microorganisms in the rhizosphere
(Rengel and Marschner, 2005).

The increase in CO2 production from respiration of the
rhizosphere microbial population leads to acidification of the
rhizospheric environment. This can also lead to enhanced P
availability, by increasing the release of new root extracts.
Rhizospheric acidification also results from the H+ pump
from plant and microbe nutrient uptake, N2 fixation by the
symbiosis between Rhizobium and legume, and organic matter
decomposition (Marschner and Rimmington, 1988). Certain
microorganisms may indirectly enhance P nutrition for plants by
enhancing root growth or root hair elongation, which allows for
a greater degree of soil exploration instead of directly increasing
soil P availability. IAA–producing PSB can also solubilize
insoluble Pi in a manner similar to PSB by increasing the
root surface area and subsequently increasing the root exudates
(Dobbelaere et al., 1999; Lambrecht et al., 2000; Steenhoudt
and Vanderleyden, 2000; Etesami and Maheshwari, 2018; Emami
et al., 2019). In general, plant growth regulators influence root
architecture and can increase P acquisition efficiency, especially
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from unavailable forms, and for this purpose root traits are a key
factor (Campos et al., 2018).

Organic P Mineralization
Organic P forms a significant part (40–80%) of the total soil
P. Plants encountering P deficiency increase the exudation of
P–hydrolyzing enzymes. In addition to dissolving phosphates
affected by organic acids, the reactions of the phosphatase group
of enzymes in the soil are also important. Phosphatases play
a significant part in the organic P mineralization in soils. PSB
can mineralize organic P by secreting phosphatases (Khan et al.,
2009; Sharma et al., 2013; Etesami, 2020). Microbial–derived
phosphatases are more likely to be combined with phosphate
compounds than plant phosphatases are, and they help release
orthophosphates from soil organic P (Tarafdar et al., 2001).
Phytate (inositol hexaphosphate) is one of main soil organic P
forms, accounting for over 50% of the total soil P (Osborne
and Rengel, 2002). Phosphatases are not effective in mineralizing
phytate. Phytase secreted by microorganisms converts phytate
into P esters that can be broken down into Pi by phosphatases
(Rengel and Marschner, 2005). Inorganic P immobilization
by PSB can indirectly help P solubilization. PSB remove and
assimilate P from the liquid culture medium according to the
sink theory, activating the indirect dissolution of apatite or
Ca3(PO4)2 (Illmer et al., 1995; Guidry and Mackenzie, 2003).
This can be explained according to Le Chatelier’s principle,
which states that lowering the concentration of Pi in soil
solution promotes the balance toward the production of the
Pi (e.g., release of Pi from calcium phosphates). Over a long
period of time, all of the microbial P can potentially become
available to plants. P immobilization in the biomass has been
suggested to be an important mechanism for regulating P
supply in a soil solution (Seeling and Zasoski, 1993), and for
keeping labile P forms protected from reactions with the soil
(Olander and Vitousek, 2004).

Si AND ITS ROLE IN P
UPTAKE/MOBILIZATION

Elemental Si is the second most abundant element in the
lithosphere (approximately 28%). Si dioxide (SiO2) is the most
common form of Si in soils. The main Si components in most
soils includes amorphous silica, feldspars, kaolin, orthoclase,
plagioclase, quartz, smectite, and vermiculite (Sahebi et al., 2015).
Most Si contained in silicate minerals, and only a very small
portion of the Si found in nature is available for use by plants
(Struyf et al., 2010). The soluble Si is dependent on the pH
and redox potential of the soil (Ma and Takahashi, 2002). In
soils, Si is found as amorphous Si (minerogenic silica nodules,
biogenic phytoliths, etc.), dissolved Si (adsorbed to aluminum or
iron oxides/hydroxides or free in the soil solution), crystalline
Si (primary silicates like feldspars, mica, quartz and secondary
silicates like clay minerals), and poorly crystalline Si (e.g.,
secondary quartz) (Sauer et al., 2006). The soil soluble Si levels
in ecosystems can differ up to two orders of magnitude (0.01–
2.0 mM) (Haynes, 2014), and is mainly dependent on the parent

material, soil diagenesis stage, and vegetation type (Derry et al.,
2005; Struyf and Conley, 2009).

Si is not identified as an essential nutrient for plant growth
and development. However, an increasing number of studies
indicate that Si is a quasi-essential nutrient and is beneficial to
plants, especially when under different stresses such as drought,
heavy metal toxicity, nutritional imbalance, plant pathogens, and
salinity; Si is also known to play an important part in plant
ecology and evolution (Etesami and Jeong, 2018). Plant roots
absorb the Si present as silicic acid [Si(OH)4] at levels of 0.1–
0.6 mM in the soil solution, and pass it through the plasma
membrane via two Si transporters, Lsi1 and Lsi2, that respectively
function as the influx and efflux transporters and have been
identified in barley, pumpkin, rice, and wheat (Ma et al., 2006,
2007; Chiba et al., 2009; Mitani-Ueno et al., 2011; Montpetit
et al., 2012). Si is polymerized to silica gel (SiO2·nH2O) in plants,
generally referred to as silica bodies or phytoliths, which are
released back into the soil as dead plant materials that decay and
then may be taken up by plants (Carey and Fulweiler, 2012).
Si is customarily found as hydrogen-bound bound organic Si
complexes in plant tissues (Carlisle et al., 1977) and saturates the
walls of the epidermis and vessels (Kaufmian et al., 1969) where
it strengthens plant tissues and reduces water transpiration.

Si levels in the aboveground plant parts differ greatly
depending on the plant species, accounting for 0.1–10.0% of the
dry weight, and are often at concentrations similar to that of
essential macronutrients such as K, N, and P (Epstein, 1999).
Plants take up Si actively via metabolically–driven transporters,
or passively or rejectively, with water (Mitani and Ma, 2005).
The disparity in the Si accumulation of different crop species is
due to the difference in the Si absorbing capacity of the roots.
Generally, monocots are considered good Si accumulators, where
Si concentrations are greater than 1% of the dry weight, whereas
most dicots accumulate Si at levels lower than 0.1% of the total
biomass and are considered excluders (Guntzer et al., 2012).

Si also influences the uptake of micronutrients and
macronutrients in plants (Etesami and Jeong, 2018; Greger
et al., 2018). Si fertilization increases P levels in different crops
and improves plant growth by enhancing P availability for plants
(Gladkova, 1982; Jianfeng and Takahashi, 1991; Singh and Sarkar,
1992; Owino-Gerroh and Gascho, 2005; Kostic et al., 2017; Neu
et al., 2017; Reithmaier et al., 2017; Etesami and Jeong, 2018;
Rezakhani et al., 2019a,b; Schaller et al., 2019). For example,
Greger et al. (2018) found that Si increased the soil P availability
by up to 50%. Kostic et al. (2017) also observed that Si supplied
as Na2SiO3 increased P levels in the shoots of wheat grown in
low P acid soil (available P < 4 mg kg−1 and pH 4.0) to an
adequate level (>0.3%) in the range of P-fertilized wheat under
greenhouse conditions. In this study, Si application increased
the root organic acid exudation, such as malate and citrate
that mobilize the rhizospheric Pi and up-regulate expression
of Pi transporters (TaPHT1.1 and TaPHT1.2). This organic
acid exudation by the wheat roots was many times higher than
without Si application, and the P uptake was doubled. There is
insufficient data regarding the effect of exogenous Si on organic
acid production in plants. In a recent study, it was found that Si
can alter organic acid production in plants by increasing carbon
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fluxes into TCA cycle and the activity of TCA cycle enzymes
(Das et al., 2019). However, further work is needed to elucidate
how Si modulates organic acid metabolism in plants under P
deficit conditions.

Much remains to be investigated on how Si interferes with
soil P mobilization. Some mechanisms by which Si improves soil
P availability and plant P uptake are as follows: (i) competitive
exchange and sorptive interaction of P and Si (Smyth and
Sanchez, 1980; Koski-Vähälä et al., 2001; Owino-Gerroh and
Gascho, 2005; Konhauser et al., 2007; Planavsky et al., 2010).
P binding to soil minerals was observed to be the lowest
with silicate minerals (Rajan, 1975; Brady and Weil, 1999);
(ii) increasing the soil pH to enhance soil P availability in
acidic soils (Owino-Gerroh and Gascho, 2005); (iii) indirectly
improving P utilization by plants by decreasing the uptake and
availability of metals (Hingston, 1972; Sigg and Stumm, 1981;
Schwertmann and Fechter, 1982; Ma and Takahashi, 1990). P
availability is controlled by levels of other metals such as Fe and
Mn under P deficiency. A large proportion of soil Pi is strongly
bound/adsorbed to aluminum, iron and manganese hydroxides
in the soil (Beauchemin et al., 2003). Si decreases the iron and
manganese availability in soil by affecting the element binding to
the soil particles (Schaller et al., 2019) and reducing the pool of
hydroxides (Treder and Cieslinski, 2005; Meharg and Meharg,
2015) and can therefore indirectly increase P availability (Ma,
2004; Greger et al., 2018). Si may increase P availability for plants
even in high P conditions by mobilizing P from such mineral
surfaces (e.g., aluminum, iron and manganese hydroxides) (Cross
and Schlesinger, 1995; Yang and Post, 2011); (iv) modifying the
C:N:P stoichiometry and improving the nutrient use efficiency
(Neu et al., 2017); (v) increasing the root organic anion efflux
to mobilize the rhizospheric Pi (Kostic et al., 2017; Etesami and
Jeong, 2018). Si significantly increased the exudation rates of
citrate and malate to directly stimulate inorganic P acquisition
by the roots (Kostic et al., 2017). Organic anions such as acetic,
aconitic, citric, malic, fumaric, lactic, oxalic, and succinic acids
compete with Pi to form complexes with aluminum, calcium,
and iron and may hydrolyze organic P (Grierson, 1992; Gerke
et al., 2000; Hinsinger, 2001; Kihara et al., 2003; Aziz et al.,
2011; Etesami and Jeong, 2018). Organic acids like malic and
citric acids were observed to reduce the pH and result in a
substantially increased P mobilization from calcium compounds
(Dinkelaker and Marschner, 1992) and effectively enhanced P
uptake from sparingly soluble rock phosphates (Aziz et al., 2011);
(vi) enhancing the gene expressions related to Pi uptake under
P deficiency, which is key to improving the Pi absorption in
different plant species (Leggewie et al., 1997; Karthikeyan et al.,
2002; Tittarelli et al., 2007; Miao et al., 2009; Kostic et al.,
2017). The P use efficiency of plants under P deficiency could
be improved with manipulation of gene expressions related to
Pi uptake (Aziz et al., 2014). A number of genes are involved
with plant adaptation to P deficiency, associated with regulating
the acquisition, internal remobilization of P, and changing the
metabolism as well as signaling transduction (Fang et al., 2009).
Si has been observed to modulate the expression of stress-related
genes and alter plant metabolism in response to various plant
stresses (Pavlovic et al., 2013; Ye et al., 2013; Kim et al., 2014;

Kostic et al., 2017); and (vii) mobilizing or desorbing of organic
carbon from soil particles or mineral binding sites (e.g., goethite)
(Tipping, 1981; Reithmaier et al., 2017). Si has a strong bonding
affinity to minerals in the soil comparable with carbon and
P, and may mobilize the two elements and make them more
available for microbial decomposition (Schaller et al., 2019).
The released carbon can supply the microorganisms, including
PSB, with energy for their growth in soils. The carbon dioxide
produced by microbial respiration results in the production
of carbonic acid, leading to increased P availability. Microbial
respiration was observed to lower the soil pH by producing
carbonic acid, and thus led to dissolution of apatite as Pi (Guidry
and Mackenzie, 2003). How the Si availability in soils interacts
with P availability in soils is generally poorly understood and
requires further research.

SYNERGISTIC EFFECTS OF AMF, PSB,
AND Si ON P AVAILABILITY

Synergistic Effects of AMF and PSB on P
Availability
In mycorrhizal association, the plant and fungi interact
both in the soil around the root (rhizosphere) and in soil
around the fungal hyphae (mycorrhizosphere) (Johansson et al.,
2004). The fungi interact with other microorganisms in the
mycorrhizosphere whose synergistic effects increase plant growth
and also populations of both (Artursson et al., 2006; Agnolucci
et al., 2015). The presence of different bacterial taxa that
colonized the surface of AM extraradical hyphae and spores that
form biofilm–like structures on them has been reported in natural
ecosystems (Scheublin et al., 2010; Lecomte et al., 2011; Cruz
and Ishii, 2012; Agnolucci et al., 2015; Iffis et al., 2016). There
may exist cooperation between AMF and the associated bacteria,
such as PSB (Zhang et al., 2016). PSB may provide the hyphae
with Pi and rely on the carbon released by AMF. Earlier research
demonstrated that AMF and PSB may enhance P acqusition of
the AM host plant through their interactactions (Kim et al.,
1997; Toro et al., 1997; Sharma et al., 2013; Calvo et al., 2014;
Figure 2). However, the mechanisms by which this nutritional
improvement is brought about remain unclear (Artursson et al.,
2006). In the following sections, what is currently known of how
AMF and PSB influence each other and, consequently, increase P
availability, are discussed separately.

Effects of PSB on AMF and
AMF-Mediated P Availability
Effect of PSB on solubilizing insoluble phosphates
The phosphate-solubilizing activities of AMF are still
controversial although AM plants have generally been shown
to increase the uptake of insoluble Pi (Yao et al., 2001; Klugh-
Stewart and Cumming, 2009; Campos et al., 2018). In many
studies, mycorrhizal inoculants were observed to alter the
composition and/or amount of total low molecular weight
organic acids (LMWOAAs) exuded by AM plants (Klugh and
Cumming, 2007; Klugh-Stewart and Cumming, 2009). However,
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FIGURE 2 | A schematic representation of how the interaction between arbuscular mycorrhizal fungi (AMF) and phosphate-solubilizing bacterium (PSB) affect the
host plant’s utilization of the organic and inorganic phosphorus (P). (1) PSB use the hyphae to access greater soil volumes further away, which can benefit the fungi
as phosphorus solubilizers may grow into insoluble-phosphorus-containing patches away from the route along the AMF hyphae; (2) PSB can colonize the
rhizosphere (potentially rich with resources from plant exudates) by using the AMF hyphae to allow growth in other directions towards the plant; (3) AMF can supply
energy-rich carbohydrates (C) via the extraradical hyphae for PSB; (4) the fungal exudates can change the rhizospheric pH, influence the chemical composition of
the root exudates, and increase microbial activity; (5) AM hyphae and mycelial exudates can improve soil structure by binding to soil particles and through glomalin
production, which may glue soil particles together and subsequently affect soil moisture retention; (6) AMF colonization can influence the bacterial community
compositions in the mycorrhizosphere; (7) AMF can increase the ability of legumes to fix N2 and reduce the amount of inorganic nitrogen that leaches, increasing
plant growth and subsequently enhancing root exudates; (8) PSB can stimulate the AMF colonization; (9) AMF, unlike root hairs, can extend much farther away from
the root surfaces. In other words, the extraradical hyphae extend beyond the phosphorus depletion zone, to absorb the bioavailable phosphates that are otherwise
inaccessible for plants. In addition, AMF-solubilized phosphates and bacteria are more efficiently taken up by plants through a mycorrhizal-mediated channel
between the plant roots and the surrounding soil; (10) AMF can take up and transfer inorganic phosphorus to the roots by their effective mycorrhizal mycelium,
reaching microhabitats where orthophosphates are made available with phosphorus-mobilizing microorganisms and preventing quick immobilization of
orthophosphates by microbial biomass; (11) PSB can improve the nitrogen and phosphorus availability for AMF and plants through organic matter decomposition;
(12) PSB (ACC deaminase positive), by synthesizing ACC deaminase, can lower the stress ethylene levels, which is involved in stimulating the growth of AMF; (13)
PSB can increase the AMF hyphal growth by hydrolyzing organic phosphorus with secretion of enzyme phosphatases and phytases and providing mineral
phosphorus for the fungi; (14) PSB (IAA positive) can increase the IAA levels, resulting in more lateral roots that form the preferred penetration sites for AM hyphae. In
addition, AMF can use the IAA the related compounds as a part of their colonization strategy to interact with plants, which leads to stimulated plant growth and
modified basal plant defense mechanisms; (15) PSB can promote the induce flavonoid release from plants to promote mycorrhiza formations, thus facilitating root
colonization; and (16) PSB (IAA positive) can loosen plant cell walls to promote root exudation to provide additional nutrients that support the microbial growth of
microbes.

direct evidence for solubilization of P by AM fungi has not
been obtained to date. Despite the fact that AM fungi might not
exude LMWOAAs by themselves, they can, however, improve
P solubilization and/or mineralization indirectly by stimulating
the surrounding soil microbes via the exudation of labile C, thus
increasing local nutrient availability in the hyphosphere and in
soil patches beyond the root hairs (Hodge et al., 2009; Cheng
et al., 2012; Jansa et al., 2013).

PSB solubilize phosphates and release Pi ions from the
sparingly soluble organic/inorganic P compounds found in
nature into a form that AMF can acquire and deliver to the
plant (Toro et al., 1997, 1998; Ordoñez et al., 2016). 32P-Labeling

studies have shown that mycorrhiza increase the absorptive
root surface areas to facilitate P uptake, but do not help in P
solubilization (Gaur, 2003). In another 32P-labeling study, seven
bacterial strains isolated from AMF spores facilitated P uptake
by promoting the development of AM extraradical mycelium
(Battini et al., 2017).

Arbuscular mycorrhizal fungi cannot extract P on their own
from indigenous less-available forms of P sources, such as
rock phosphates, and can only absorb Pi ions from the soil
solution (Antunes et al., 2007). However, with the help of
certain bacteria (Villegas and Fortin, 2001) AMF can acquire
P from rock phosphates and translocate it to the host plant.
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AMF were able to acquire P from sources that were otherwise
inaccessible with the help of PSB (Toro et al., 1997). These
interactions can also indirectly benefit plants; Medicago sativa
shoot P concentrations were observed to be improved (Zhang
et al., 2016). The interaction between the two microorganism
groups may lead to synergistic effects. It has been found that the
AMF–PSB interactions only benefit plants when additional P was
also supplied (Zhang et al., 2016). Zhang et al. (2014a) showed
that P concentrations available in the soil regulate P mobilization
and immobilization to determine the bacterial P contribution to
plants. In general, when the available P level is low in soils, AMF
and PSB compete for the P, and this competition is not stimulated
by the fungi. With additional P supply, PSB improved the AMF
hyphal growth, and the PSB activities were stimulated by the
fungi (Zhang et al., 2016).

Effect of PSB on mineralizing organic P
During evolution with plants, AMF have lost the genes encoding
proteins involved in saprotrophic function (Tisserant et al., 2013),
which means that they cannot directly breakdown soil organic
matter (Leigh et al., 2011; Zhang et al., 2014b). PSB can increase
the AMF hyphal growth by hydrolyzing organic P with secretion
of the phosphatases and phytases and providing mineral P to the
fungi (Dobbelaere et al., 2003; Wang et al., 2016; Zhang et al.,
2016). It has been reported that AMF cannot secrete phosphatases
(Tisserant et al., 2013) and directly decompose organic nutrients
(Smith and Read, 2008; Tisserant et al., 2013). AM fungi possess
many genes encoding acid phosphatases in their genomes, with
at least seven genes expressed in Rhizophagus clarus (Sato et al.,
2015). However, secretion of phosphatases is mostly associated
with the cell wall (Olsson et al., 2002) and their presence in
the rhizosphere has been demonstrated only in limited cases
(Tarafdar and Marschner, 1994; Koide and Kabir, 2000). The
magnitude of these processes is questioned as it is difficult to
isolate the effects of plants, fungi and others microorganisms
present in the experiments under non-sterile conditions (Joner
and Jakobsen, 1995; Joner et al., 2000). In an in vitro monoxenic
culture, Sato et al. (2015) provided evidence that the acid
phosphatase activity originated from R. clarus. Nevertheless, the
interaction of AM association with the phosphatase activity and
the subsequent P acquisition by efficient genotypes is still unclear
(Campos et al., 2018).

Because AMF are unable to release phosphatases outside
the hyphae, AMF’s organic P utilization appears to depend on
the recruitment of other soil microbes (Tisserant et al., 2013;
Zhang et al., 2016). The microbiome associated with the hyphae
may play a key role in AMF’s utilization of organic P. AMF
may shift the microbiome composition to influence organic P
mineralization (Zhang et al., 2016, 2018b). Importantly, AMF
hyphae seem to specifically recruit bacteria that produce alkaline
phosphatase which can mineralize organic P; these species are
not found when AMF is excluded (Zhang et al., 2018b). Despite
the fact that a major AMF function is to increase P availability to
plants (Smith and Read, 2008), AMF cannot release phosphatases
into the soil (Tisserant et al., 2013; Zhang et al., 2016). In a
study under controlled, sterile conditions, the AMF Rhizophagus
irregularis DAOM 197198 released carbon-rich compounds to

stimulate PSB functions, but did not directly influence the
phosphatase activities (Zhang et al., 2016). Thus, AMF cannot
directly utilize organic P, which limits its contribution to plant
uptake of P. PSB accounts for up to 40% of all culturable
bacteria (Jorquera et al., 2008) and can make up for this defect
in AMF. This suggests that AMF and PSB need to interact to help
plants uptake P (Zhang et al., 2018b). Recent results demonstrate
that the AMF hyphal surfaces are colonized by PSB and the
hyphal exudates are utilized as a carbon source (Wang et al.,
2016). In other words, AMF can attract PSB and help them
multiply to improve the organic P utilization by releasing hyphal
exudates and providing a carbon source (Zhang et al., 2014b,
2016; Wang et al., 2016). PSB can then colonize the AMF hyphal
surfaces (Wang et al., 2016). This enhances the activities of the
phosphatases released by the PSB, and stimulates the organic P
mineralization (Zhang et al., 2016). The extraradical AMF hyphae
can then access Pi released from organic P sources (Tarafdar and
Marschner, 1994; Feng et al., 2003). In addition, AMF hyphae-
associated PSB in the soil play an important role in phytate P
mineralization and that the AMF primes the mineralization and
turnover of the organic P (organic P utilization affected by the
AMF-bacteria interaction) (Zhang et al., 2014b). For example, in
a recent study Zhang et al. (2018a) observed that fructose exuded
by an arbuscular mycorrhizal fungus, Rhizophagus irregularis,
stimulated the expression of phosphatase genes in a phosphate
solubilizing bacterium, Rahnella aquatilis, as well as the rate
of phosphatase release into the growth medium by regulating
its protein secretory system. The phosphatase activity was also
subsequently increased, promoting the mineralization of organic
P (i.e., phytate) into Pi, stimulating simultaneously the processes
involved in P uptake by Rh. irregularis. In general, PSB can
increase P availability for AMF, especially from organic P sources,
which may increase the expression of Pi transporter genes in the
AMF hyphae (Zhang et al., 2016; Figure 3).

Effect of PSB on arbuscular mycorrhizal symbiosis
Bacteria are known to influence AMF fitness (Frey-Klett et al.,
2007; Scheublin et al., 2010; Nuccio et al., 2013) and ecological
functions (Hodge et al., 2001; Feng et al., 2003; Cheng et al.,
2012; Zhang et al., 2014b). PSB can lead to increased plant growth
parameters by stimulating the native AMF’s establishment,
growth rate, multiplication, and spore germination (Barea et al.,
2002; Bianciotto and Bonfante, 2002; Artursson et al., 2006;
Frey-Klett et al., 2007; Berta et al., 2014). PSB can promote
AMF extraradical hyphal growth and allow PSB to explore
a greater volume of the mycorrhizosphere and AMF hyphae
to gain access to new solubilized P sources (Ordoñez et al.,
2016). Increased mycelial growth of Glomus mosseae spores,
for example, was reported to be caused by an unidentified
PGP rhizobacterium (Azcón, 1987). These bacteria also helped
mycorrhiza by promoting root colonization by indigenous and
introduced AMF (Toro et al., 1997). Bacteria can promote hyphal
growth and facilitate root penetration by AMF via producing
compounds that increase cell penetrability and result in increased
root exudation rates (Hildebrandt et al., 2002; Jeffries et al.,
2003; Jäderlund et al., 2008). Following hyphal growth, the
rates of root colonization and AMF development also increase
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FIGURE 3 | Schematic representation of role of silicon (Si), arbuscular mycorrhizal fungi (AMF), and phosphate-solubilizing bacteria (PSB) in mineralizing organic
phosphorus (Po). Si increases photosynthetic products in root and rhizosphere by improving photosynthetic parameters of plant. The fructose exuded by AMF
stimulates the expression of phosphatase genes in PSB as well as the rate of phosphatase release into the growth medium by regulating their protein secretory
system. The phosphatase activity is subsequently increased, promoting the mineralization of Po (i.e., phytate) into Pi, stimulating simultaneously the processes
involved in P uptake by the AMF. ST, sugar transporter; fruT, fructose transporter; glut, glucose transporter; PT, phosphate transporter; PSS, protein secretory
system; Pase, phosphatase; Pi, inorganic P; and Po, organic P. For more details, see Zhang et al. (2018a).

(Barea et al., 2005; Richardson et al., 2009). Bacterial IAA
is known to be able to loosen plant cell walls and therefore
promote root exudation which supplies additional nutrition
that can support microbial growth (Chaintreuil et al., 2000;
Sevilla et al., 2001; James et al., 2002; Chi et al., 2005). One of
components of root exudates is enzymes such as amylase, DNase,
phosphatase, polygalacturonase, protease, RNase, sucrase, urease,
and xylanase that can play a role in organic P mineralization,
decomposition of other organic compounds, and release of
mineral elements (Ahemad and Kibret, 2014; Canarini et al.,
2019), and, therefore, provide mineral P and other elements
for the AMF. It is well established that bacterial IAA increases
the ability of plants to convert nutrients from non–available
forms to available forms by increasing the root system, root
discharge and microbial flora (Etesami et al., 2015b). Bacteria
IAA–mediated release of root exudates can enhance P mobility
for plants and AMF by releasing protons (H+) or by forming
amino/organic acid mineral complexes (by chelation of cations
accompanying P e.g., Fe3+, Al3+, and Ca2+), and indirectly
(as a source of nutrients for microorganisms) by stimulating
the microbial activities in the rhizosphere (functioning, growth,
propagation, survival) (Etesami et al., 2015b). The increased soil
saprobiotic microbial populations mediated by root exudates can,
in turn, improve N availability for AMF through organic matter
decomposition (Leigh et al., 2011; Herman et al., 2012; Nuccio
et al., 2013). Other microorganisms attracted to root exudates
stimulate hyphal growth, mycorrhizal colonization, and spore

production, thereby increasing AMF fitness (Frey-Klett et al.,
2007). Flavonoids are the main signaling compounds that are
isolated from plant root exudates, and it’s been suggested that they
play a distinct role in the AM development. Different flavonoids
affect the growth and differentiation of the hyphae as well as
root colonization in a structure–specific manner. Flavonoids
also influence presymbiotic growth differently according to the
genus and species. Furthermore, it has also been proposed that
some of the so-called mycorrhiza helper bacteria that promote
mycorrhiza formation induce flavonoid release from plants, and
facilitate root colonization by mycorrhizal plants (Schrey et al.,
2014). A number of studies have demonstrated that the IAA-
secretion induced stimulation of root hair growth and lateral root
elongation supplies more active sites and access for symbiotic
AMF and PSB associations (Aarab et al., 2015; Etesami et al.,
2015b). Therefore, it seems that PSB (IAA positive) stimulate
root hair elongation to improve root weight and architecture, and
therefore potentially improve mycorrhizal formation. Previous
studies have shown that PGPB modify hormonal signaling in
plants to influence root architecture, stimulate the growth of
the shoots and roots, and increase essential nutrient uptake
(Appanna, 2007; Bhattacharyya and Jha, 2012). AMF-induced
plant growth is in part attributed to modified plant hormone level
(Bi et al., 2019; Wang et al., 2021).

The relationship between the AMF and host roots is
complex and requires a continuous exchange of signals which
leads to a developmental coexistence (Gianinazzi-Pearson, 1996;
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Hause and Fester, 2005). Phytohormones are the signals that
regulate various plant growth processes and can therefore
manage colonization and AM symbiosis formation (Barker and
Tagu, 2000; Ludwig-Müller and Güther, 2007; Foo et al., 2013;
Gutjahr, 2014). For example, bacterial IAA may increase the
number of lateral roots for fungi to colonize in early growth
stages to facilitate host colonization (Kaldorf and Ludwig-Müller,
2000). Increased IAA levels and IAA–induced gene expressions
have been suggested to contribute to phenotypic changes during
mycorrhizal colonization (Ludwig-Müller and Güther, 2007).
Fungi may use IAA and the related compounds as a colonization
strategy to interact with plants, stimulating plant growth and
modifying basal plant defense mechanisms (Prusty et al., 2004;
Contreras-Cornejo et al., 2009). Generally, the increased levels
of IAA result in more lateral roots that form the preferred
penetration sites for the AM hyphae.

Abscisic acid (ABA) is a sesquiterpenoid hormone, derived
from carotenoids, which functions at multiple levels to regulate
AM symbiosis (Ludwig-Müller, 2010). ABA deficiency also
results in the induction of ethylene production, which adversely
affects mycorrhizal interaction with plants (Herrera-Medina
et al., 2007; Martín-Rodríguez et al., 2011). The synthesis of ACC
deaminase produced by PSB lowers the stress ethylene levels
associated with stimulating AMF growth (Gamalero et al., 2008;
Etesami et al., 2015b).

In addition, gibberellins (GAs), key regulators of plant growth
and development, play a role during arbuscular mycorrhizal
(AM) formation (Foo et al., 2013; Martín-Rodríguez et al.,
2015, 2016; Foo et al., 2016; Pons et al., 2020). GAs inhibit
arbuscular mycorrhizal symbioses (McGuiness et al., 2019)
by altering GA response changes in the expression of genes
associated with mycorrhizal colonization (Martín-Rodríguez
et al., 2015), inhibiting AM hyphal entry into the host
root, and suppressing the expression of reduced arbuscular
mycorrhization1 (RAM1) and RAM2 homologs that function
in hyphal entry and arbuscule formation (Takeda et al., 2015).
The balance between ABA and GAs is also essential for
AM formation in plant roots (Martín-Rodríguez et al., 2016;
McGuiness et al., 2019) as the imbalance in the ABA/GAs
ratio can reduce arbuscule abundance in mycorrhizal roots
(Martín-Rodríguez et al., 2015). In addition, GA signaling also
positively interacts with symbiotic responses and promotes
AM colonization of the host root. For example, in one study
(Takeda et al., 2015), low GA conditions suppressed arbuscular
mycorrhiza-induced subtilisin-like serine protease1 (SbtM1)
expression, which is required for AM fungal colonization and
reduced hyphal branching in the host root. In this study,
the reduced hyphal branching and SbtM1 expression due to
the inhibition of GA biosynthesis were recovered by GA
treatment, supporting the theory that insufficient GA signaling
causes inhibitory effects on arbuscular mycorrhiza development.
Accordingly, it seems that PSB positive for ABA and GA-
producing traits can regulate the level of production of these
hormones in the plant and lead to improved arbuscular
mycorrhizal symbioses. The ability to produce GAs in some
bacteria has been reported (Hamayun et al., 2010; Kang et al.,
2012; Tatsukami and Ueda, 2016; Etesami and Glick, 2020).

However, it is not yet clear if mycorrhizal fungi produce GA.
Therefore, the presence of such bacteria is necessary to improve
mycorrhizal symbioses.

Effects of AMF on PSB and PSB-Mediated P
Availability
Mycorrhizae affect both the composition and number of the
rhizospheric and hyphospheric bacterial communities (Offre
et al., 2007; Agnolucci et al., 2015; Taktek et al., 2015), as well
as bacterial communities of the surface of the AMF hyphae
or mycelium closely attached to the soil (Zhang et al., 2014b;
Turrini et al., 2018). AMF result in the establishment of an
extensive soil hyphal network, creating a dedicated niche for
bacteria (Bianciotto and Bonfante, 2002; Agnolucci et al., 2015).
In the cytoplasm of some AMF isolates belonging to the
Gigasporaceae family endophytic bacteria are found, which is a
case where bacteria coexist with fungi (Turrini et al., 2018). The
bacterial colonization of the AMF hyphal and spore surfaces has
been confirmed with molecular and microscopic analyses and
illustrates the existence of a close relationship between the two
microorganism groups (Toljander et al., 2006; Bharadwaj et al.,
2008; Scheublin et al., 2010; Agnolucci et al., 2015). Similar to
roots, AMF hyphae are rapid channels for photosynthates and
release carbon-rich compounds into the soil (Toljander et al.,
2007; Bharadwaj et al., 2012) and can stimulate microbial growth
and function (Drigo et al., 2010; Leigh et al., 2011; Blagodatskaya
and Kuzyakov, 2013; Kaiser et al., 2015; Zhang et al., 2016). The
root exudates are a major nutrient source for the rhizospheric
PSB, and its chemical composition may be influenced by
the AMF (Artursson et al., 2006). Furthermore, the extensive
extraradical AMF hyphae and the exudates create conditions that
can influence bacterial activities and growth (Toljander et al.,
2007; Bharadwaj et al., 2012; Gahan and Schmalenberger, 2015)
including PSB (Taktek et al., 2015; Ordoñez et al., 2016; Wang
et al., 2016; Turrini et al., 2018). The changes in the soil bacterial
community composition induced by AMF are described, both
under in vivo and controlled conditions (Marschner et al., 2001;
Toljander et al., 2006, 2007).

Arbuscular mycorrhizal fungi enhance the chlorophyll
content, PSII photochemical efficiency, and net photosynthetic
rate of plants (Wu and Xia, 2006; Zhu et al., 2014; Augé et al.,
2016; Shi-Chu et al., 2019) and also transfer plant photosynthates
underground, which can stimulate PSB activity and growth
(Zhang et al., 2016) as most PSB are heterotrophic and depend on
nutrient substrates that can be easily decomposed. AMF hyphae
are also rapid channels for the recently produced photosynthates,
which can attract PSB and promote their growth (Kaiser et al.,
2015). In addition, it has been found that the availability of
easily decomposable organic compounds limits microbial P
solubilization in soil extracts from phosphate minerals (Brucker
and Spohn, 2019; Brucker et al., 2020). Saprotrophic phosphate
solubilizing microorganisms in mineral soils generally lack
sufficient carbon (Demoling et al., 2007; Heuck et al., 2015)
because most organic carbon in soils is protected from sorptive
or recalcitrant microbial decomposition or is simply spatially
inaccessible (De Nobili et al., 2001; Dungait et al., 2012).
Accordingly, increased microbial P solubilization rates are
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reported when carbon sources become available (Hameeda et al.,
2006; Patel et al., 2008).

Arbuscular mycorrhizal fungi generate a vast extraradical
hyphae in the soil that microorganisms can inhabit (Gahan and
Schmalenberger, 2015). PSB can grow alongside AMF hyphae
in and out of the root, in sterile conditions as well as with
an indigenous microbial community (Ordoñez et al., 2016),
demonstrating the close relationship of AMF and PSB (Scheublin
et al., 2010; Agnolucci et al., 2015). This may help PSB to use
the hyphae to access areas further away in the soil to acquire
insoluble P. By developing an external mycelium, AMF, upon
root colonization, connect the root with the surrounding soil
microhabitats and can contribute to nutrient capture and supply
(Toro et al., 1997). The PSB can also use the AMF hyphae to
allow growth in the direction toward the plant, colonize the
rhizosphere, and use more plant exudates (Ordoñez et al., 2016).

Phosphate–solubilizing bacteria attachment to the
extraradical AMF hyphae can ensure that P solubilization
would occur in locations where it is the most beneficial for fungi
to access the additional soluble P. The phosphate solubilized
by AMF and PSB is effectively absorbed by plants through a
channel formed by the mycorrhiza between plant roots and the
surrounding soil (Artursson et al., 2006).

Since the mobilized orthophosphates can quickly be
immobilized by microbial biomass, AMF can absorb and transfer
the nutrients to the roots through their effective mycorrhizal
mycelium, and reach microhabitats where orthophosphates are
made available by P-mobilizing microorganisms (Richardson
et al., 2009). AMF cannot directly decompose organic nutrients,
as they have no known saprotrophic capabilities (Smith and
Read, 2008; Tisserant et al., 2013). AMF can also increase the
soil saprobiotic microbe activities, including those of PSB. These
bacteria can decompose organic matter and in turn also improve
the N and P availability for AMF and plants (Leigh et al., 2011;
Herman et al., 2012; Nuccio et al., 2013). Previously, Linderman
(1992) reported that AMF enhance the activity of nitrogen–fixing
bacteria (NFB) and PSB and thus promote plant growth. PSB can
also release diffrent enzymes to decompose the organic matter,
and can provide mineral nutrients for the AMF hyphae (Hodge
and Fitter, 2010; Hodge, 2014; Zhang et al., 2014b). Therefore,
in exchange for using the carbon released by the AMF, these
microbes can provide additional benefits to the fungi. AMF and
PSB may obtain their required nutrients from their partners and
enhance their own fitness through cooperation. By increasing
the root surface areas for nutrient acquisition, or through more
specific mechanisms, AMF can also help plants resist abiotic and
biotic stresses (Artursson et al., 2006; Miransari, 2010; Sikes,
2010; Mohammad and Mittra, 2013). PSB solubilize phosphates
into forms that are usable by the AMF, and AMF can absorb
the P and transport it to the plant using a range of mechanisms.
AMF may also help spread PSB to neighboring rhizospheres.
Therefore, AMF and PSB interact synergistically.

AMF Increase Si Uptake by Plants
The benefits of Si nutrition, although significant, are limited due
to its restricted uptake by plant (Anda et al., 2016). However,
AMF such as Glomus etunicatum, G. versiform, G. coronatum,

Rhizophagus clarus (=Glomus clarum), Rhizophagus irregularis
(=Glomus intraradices), and Funneliformis mosseae (= Glomus
mosseae) were observed to increase Si uptake in the roots and
shoots of mycorrhizal plants (i.e., Saccharum spp., Glycine max
L., Zea mays L., Cajanus cajan L., Cicer arietinum L., strawberry,
and banana) compared to non–mycorrhizal plants (Yost and Fox,
1982; Kothari et al., 1990; Clark and Zeto, 1996; Clark and Zeto,
2000; Nogueira et al., 2002; Hammer et al., 2011; Garg and Singla,
2015; Anda et al., 2016; Garg and Bhandari, 2016a,b; Frew et al.,
2017; Garg and Singh, 2018; Hajiboland et al., 2018; Gbongue
et al., 2019; Moradtalab et al., 2019). AMF play a substantial
role in Si uptake, translocation from the external solution to the
intraradical mycelium, and transfer from the fungal cells to the
root cells. The mechanisms remain unclear but it is not excluded
that active transport is involved via transporters located within
the extraradical hyphae at the soil-fungus interface for the uptake
of Si and at the plant–fungal interface (i.e., arbuscule) for its
transfer across the peri–arbuscular interface in the plant cells
(Yost and Fox, 1982; Hammer et al., 2011; Anda et al., 2016; Garg
and Bhandari, 2016b). These studies highlight the importance
of AMF inoculation as tools to effectively enhance Si uptake
by plants. Therefore, it would be of great interest to investigate
how AM symbiosis enhances the host plant uptake of Si and
how AM symbiosis and Si uptake help to improve P nutrition
and plant growth.

Si Increases Mycorrhizal Effectiveness in
Plants
Mycorrhizal effectiveness (or responsiveness of plants to
mycorrhizae) is defined as the difference in the growth of
plants with and without mycorrhizae (Janos, 2007). Mycorrhizal
effectiveness is influenced by different factors like fungal species,
plant species and genotype, and soil conditions (Tawaraya,
2003). Compared to the studies widely performed on the effects
of P availability as a soil chemical factor on the mycorrhizal
effectiveness, research on how Si affects mycorrhizal effectiveness
are lacking. However, in two recent studies (Hajiboland et al.,
2018; Moradtalab et al., 2019), mycorrhizal effectiveness was
increased with Si treatments in strawberry plants inoculated with
AMF Rhizophagus clarus, Rhizophagus intraradices, and Glomus
versiform compared to AMF plants not treated with Si. Some
known mechanisms by which Si benefits the AMF effectiveness
include: (i) enhancing the uptake and transfer of nutrients for
plants and stimulating the root growth in AMF plants, which can
lead to promoted AMF colonization (Hajiboland et al., 2018); (ii)
increasing the photosynthetic rate such that the fungal partner is
able to receive a greater carbon supply, for example, by increasing
the leaf chlorophyll levels, photosynthetic enzyme activities, and
stomatal conductance (Guntzer et al., 2012; Hajiboland, 2012)
(Figure 3) and improving the leaf stability so that leaves are
oriented more horizontally (Botta et al., 2014). Since 4–20% of
the fixed carbon from photosynthesis is transferred to the AMF,
the mycorrhizal association relies on the organic carbon supplied
from their photosynthetic partners (Smith and Read, 2008).
Furthermore, the photosynthetic rate (organic carbon supply)
is positively correlated with the hyphal absorption capacity and
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arbuscule formation (Smith and Read, 2008; Anda et al., 2016;
Moradtalab et al., 2019); (iii) modifying the phenolic metabolic
pathways in AMF host plants and/or reducing polymerization
and lignin synthesis (Rodrigues et al., 2004; Mandal et al., 2010;
Hajiboland et al., 2018), which can affect how AMF interact
with the host plant. Studies have investigated how Si affects
the metabolism of phenolic compounds in plants (Dragišić
Maksimović et al., 2007; Hajiboland et al., 2017). Phenolic
compounds, such as flavonoids, are known to potentially help
facilitate AMF to interact with their host plants (Vierheilig, 2004;
Mandal et al., 2010), improve fungal growth parameters such
as branching, hyphal growth, spore germination (Steinkellner
et al., 2007) and secondary spore formation, and contribute to
the fungal invasion and root arbuscule formation (Hassan and
Mathesius, 2012); and (iv) increasing the pool of soluble sugars in
the roots, which is crucial for the entry and further establishment
in the roots, of AMF (Moradtalab et al., 2019). Future research
should investigate the metabolic and molecular mechanisms that
are associated with the synergistic relationship of Si and AMF.

PSB Increase the Availability and Uptake
of Si for Plants
Phosphate–solubilizing bacteria generally have the ability to
weather silicates, likely because basic metabolic activities like
organic acid production and respiration can cause the weathering
of minerals (Brucker et al., 2020). PSB mainly solubilize insoluble
Pi by acidifying the microenvironment (Etesami, 2020). In
addition to increasing P availability for plants, there are some
reports that PSB are also able to increase Si availability and
uptake. Lee et al. (2019) observed that the PSB strain Enterobacter
ludwigii GAK2, isolated from paddy soils, was able to significantly
increase P and Si levels in rice plant tissues grown on insoluble
Pi [Ca3(PO4)2] and insoluble silicate (Mg2O8Si3) based soils.
This bacterial strain also increased rice plant growth indices
(chlrophyll content, fresh biomass, root and shoot lengths).
In another study, the PSB strains Bacillus simplex UT1 and
Pseudomonas sp. FA1 significantly increased the shoot Si levels
in sorghum (Sorghum bicolor L.) (Rezakhani et al., 2019a) and
wheat (Triticum aestivum L.) (Rezakhani et al., 2019b). Given
the role of Si in increasing soil P availability, one question
that arises here is whether the Si-mediated increase in soil P
availability has an inhibitory effect on bacterial solubilization
of P from insoluble Pi sources. It is noteworthy that microbial
P solubilization is not influenced by the soil P availability. For
example, in a study (Brucker et al., 2020), adding P (100 mg
of ground apatite) to soil extracts from soils with various P
fractions (bioavailable P between 0.6 to 38 mg kg−1 and total
P between 0.42 to 1.23 g kg−1) and degree of weathering,
which had been incubated 28 days, did not substantially reduce
P solubilization rates, which indicates that the P availability
does not affect the microbial soil P solubilization. It is probable
that microbial P solubilization is not driven by the microbial
P demand but rather is a side effect of microbial metabolism.
It was also observed that P fertilization over several years did
not influence PSB abundance in the grassland soils of different
continents (Widdig et al., 2019). Generally, PSB can benefit plants

by accelerating the weathering of silicates and increasing the
rhizospheric concentration of available Si.

Si Increases the Population of PSB
The potential effect of Si on the soil microbial community
has attracted only a limited amount of attention. However,
there are some reports showing that Si can significantly
influences some soil microbial community components (e.g.,
it increased beneficial bacterial population and reduced soil
fungi/bacteria ratio) (Wainwright et al., 2003; Hordiienko et al.,
2010; Karunakaran et al., 2013; Wang et al., 2013; Lin et al.,
2020). It is reported that bacteria use Si-based autotrophy as
a source of energy to support CO2 fixation (Das et al., 1992).
It is also proposed that the first bacteria may have evolved on
earth because of Si (Wainwright et al., 2003). A number of
bacteria and fungi are able to grow on nutrient-free silica gel
and distilled water (Wainwright et al., 1991). According to a
study (Wainwright et al., 2003), silicic acid increases the number
of both aerobic and facultative anaerobic bacteria in ultra-pure
water incubated under strict oligotrophic conditions. In addition,
organisms use silica through silicification, a process by which
silica is utilized and deposited by bacteria (Perry, 2003) and also
Si-based compounds stimulate the population of oligotrophic
bacteria in soil (Ai-Falih, 2003). In a previous study (Karunakaran
et al., 2013), it was shown that the microbial population increased
with an increase in concentration of nanosilica. In addition,
silica content in biomass also increased with an increase in
the concentration of nanosilica. It is known that nanosilica is
not toxic to the soil bacterial community (Karunakaran et al.,
2013). The reason behind the interaction between nanosilica
and bacteria may reflect a hydration property of the nanosilica
surface, which could facilitate the attraction of silica to the
microbial surface (Gordienko and Kurdish, 2007).

There are a few studies that have focused on the effect of Si
application on the activity and population of PSB. In one study,
the efficiency of nanosilica (0.5 g kg−1 of soil) was evaluated in
terms of its effects on beneficial microbial population such as PSB
in the rhizosphere soil of maize (Rangaraj et al., 2014). When
compared with the control (2.0× 104 CFU g−1), the silica-treated
rhizosphere soils revealed an increase in the PSB population
(4.4 × 104 CFU g−1). This shows that the addition of silica may
act as a substrate for P uptake systems in soil as well as in plants.
An increase in the population of PSB of nanosilica-amended soil
indicates enhanced soil fertility and enhanced available nutrients
to the plants. The increased population of PSB in nanosilica-
treated rhizosphere soil may be due to the availability of more P
to plants, as the Si competes for P in a plant system. Because both
P and Si influence the P content and the population of PSB, the
uptake of either source increases the populations of PSB. Hence,
silica may act as a substrate for PSB, which results in an increase
in the population of PSB and availability of P. The changes in
soil inorganic nutrients with respect to silica fertilization may
also be due to the production of organic compounds by increased
microbial activity and desorption of inorganic nutrients from soil
mineral compounds (Karunakaran et al., 2013). It is also reported
that the bacteria use silica from soil and hence, there is a decrease
in the silica content in the soil (Wainwright et al., 2003). Thus,
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nanosilica can be included for fertilizer formulations to make
the soil more fertile and to improve soil phosphate-solubilizing
bacterial community for improving plant P nutrition.

SSB INCREASE AVAILABILITY OF P AND
Si AND THEIR UPTAKE BY PLANTS

Plants are not able to absorb Si until monosilicic acid (H4SiO4) is
released into the soil solution through weathering or dissolution
(Kang et al., 2017). Monosilicic acid generally originates from
the weathering of soil minerals that contain Si, desorption from
the soil matrix, irrigation water, and Si fertilizers (Klotzbücher
et al., 2015). Si fertilizers, unlike conventional fertilizers, have a
limited availability and are often not affordable for many farmers
(Meena et al., 2014). Therefore, they are rarely used in many
countries, especially in developing countries. Silicate fertilizers
are usually composed of (i) industrial byproducts or slags rich
in Si, whose application may lead to metal contamination of
soils, (ii) bentonite, diatomaceous earth, feldspars, and micas,
which are biologically/minerally derived Si fertilizers with low Si
bioavailability and high application rates and (iii) highly soluble,
but very expensive, potassium silicates (Datnoff et al., 2001). Si-
rich crop residues, construction/demolition wastes that contain
aluminum, calcium, and potassium silicates, mineral/metal
mining wastes, and silicate rocks may be recycled to affordable
silicate fertilizers. The solubility of the primary and secondary
minerals in soils is the main factor that influences the soil Si
concentration (Sommer et al., 2006). The primary and secondary
minerals can be subjected to physico-chemical and biochemical
interventions that accelerate the solubility for soil applications
(Bin et al., 2008), but biochemical action via microbial activities
is considered most important for this process (Vasanthi et al.,
2018). Many studies have observed that microbes isolated from
the surface of silicate minerals weather different silicates (Sheng
et al., 2008; Lapanje et al., 2012; Wang et al., 2015).

Plants and their associated microflora are known to also
influence silicate weathering (the dissolution and mobilization of
silicate minerals in soil) by altering the physical soil properties,
modifying the soil pH, and producing chelating ligands (Cornelis
et al., 2011). It has been reported that among microorganisms,
plant associated bacteria accelerate the dissolution of silicates and
release Si to the plant–soil system (Savant et al., 1996; Hutchens
et al., 2003; Sheng and He, 2006; Uroz et al., 2009; Chandrakala
et al., 2019) through bio-weathering processes (Klotzbücher et al.,
2015). With an increase in knowledge of how Si benefits plants,
rhizospheric soils have been explored in search of new bacteria
that solubilize silicates (Kang et al., 2017; Vasanthi et al., 2018).
SSB have been gathering increasing interest, as rhizospheric
silicate solubilization leads to increased potassium and Si uptake,
which reduces the need for potash fertilizers.

The ability to solubilize silicates (to depolymerize crystalline
silicate) has been reported in various Gram-positive and
Gram-negative bacteria (Burkholderia eburnea CS4-2, Bacillus
sp., Bacillus flexus, Bacillus globisporus, B. mucilaginosus,
B. megaterium and Pseudomonas fluorescens, Burkholderia
susongensis sp., Rhizobium sp., Rhizobium yantingense,

Rhizobium tropici, and Pseudomonas stutzeri) (Malinovskaya
et al., 1990; Lin et al., 2002; Liu et al., 2006; Vasanthi et al.,
2013, 2018; Chen et al., 2015; Gu et al., 2015; Wang et al., 2015;
Umamaheswari et al., 2016; Kang et al., 2017; Chandrakala et al.,
2019).

Silicate-solubilizing bacteria can potentially release soluble
silica from biogenic materials such as diatomaceous earth, rice
husks, rice straw, and siliceous earth, as well as from insoluble,
inorganic (Al, Ca, K, and Mg) silicates and silicate minerals such
as feldspar and biotite (Wang et al., 2015; Chandrakala et al.,
2019). These bacteria have been isolated from different habitats,
such as rice plant rhizospheres (Kang et al., 2017; Chandrakala
et al., 2019), from rice field soil samples (Vasanthi et al., 2013),
weathered feldspar surfaces (Sheng and He, 2006), weathered
rock surfaces (Gu et al., 2015), weathered rock (purple siltstone)
surfaces (Chen et al., 2015), pond sediments, river water, soils,
and talc minerals (Umamaheswari et al., 2016), potassium mine
tailings (Huang et al., 2013), quercus petreae oak mycorrhizal
roots surroundings (Calvaruso et al., 2010), and weathered rocks
(Wang et al., 2015).

Some mechanisms which SSB could utilize to release
soluble silica from insoluble silicates include: (i) production
of organic acids including citric, tartaric, acetic, gluconic,
hexadecanoic, malic, oxalic, phthalic, oleic, heptadecanoic, and
hydroxypropionic acids (Vassilev et al., 2006; Vasanthi et al.,
2018), which have metal complexing properties that may bind
with aluminum and iron silicates and render silicates soluble,
also provide protons (H+) for protonation for silicate hydrolysis
(Duff and Webley, 1959; Avakyan et al., 1986; Drever and
Stillings, 1997); (ii) inorganic acid production (i.e., oxidation
of sulfur, reduction of sulfides to sulfuric acid, oxidation of
ammonia to nitrates, and conversion of nitrates to nitric acid,
which can act on silicates); (iii) synthesis and discharge of
carbonic anhydrase that catalyzes the interconversion between
carbon dioxide produced by soil microbes and water, and
the dissociated ions of carbonic acid (Brucker et al., 2020),
which promotes the microbial conversion of silicate minerals
as observed in orthoclase degradation to kaolinite (Waksman
and Starkey, 1924). In addition, CO2 sequestration in basaltic
acquifers and the associated carbonate mineralization might
maintain an environment suitable for silicate mineral dissolution
(Pokrovsky et al., 2011); (iv) production of siderophores, which
bind and transport iron(III) which can play a part in silicate
solubilization by scavenging iron from silicate minerals as
observed in hornblende degradation (Kalinowski et al., 2000);
(v) the reduction of sulfates and production of H2S, which
reacts with cations like Ca and Fe of silicate minerals forming
sulfides and thus rendering silicate solubilization (Ehrlich
et al., 2015); (vi) absorption and binding of the inorganic
silicate ions on bacterial surfaces, due to having ionizable
carboxylates and phosphates of lipopolysaccharides in Gram-
negative bacteria and peptidoglycan, teichoic acids and teichoic
acids in Gram-positive bacteria and their high reactivity to
the ions, rendering dissolution (Urrutia and Beveridge, 1994);
(vii) extracellular polysaccharide production (Xiao et al., 2016;
Kang et al., 2017), which is implicated in weathering of rocks
and breakdown of silicates due to their wetting and drying
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properties and acting as a sorbent of metal ions (binding
silicates and affecting the equilibrium between the fluid and
mineral phases, rendering them soluble) during this vital
activity. The biofilm formation also solubilizes silicates in their
microenvironment (Malinovskaya et al., 1990); and (viii) alkali
production (Kutuzova, 1969). It is known that SSB can solubilize
silicates by shifting the pH of the environment toward alkalinity
by decomposing the organic matter and fixing nitrogen, to
subsequently form ammonia and amines (Vasanthi et al., 2018);
and acidolysis, the most commonly found mechanism of silicate
mineral weathering (Jongmans et al., 1997; Chandrakala et al.,
2019). Future research should focus on the yet unknown mineral
weathering mechanisms of these bacteria (Kang et al., 2017).

These bacteria, isolated from both plant roots and soil
minerals, could also increase the plant Si uptake and therefore Si
levels in plants (Peera et al., 2016; Kang et al., 2017; Vasanthi et al.,
2018; Chandrakala et al., 2019). In one study (Kang et al., 2017),
it was found that inoculation of japonica rice plants with the SSB
strain Burkholderia eburnea CS4-2 increased the Si content in the
plants grown on the plant growth substrate including insoluble
silicates. In addition, the plant growth attributes (chlorophyll
levels, root and shoot lengths, root and shoot fresh weights, etc.)
were also improved compared to those of the control and of
plants grown on insoluble silica. CS4-2, when applied together
with insoluble silica, significantly promoted the growth of rice
plants (Kang et al., 2017). Chandrakala et al. (2019) found that the
SSB strain Rhizobium sp. IIRR-1 isolated from the rhizospheric
soil around rice plants could colonize and grow on all insoluble
silicates, which resulted in increased silica release into the culture
media (12.45–60.15% over that of the control). This strain also
successfully colonized the roots of rice seedlings and improved
their vigor by 29.18% compared to that of the control.

In addition to providing plants with Si, SSB can also
solubilize P and other nutrients like Ca, Fe, K, Mg, and
Zn, bound to the silicate minerals from insoluble sources
and provide plants with P (Lin et al., 2002; Liu et al.,
2006; Vasanthi et al., 2018; Chandrakala et al., 2019; Lee
et al., 2019). The mechanisms for P solubilization are also
responsible for the biogenic silicate weathering; namely, the
release of extracellular polysaccharides, organic acids, protons,
and siderophores (Vassilev et al., 2006; Gorbushina and
Broughton, 2009; Uroz et al., 2009; Etesami, 2020). Silicate
weathering provides access to minerals that contain P, such
as apatite, which are calcium phosphates, and therefore is
also related to P solubilization (Gorbushina and Broughton,
2009; Uroz et al., 2009). For example, studies have reported
that SSB produce organic acids such as acetic, formic, and
gluconic acids during the solubilization of insoluble tri-calcium
silicates and other insoluble nutrient sources (Park et al., 2009).
The aforementioned studies show that SSB utilization may
improve the solubilization of insoluble P and Si, which could
ultimately increase the plant P and Si uptake and to substantially
improve the plant growth and health. Compared to the studies
performed on PSB and other PGPB, very few studies have been
conducted to isolate SSB with plant growth-promoting activities
from plant-associated soils (Kang et al., 2017; Vasanthi et al.,
2018), likely because SSB only accounts for a low proportion

of the total bacteria that exist in soils and silicate minerals
(Vasanthi et al., 2018).

The outcome of this review paper may widen research
scope for use of Si/nanosilica (or SSB) in combination with
AMF and PSB in improving P use efficiency in sustainable
agriculture (Figure 4).

FUTURE PROSPECTS

Arbuscular mycorrhizal fungi provide their host plants with P
and other nutrients in exchange for photosynthates, by effectively
increasing the volume of the soil solution that host plants can
acquire minerals from via the hyphae that develop from the
roots. AMF prevent the available P from re-precipitating before
plants have access, and their capacity to transport P to plants
can account for up to 80% of a plant’s total P uptake. However,
much of the soil P exists in an insoluble form, and some AMF can
only exploit soluble P sources. PSB can solubilize these insoluble
P forms and potentially make them available for absorption by
AMF hyphae and plants. PSB also increase the AMF hyphal
expression Pi transporter genes. In addition to increasing P
availability in soils, Si also enhances the expression of plant
genes associated with inorganic P absorption under P-deficient
conditions. Previous studies, indicate that AMF and PSB, Si
and AMF, and Si and PSB synergistically act to more effectively
increase the plant uptake of P, improving the growth of different
plants more than when each was applied on its own. Accordingly,
the use of Si along with these two microbial groups may increase
P availability in the rhizosphere.

Several suggestions and avenues of research would move us
closer to adopting this strategy for developing environment-
friendly P-biofertilizer to be used as supplements and/or
alternatives to chemical P fertilizers:

(i) It is known that AMF and PSB cooperate, in addition to
having synergistic effects (Zhang et al., 2016). According to
Zhang et al. (2016) AMF and free–living PSB cooperated
for mutual benefit by supplying the required carbon
or P for each microorganism, though these interactions
were dependent on the environmental P availability. This
indicates that when using co–inoculation of AMF and PSB,
the amount of available P in the soil should be considered;

(ii) AMF hyphae, by secreting certain metabolites such as
carbohydrates (Hooker et al., 2007; Toljander et al.,
2007) (e.g., sugars such as galactose, fructose, glucose,
and trehalose) (Zhang et al., 2018a,b), carboxylates (e.g.,
aconitate, citrate, and succinate) (Tawaraya et al., 2006;
Zhang et al., 2018b), and amino acids (Bharadwaj
et al., 2012), only benefit specific microorganisms and
inhibit others (Nuccio et al., 2013; Bender et al., 2014).
The exact mechanisms of these interactions remains to
be investigated, although previous research has made
suggestions: physical interactions such as the capacity
to attach to the hyphae of the AMF (Scheublin et al.,
2010), niche competition for nutrients (Veresoglou et al.,
2011), and AMF hyphal exudation directly and indirectly
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FIGURE 4 | Synergistic effects of among arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacterium (PSB), and silicon (Si) on P Availability and its uptake
by plant.

manipulating the community (Toljander et al., 2007).
In addition, it is important to note that the stimulated
microbes positively affect AMF fitness in general (Scheublin
et al., 2010; Nuccio et al., 2013);

(iii) It has also been found that relative to other PSB
strains, the different bacteria may positively or negatively
influence the AMF hyphal growth. Future research
should investigate which combination and plant-growth-
promoting characteristics are the most affected by fungal
secretions, as the knowledge is yet unclear. Furthermore,
it should be investigated which soil conditions (available P
content, pH, organic matter composition, etc.) lead to the
best results in plants when the co–inoculation of AMF and
PSB with Si is provided;

(iv) Further research is necessary to identify the different
mechanisms with which spore- and AMF hyphae-
associated PSB affect plant growth with and without AMF
in non-sterile conditions in the field. Evidence to date is still
inconsistent regarding significant organic P mineralization
by AMF. Continuous monitoring of the characteristics of
the different AMF mycelial exudates, and how they interact
with the biotic and abiotic environments in situ will also
help further the understanding AMF’s ecological roles
(Toljander, 2006);

(v) The relationship between certain soil bacteria and
mycorrhizal fungi provides new insights into the design
of mixed inoculation, while identifying fungal strains that
contain plant growth-promoting endosymbiotic bacteria
and mycorrhiza helper bacteria (bacterial communities

living strictly associated with AMF spores extraradical
mycelium and mycorrhizal roots, in the mycorrhizosphere)
evidenced by ACC deaminase activities, IAA production,
siderophore production, Pi solubilization, and N2 fixation
ability enables new strategies for AMF use (Turrini et al.,
2018). A better understanding of such relationships
between certain bacteria and fungi should lead to
substantial ecological benefits and contribute to sustainable
agriculture;

(vi) To make optimal use of soil microorganisms to maximize
the benefits for plant growth and development, future
research should investigate how the soil bacteria and fungi
interact. Calcareous soils with a high pH and low P
availability could benefit greatly from making use of such
microorganism interactions;

(vii) Since the coexistence of AMF and PSB in the rhizosphere
spans millions of years, numerous interactions should have
evolved between the two microorganism groups. The exact
mechanisms between AMF and PSB should be identified.
It is not clear whether the phosphate-solubilizing ability of
any bacteria allows them to attach to the extraradical AMF
hyphae (Scheublin et al., 2010);

(viii) Most research has been done using culturable
bacteria. Since most bacteria are unculturable, more
research is needed dealing with unculturable bacteria
in the mycorrhizosphere, which will lead to an
improved knowledge of the microbial community
and the associated mycorrhizospheric interactions
(Toljander, 2006);
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FIGURE 5 | Synergetic role of among arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacterium (PSB), and silicon (Si) in improving phosphorus (P)
uptake by plant.

(ix) Further research to evaluate the application and the efficacy
of AMF, PSB, and SSB (or Si fertilizers) as co–inoculants
or as independent inoculants under various environmental
stresses on crops fertilized with different low-solubility
P sources in real world conditions is necessary, where
the survival of AMF, PSB, and SSB, as well as how the
mechanisms with which they promote plant growth is
affected by competition with the endemic microorganisms,
environmental stresses, and soil conditions;

(x) Further research is necessary to validate the AMF and PSB
performance in conjunction with SSB or suitable insoluble
silicate sources, as silica itself is considered as agronomically
beneficial and its mobilization is always accompanied by the
release of other macronutrients and macronutrients that are
bound to silicate minerals, under various field conditions
and different ecosystems; and

(xi) Because AMF are unable to release phosphatases outside
the hyphae, organic P utilization by AMF seems to
depend on the presence of other soil microbes. Since
different bacterial genera possess different organic P
mineralization abilities (Rodrìguez and Fraga, 1999) and
multiple plant-growth-promoting characteristics, bacteria
are expected to promote plant growth more effectively
in comparison to microorganisms that only possess a
single plant growth-promoting trait (Shahi et al., 2011;
Etesami and Maheshwari, 2018); manipulation of the

bacterial community associated with the AMF hyphae (i.e.,
introduction of superior PSB and SSB into the hyphae)
may influence the organic P mineralization and Si uptake
processes in plants.

CONCLUSION

P is a vital element in crop nutrition. Adverse environmental
effects of chemical-based P fertilizers have compelled us to
find a sustainable approach for efficient P availability in
agriculture to meet the ever-increasing global demand of food.
According to the review paper, the use of AMF, PSB, and
the addition of Si can be an effective and economical way
to improve the availability and efficacy of P. Based on what
is known about them, the combination of AMF, PSB, and
Si (or SSB) may be utilized as a strategy for improving
plant growth in P-deficient soils and minimizing chemical
fertilization to exercise sustainable agriculture (Figure 5).
The combination can help plants effectively utilize the low-
solubility P sources by solubilizing them into utilizable forms
that are later absorbed by plants. This may assist in solving
problems encountered with the crop production economy
and food shortages, which also make the co-inoculation with
Si or SSB a promising technique for use in commercial
inoculant formulations.
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