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The vascular bundle plays an important role in nutrient transportation in plants and exerts 
great influence on crop yield. Maize is widely used for food, feed, and fuel, producing the 
largest yield in the world. However, genes and molecular mechanism controlling vascular 
bundle-related traits in maize have largely remained undiscovered. In this study, a natural 
population containing 248 diverse maize inbred lines genotyped with high-throughput 
SNP markers was used for genome-wide association study. The results showed that 
broad variations existed for the vascular bundle-related traits which are subject to genetic 
structure and it was suitable for association analysis. In this study, we identified 15, 13, 
2, 1, and 5 SNPs significantly associated with number of small vascular bundle, number 
of large vascular bundle, average area of single small vascular bundle, average area of 
single large vascular bundle, and cross-sectional area, respectively. The 210 candidate 
genes in the confidence interval can be classified into ten biological processes, three 
cellular components, and eight molecular functions. As for the Kyoto Encyclopedia of 
Genes and Genomes analysis of the candidate genes, a total of six pathways were 
identified. Finally, we found five genes related to vascular development, three genes related 
to cell wall, and two genes related to the mechanical strength of the stalk. Our results 
provide the further understanding of the genetic foundation of vascular bundle-related 
traits in maize stalk.

Keywords: maize, stalk, vascular bundle, genome-wide association study, candidate genes

INTRODUCTION

Maize is the most widely planted crop in the world and provides a large part of food for 
animals and human as well as materials for deep processing and energy. According to the 
forecast of the United Nations, the world’s population will exceed nine billion and global 
demand for maize will double (Ray et  al., 2013) by 2050. In order to provide living space 
for the growing population, the cultivated land area has shrunk year by year worldwide. 
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Thus, it is of great significance to increase the yield per unit 
area of maize.

Vascular bundles consist of xylem and phloem, two 
differentiated conductive tissues, and undifferentiated cambial 
or procambial stem cells. Vascular bundles provide mechanical 
support for plants. In maize, appropriate strength and tenacity 
would help the plant stand against winds and decrease the 
loss caused by lodging. Moreover, vascular bundles function 
as “flow” in the “source-flow-sink” system and transport 
photoassimilates produced by leaves (“source”) to the fruit 
(“sink”) and transfer water and salt from roots to the whole 
plants. Previous studies have observed significant correlation 
between the vascular bundle system and maize yield (Housley 
and Peterson, 1982; Nátrová, 1991).

Many studies have been carried out on the genes related 
to vascular bundle system in plants. In Arabidopsis, genes 
involved in vascular bundle patterning have been identified, 
such as MP, PHB, PHV, AtHB15, and REV (Hardtke and 
Berleth, 1998; McConnell et  al., 2001; Zhong and Ye, 2004; 
Du and Wang, 2015). In crops, quantitative trait loci (QTL) 
for vascular bundle-related traits have been identified in tomato 
(Coaker et  al., 2002), wheat (Sang et  al., 2010), and rice (Bai 
et  al., 2012; Zhai et  al., 2018; Fei et  al., 2019). Notably, genes 
that affect the vascular bundle system in rice have been reported, 
such as APO1, ABV, DEP1, and NAL1 (Qi et  al., 2008; Terao 
et  al., 2010; Fujita et  al., 2013; Fei et  al., 2019). However, the 
functional genes have not been fully discovered and the molecular 
mechanism of how the vascular bundle system influences the 
crop yield has remained largely unknown.

Progresses have been made in the study of maize vascular 
bundles system. Sakaguchi and Fukuda (2008) used the basal 
leaves to observe the continuous process of vascular bundle 
cell development and accordingly divided the longitudinal vein 
development of maize leaves into five stages. Feng et al. (2014) 
found that planting density significantly affected the structure 
of maize stem vascular bundles and that, with the increase 
in planting density, the number of large and small vascular 
bundles in the stem decreased. In addition, the number of 
large vascular bundles and that of total vascular bundles differed 
significantly between different density treatments. Xu et  al. 
(2017) found that plant growth regulator EDAH significantly 
increased the number and area of vascular bundles. However, 
earlier studies mainly focused on the development and micro-
structure of vascular bundles, and little is known on the 
functional genes regulating the vascular bundle system in maize, 
and the molecular mechanism on the vascular bundle-related 
traits in maize has remained largely blank. Huang et  al. (2016) 
used a large maize-teosinte experimental population to perform 
a high-resolution QTL mapping for the number of vascular 
bundle in the uppermost internode of maize stem and validate 
the effect of one QTL qVb9-2 on chromosome 9.

In recent years, genome-wide association study (GWAS) has 
become an efficient tool to capture functional genes and favorable 
haplotypes for interested traits in maize (Tian et  al., 2011; Li 
et  al., 2013, 2019; Wang et  al., 2016). For maize, due to the 
release of the B73 reference genome, GWAS application in 
agricultural traits of maize provides useful reference for revealing 

the phenotypic traits diversity and genetic architecture of vascular 
bundles in maize stalk. In this study, we  performed GWAS 
for vascular bundle system using a natural population consisting 
of 248 maize inbred lines with abundant genetic diversity in 
2017, 2018, and 2019. And the candidate genes adjacent to 
the significant SNPs were identified. This study lays the foundation 
for understanding the genetic architecture of vascular bundle-
related traits in maize.

MATERIALS AND METHODS

Plant Materials
A natural population panel containing 248 diverse maize inbred 
lines was used as research materials provided by the China 
Agricultural University and National Maize Improvement Center 
of China. The 248 maize inbred lines panel included not only 
some excellent back bone elite inbred lines in China but also 
some high-quality inbred lines introduced from abroad. The 
detailed information on this natural population can be  found 
in Supplementary Table S1 (Yang, 2016). For all the 248 maize 
inbred lines, a randomized block design with two replications 
was used in this study. Each material inbred was planted in a 
plot of two 3.0-m-long rows with 0.60-m-inter-row space, using 
a population density of 75,000 plants per hectare at the 
Experimental Station of Hebei Agricultural University in Baoding 
(115.48° and 38.85°) in the summer of 2017, 2018, and 2019 
and the Experimental Station of Shijiazhuang (115.12° and 37.54°) 
in the summer of 2017 and 2018, respectively. All the maize 
plants were in-followed standard local field management using 
local maize tillage methods throughout the whole growth periods.

Phenotypic Evaluation
One week after pollination, three individual plants with typical 
growth were selected for each inbred as three biological replicates. 
For each replicate, cross-section slices from the uppermost 
internode were manually made. The slices were stained with 
5% (g/ml) m-trihydroxybenzene and concentrated hydrochloric 
acid (Huang et  al., 2016). Then, the stained slices were imaged 
by the Zeiss Axioskop  40 microscope (Germany). Zen (blue 
edition) 2012 image processing software was used to collect 
data of vascular bundle-related traits, including the number 
of small vascular bundle (NSVB), the number of large vascular 
bundle (NLVB), average area of single small vascular bundle 
(ASVB), average area of single large vascular bundle (ALVB), 
and cross-sectional area (CSA). The vascular bundles of stalk 
are divided into two categories: small vascular bundles and 
large vascular bundles. The small vascular bundles are generally 
located in the 1~2 layer of the edge of the tissue, with relatively 
close arrangement, the area is small and some small vascular 
bundles are not fully developed; the large vascular bundles 
are located in the organization, loose arrangement, relatively 
large area, and complete structural development. The vascular 
bundle area and CSA were calculated in terms of near-ellipse 
S= pab / 4  ( a  and b  represent the major and minor axes 
of the ellipse, respectively; Yang, 2016).
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Phenotypic Analysis
Phenotypic data were processed with the Microsoft Excel 2010, 
and descriptive statistical analysis and ANOVA were carried out 
with the IBM SPSS statistics v21.0 software (George and Mallery, 
2013). The broad-sense heritability ( h2 ) for each trait was estimated 
using the formula: h r yrg g gy e

2 2 2 2 2= + +s s s s/ ( / / ), as described 
by Knapp et  al. (1985), where sg

2  stands for the genetic 
variance, sgy

2  stands for genotype-by-environment interaction 
variance, se

2  for error variance, y  for the number of 
environments, and r  for the number of replications. Correlations 
analysis was performed using the “Performance Analytics” 
package in R. The boxplot was drawn using “ggplot2” package 
in R. The best linear unbiased prediction (BLUP; Henderson, 
1975) values using the mixed linear model of the “lme4” 
package in R was calculated for each trait across five environments 
and adopted as the phenotypic values in the subsequent genome-
wide association study.

Genotyping
The DNA of 248 maize inbred lines was extracted from fresh 
leaves with the CTAB method (Murray and Thompson, 1980). 
The sequencing libraries of 248 inbred lines were constructed 
and sequenced by genotyping-by-sequencing, and the qualified 
library was sequenced by the second-generation sequencer 
Illumina Hiseq2000 (Elshire et  al., 2011). The derived short 
reads were compared to the reference genome of the second 
version of B73 by BWA software, and the SNPs were called 
by the SAMtools software to obtain the preliminary SNP 
markers. A total of 10,63,728 initial SNPs were obtained through 
strict sequencing data comparison and SNP-calling. Then, the 
SNPs with missing rate over 80% and minor allele frequency 
less than 5% were removed. Finally, a total of 83,057 SNPs 
were achieved and used in GWAS (Lai, 2017). The population 
structure of 248 inbred lines was detected by the Admixture 
1.3 software (Chakraborty and Weiss, 1988), which was divided 
into five subpopulations: Lancaster, Lvda Red Cob, Tangsipingtou 
(TSPT), P group, Reid, and a mixed group. The Q model of 
population structure was obtained, and the K model of kinship 
was obtained by using the Analysis-Kindship in Tassel 5.0 
software (Du et  al., 2018).

Genome-Wide Association Analysis
GWAS was performed to identify the SNPs significantly associated 
with vascular bundle-related traits using 83,057 SNPs and the 
BLUP values of the 248 maize inbred lines. GWAS was performed 
with the FarmCPU model implemented in the GAPIT package 
in the R software, taken both K and Q matrix into account 
to decrease spurious association (Liu et al., 2016). Then, we used 
the GEC software (Li et  al., 2012) to calculate effective marker 
number ( Ne ), and the significance threshold was set as 
p  ≤  1/ Ne .

Identification of Candidate Genes
Linkage disequilibrium (LD) decay of the same population 
was analyzed in the previous studies (Li et  al., 2020; 
Liu et  al., 2020). The studies showed that the LD decay 

distance for this natural population panel was 120 kb (r2 = 0.1). 
Then, we  searched the flanking 120  kb upstream and 
downstream of each significant loci for candidate genes 
according to B73 reference genome version v2. The annotation 
of candidate genes was obtained from the MaizeGDB and 
NCBI.1 The candidate genes were uploaded to GENE 
ONTOLOGY Web site2 for GO analysis. The KOBAS 3.0 
Web site3 was used to perform the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analysis.

RESULTS

Diversity and Heritability of Vascular 
Bundle-Related Traits
Substantial variation was observed for vascular bundle-related 
traits in different maize inbred lines (Figure  1). The statistical 
data for NSVB, NLVB, ASVB, ALVB, and CSA across the five 
environments showed that all five vascular bundle-related traits 
showed a normal distribution (Figure 2). The phenotype range 
of the above five traits was 17.933∼22.038, 26.106∼33.111, 
26.283∼52.668, 27.308∼41.249, and 28.363∼37.095 (%), 
respectively (Table  1), exhibiting enriched genetic variation.

In the analysis of variance for the five traits, highly significant 
variations for genotypes (G), environments (E), and genotype-
by-environment interaction were found (Table 2). This indicates 
the important roles of both genotypes, environment, and G 
× E interaction. The broad-sense heritability for NSVB, NLVB, 
ASVB, ALVB, and CSA across the five environments in the 
248 inbred lines ranged from 46.49% (ASVB) to 91.52% (NLVB), 
indicating the predominant role of genetic factors for these 
traits (Table  2).

We calculated the BLUP values for each trait and observed 
significant correlations among them. CSA was positively 
correlated with NSVB (r  =  0.58, p  ≤  0.001), NLVB (r  =  0.60, 
p ≤  0.001), ASVB (r  =  0.41, p ≤  0.001), and ALVB (r  =  0.39, 
p  ≤  0.001). NSVB was positively correlated with NLVB 
(r  =  0.76, p  ≤  0.001) and ASVB positively correlated with 
ALVB (r  =  0.75, p  ≤  0.001). No significant correlations were 
detected between the vascular bundle area and the number 
of vascular bundles, except for the correlation between NLVB 
and ASVB (r  =  −0.14, p  ≤  0.05).

The 248 inbred lines used in this study can be  divided 
into five subpopulations and one mixed group, which are 
designated as Reid, Lancaster, TSPT, Lvda Red Cob (LRC), P 
group, and Mixed group, respectively (Liu et  al., 2012, 2014). 
To investigate the effect of population structure on vascular 
bundle, the phenotypic variations of vascular bundle-related 
traits were compared between different subpopulations. For 
NSVB and NLVB, the means in TSPT subpopulation were 
significantly higher than the other subpopulations 
(Figures  3A,B). For ASVB, ALVB, and CSA, no significant 
difference was observed among the subpopulations, indicating 

1 https://www.ncbi.nlm.nih.gov/
2 http://www.geneontology.org/
3 http://kobas.cbi.pku.edu.cn/kobas3/?t=1
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that population structure has little effect on these traits 
(Figures 3C–E). In summary, the vascular bundle-related traits 
show broad variations which are subject to population structure.

Genome-Wide Association Analysis
To minimize the effect of environmental variation, BLUP values 
across five environments were used for GWAS. The effective 
number which was calculated using the GEC software was 40,705 
and p-value which was recommended using the GEC software 
was 2.46E-5. Thus, the threshold is –log10 (2.46E-5)  =  4.61. In 
total, we identified 15, 13, 2, 1, and 5 SNPs significantly associated 
with NSVB, NLVB, ASVB, ALVB, and CSA, respectively, based 
on –log10 p  =  4.61 (Figure  4; Table  3). The single phenotypic 
variation explained value of NSVB, NLVB, ASVB, ALVB, and 
CSA varied in ranges of 0.68%~29.40, 1.09%~29.08, 6.01%~29.90, 
16.27, and 21.05%~30.88%.

For five vascular bundle-related traits, we  identified two 
pleiotropic loci that probably influenced more than one trait 
(hereinafter referred to as “co-loci”; Table  4). One located on 
Chromosome 3 (Chr3_8,885,082) was significantly associated 
with NSVB and NLVB, explaining from 21.35 to 29.40% of 
the phenotypic variation. The other one located at 
Chr7_156,667,935 was significantly associated with NLVB and 
CSA, explaining from 21.35 to 29.08% of the phenotypic variation.

Candidate Genes Associated With 
Significant SNPs
The physical locations of the significant SNPs were recorded 
according to the B73 RefGen_v24 based on the LD decay. A 
total of 210 candidate genes with gene descriptions were found 

4 www.maizegdb.org

FIGURE 1 | Vascular bundle structure of different maize inbred lines.
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FIGURE 2 | Correlation analysis of BLUP data for vascular bundle-related traits. NSVB, number of small vascular bundle; NLVB, number of large vascular bundle; 
ASVB, average area of single small vascular bundle; ALVB, average area of single large vascular bundle; and CSA, cross-sectional area. *Significant at 0.05 
probability level. ***Significant at 0.001 probability level.

TABLE 1 | Statistical analysis of vascular bundle-related traits in different environments.

Trait Environment Range Mean SD Skewness Kurtosis CV (%)

NSVB

2017BD 31.000–87.000 57.509 10.946 0.198 −0.422 19.034%
2017SJZ 34.000–96.000 62.141 11.261 0.308 −0.330 18.121%
2018BD 32.000–87.000 57.182 10.254 0.187 −0.005 17.933%
2018SJZ 36.000–98.000 61.825 10.602 0.306 −0.015 17.149%
2019BD 31.000–110.000 66.525 14.660 0.484 −0.128 22.038%

NLVB

2017BD 27.000–114.000 61.416 16.226 0.378 −0.051 26.420%
2017SJZ 28.000–136.000 66.130 19.043 0.567 0.325 28.796%
2018BD 24.000–113.000 60.115 15.694 0.372 0.178 26.106%
2018SJZ 28.000–116.000 61.043 16.558 0.495 0.138 27.126%
2019BD 18.000–151.000 61.916 20.501 0.548 0.42 33.111%

ASVB

2017BD 0.008–0.043 0.021 0.006 0.653 0.641 28.891%
2017SJZ 0.009–0.032 0.018 0.005 0.556 −0.248 26.922%
2018BD 0.010–0.037 0.020 0.005 0.666 0.277 26.283%
2018SJZ 0.009–0.040 0.021 0.006 0.763 0.571 27.582%
2019BD 0.005–0.089 0.030 0.016 0.710 0.074 52.668%

ALVB

2017BD 0.011–0.070 0.033 0.010 0.783 0.941 31.478%
2017SJZ 0.007–0.054 0.024 0.007 0.665 0.741 29.940%
2018BD 0.014–0.069 0.031 0.010 0.944 0.858 30.894%
2018SJZ 0.013–0.059 0.029 0.008 0.448 0.020 27.308%
2019BD 0.104–0.111 0.053 0.022 0.297 −0.638 41.249%

CSA

2017BD 6.960–36.729 19.473 5.523 0.381 0.100 28.363%
2017SJZ 6.875–33.609 16.173 4.685 0.877 1.197 28.968%
2018BD 6.079–31.339 15.382 4.475 −0.733 0.547 29.091%
2018SJZ 7.558–34.656 17.365 4.729 0.523 0.206 27.232%
2019BD 5.093–60.520 25.520 9.584 0.544 0.076 37.095%

BD, Baoding; SJZ, Shijiazhuang. NSVB, NLVB, ASVB, ALVB, and CSA.
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(Supplementary Table S2). The number of candidate genes 
involved in the vascular bundle-related traits of NSVB, NLVB, 
ASVB, ALVB, and CSA was 75, 55, 11, 23, and 19. The candidate 
genes were uploaded to GENE ONTOLOGY Web site (see 
footnote 2) for GO secondary classification.

The candidate genes can be  classified into ten biological 
processes, three cellular components, and eight molecular 
functions. Among them, the candidate genes in biological 
processes are mainly concentrated in the metabolic process and 
the cellular process, the candidate genes in cellular component 
are mainly concentrated in cell and organelle, and those in 
molecular function are mainly concentrated in catalytic activity 
and binding (Figure  5). As for the KEGG analysis of the 
candidate genes, a total of six pathways were identified. These 
pathways included the metabolic pathways, biosynthesis of 
secondary metabolites, purine metabolism, N-Glycan biosynthesis, 
terpenoid backbone biosynthesis, and sesquiterpenoid and 
triterpenoid biosynthesis, which could be  related to vascular 
bundle (Figure  6). Combined with functional annotation of 
the candidate genes, we  finally found five genes related to 
vascular development, three genes related to cell wall, and two 
genes related to the mechanical strength of the stem (Table  5).

DISCUSSION

Genetic Basis of Vascular Bundle-Related 
Traits
Studies have shown that plant vascular cells continuously 
connected shoot organs with roots from top to bottom, and 
the vascular bundles were polar, continuous, and internally 
aligned (Sawchuk and Scarpella, 2013). Due to the strong 
consistency between the upper vascular bundles and the lower 
ones, as well as the relatively clearer structure in upper vascular 
bundles after staining, vascular-related traits were collected 
from the uppermost internode in this study.

The five vascular bundle-related traits exhibited wide 
phenotypic variation with normal distribution. ANOVA showed 
that the genotype effects, environment effects, and interactive 
effects between the genotype and environment were both 
significant for five traits. The heritability ( h2 ) for these traits 
is very high, and ASVB was the least heritable of the traits 

included in this study. The correlations were observed among 
the area of vascular bundle and as were the number of vascular 
bundle. However, no significant differences were observed 
between the area of vascular bundle and the number of 
vascular bundles.

Subpopulations are often observed in natural maize 
populations. In this study, the maize panel was divided into 
five subpopulations, including TSPT, LRC, Lancaster, Reid, 
and P group (Lu et  al., 2009; Yan et  al., 2009; Yang et  al., 
2010, 2011). TSPT and LRC subpopulations were selected and 
improved from native resources in China (Ning et  al., 2002; 
Feng et  al., 2010; Xu, 2010), while Lancaster, Reid, and P 
groups were originated from the American germplasm resources 
(Guo et  al., 2016). Therefore, the population structure may 
have imposed effects on the vascular bundles of maize. In 
this study, we  observed no significant differences between 
subpopulations for CSA, ASVB, and ALVB, indicating that 
the area of vascular bundles is roughly analogous among each 
subpopulations. In contrast, the inbreds from TSPT and LRC 
possessed more vascular bundles, indicating that the vascular 
structure of native Chinese germplasm is more intense than 
that of American germplasm.

Analysis and Comparison of Genome-Wide 
Association Analysis of Vascular Bundle-
Related Traits
Vascular bundle-related traits are important traits of crops, 
which are not only highly correlated with crop yield traits, 
but also related to crop resistance. At the same time, some 
genes related to vascular bundle development have been cloned 
in model plants Arabidopsis thaliana and rice (Emery et  al., 
2003; Zhong and Ye, 2004; Terao et  al., 2010; Fei et  al., 2019). 
However, little is known about the functional genes in maize. 
On this ground, it is necessary to study the genetic basis of 
vascular bundle-related traits in maize.

In this study, a total of 36 different loci that are significantly 
associated with vascular bundle were detected. These loci may 
be  key regions for the regulation of maize vascular bundle 
development. Among them, two “co-loci” were detected, each 
explaining over 20.00% of the phenotypic variation. This indicates 
that the loci had a major genetic effect and were less affected 
by the environment. Therefore, the two “co-loci” were the focus 
of the vascular bundle molecular design breeding or vascular 
bundle QTL map cloning work.

The 36 loci were compared with those of the previous 
studies. In this study, there were two loci which were 
consistent with the results of Yang (2016), one was located 
at Chr7_156,667,935 associated with NLVB and CSA; and 
the other was located at Chr7_156,667,951 associated with 
CSA. The two loci were very close, indicating that they 
may share the same functional gene. Du (2018) also found 
the locus which located at Chr7_156,667,935, indicating 
that it was stable and important for the development of 
maize vascular bundles. In addition, another two loci were 
consistent with the results of Du (2018), one was located 
at Chr10_125,107,700 associated with NSVB; and the other 

TABLE 2 | ANOVA for vascular bundle-related traits.

Trait

  F-value

Environment Genotype
Environment* 

Genotype
2h (%)

NSVB 172.705** 30.161** 3.617** 88.01
NLVB 35.780** 41.275** 3.498** 91.52
ASVB 357.546** 7.879** 4.216** 46.49
ALVB 814.672** 8.331** 3.263** 60.83
CSA 440.955** 10.685** 2.488** 76.71

*Significant at 0.05 probability level.  
**Significant at 0.01 probability level.  
NSVB, NLVB, ASVB, ALVB, and CSA.
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was located at Chr7_164,199,008 associated with CSA. Huang 
et  al. (2016) performed a high-resolution QTL mapping 
for the number of vascular bundle in the uppermost internode 
of maize stem using a large maize-teosinte experimental 
population and validated the effect of one QTL qVb9-2 on 
chromosome 9 and further fine mapped the QTL to a 
1.8-Mb physical region. In this study, one locus controlling 
the number of vascular bundles was localized at 
Chr9_117.308192, about 1  Mb away from Huang et  al. 
(2016) results.

Candidate Genes Analysis
In this study, candidate genes were collected in the range 
of 120  kb upstream and downstream of the detected 36 
significant association loci. A total of 210 candidate genes 
were listed, of which 64 genes could be used for GO analysis. 
These candidate genes involved a variety of biochemical 
metabolic pathways, such as metabolic process, cellular 
process, cell, organelle, catalytic activity, binding, and so 
on. Among them, GRMZM2G314396 encodes NAC domain-
containing protein 35, NAC transcription factors are a 
specific class of transcription factors in plants, regulating 
the growth and development of plants, such as secondary 
wall and root growth, plant senescence, and so on. And 
they respond to a variety of abiotic and biotic stresses 
(Zhang et  al., 2019). Kubo et  al. (2005) used microarray 
analysis to find seven transcription factor proteins which 
containing the NAC domain associated with vascular 
development in Arabidopsis.

GRMZM2G314396, GRMZM2G136400, and 
GRMZM2G136410 are related to calcium. Calcium plays an 
essential role as the second messenger in cells in various 
signaling transduction pathways by developmental and 
environmental (Evans et al., 2001; Tuteja and Mahajan, 2007). 
GRMZM2G314396 encodes calcium-dependent protein kinase 
(CDPK) and the CDPKs are one of the well-known Ca2+−
sensor protein kinases involved in environmental stress 
resistance (Harper and Harmon, 2005). AtCPK28, one of 
the CDPKs in Arabidopsis, has been reported to regulate 
plant stem elongation and vascular development by altering 
the expression of NAC transcription regulators and gibberellin 
homeostasis regulators (Matschi et  al., 2013). 
GRMZM2G136400 and GRMZM2G136410 encode 
CBL-interacting protein kinase (CIPK). Calcineurin B-like 
proteins (CBLs) and their target proteins–the CIPKs have 
emerged in a key Ca2+-mediated signaling network in response 
to stresses in plants (Chen et  al., 2011a). Lee et  al. (2005) 
found that expression of AtCIPK14, one of the CIPKs in 
Arabidopsis, is restricted predominantly to the vascular  
tissues.

GRMZM2G046070 encodes cinnamyl alcohol 
dehydrogenase 1, which is the last enzyme in lignin monomer 
synthesis pathway. Previous studies have shown that lignin 
is an important component of almost all vascular plant 
intact cell walls (Battle et  al., 2000; Zhong et  al., 2000). 
Zhu et al. (2014) showed that BnCAD1 expressed abundantly 
in the vascular bundle tissues in ramie. In addition, cinnamyl 
alcohol dehydrogenase was also found to relate to lodging 

A
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FIGURE 3 | Boxplot of vascular bundle-related traits distribution in different subpopulations. ANOVA was applied to examine the difference of traits among 
subpopulations. Different numbers indicate significant difference at p ≤ 0.05. (A) NSVB; (B) NLVB; (C) ASVB; (D) ALVB; and (E) CSA.
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FIGURE 4 | Manhattan plots of GWAS results for (A) NSVB; (B) NLVB; (C) ASVB; (D) ALVB; and (E) CSA.
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in Arabidopsis (Jourdes et  al., 2007), wheat (Ma, 2010; 
Chen et  al., 2011b), rape (Huang et  al., 2013), and so on.

Interestingly, we  found some candidate genes related to 
the cell wall. As is known, cell elongation and cell wall 
thickening are involved in regulating lodging resistance 
in plants (Fan et  al., 2018). Many studies have shown that 
vascular bundle-related traits affect the lodging resistance 
of crops, and vascular bundle-related traits are one of the 
breeding indexes for lodging resistance of crops (Bian 
et  al., 2017; Hu et  al., 2017). GRMZM2G045596 encodes 
polygalacturonase QRT3. Polygalacturonase, which can 
degrade pectin, is a plant cell wall structural protein (Abbott 
and Boraston, 2007). Xiao et  al. (2017) overexpressed the 
PGX2 gene in Arabidopsis, resulting in an increase in lignin 
in the stems of transgenic plants. GRMZM5G831009 encodes 
purple acid phosphatase 22. Purple acid phosphatases are 
members of the metallo-phosphoesterase family identified 
from a wide range of plants and play vital roles in modulating 
plant carbon and phosphorus metabolism, cell wall synthesis, 
and so on. NtPAP12 of tobacco participates in the 

biosynthesis of the cell wall by catalyzing dephosphorylation 
of α-xylidase and β-glucosidase in the cell wall (Kaida 
et al., 2009). GRMZM2G136971 encodes leucine-rich repeat 
extensin-like protein 3. Baumberger et  al. (2001) found 
LRX1, a new Arabidopsis gene that encodes a chimeric 
leucine-rich repeat/extensin protein. At the same time, 
their results suggested that LRX1 was a potential regulator 
of cell wall development.

Two candidate genes were found to be  related to the 
mechanical strength of stem. GRMZM2G167520 encoded 
brittle stalk-2-like protein 6, and GRMZM2G167497 encoded 
brittle stalk-2-like protein 7. Ching et  al. (2006) showed 
that the expression of Brittle stalk 2 (BK2) genes in maize 
stem, root, and leaf tissue affected the mechanical strength 
of maize stem. However, the expression was the highest in 
the vascular systems. The role of the BK2 genes in secondary 
wall formation is consistent. All in all, further studies are 
needed for the functional validation of these candidate genes 
to discover the possible mechanism of vascular bundle  
regulation.

TABLE 3 | Analysis of correlated SNP with vascular bundle-related traits.

Trait Environment SNP Chromosome Position Allele Bin P-value PVE

NSVB BLUP

1_67048802 1 67048802 A/G 1.04 8.53E-07 4.41%
1_196694835 1 196694835 A/C 1.06 1.38E-07 0.86%
2_1716343 2 1716343 C/G 2.01 1.09E-05 10.72%
2_14538772 2 14538772 A/C 2.02 7.17E-06 11.63%
2_235478382 2 235478382 A/G 2.1 4.66E-06 3.01%
3_8885082 3 8885082 C/T 3.03 1.29E-11 29.40%
5_166864357 5 166864357 A/T 5.04 9.35E-08 6.12%
6_29640289 6 29640289 A/C 6.01 1.41E-08 3.99%
6_34222130 6 34222130 C/T 6.01 1.28E-08 0.68%
7_121013955 7 121013955 A/G 7.02 1.34E-13 11.67%
7_171236721 7 171236721 A/G 7.05 1.55E-05 1.85%
8_103312474 8 103312474 C/T 8.03 9.72E-06 34.61%
8_167013679 8 167013679 C/T 8.07 1.48E-07 10.84%
8_173565720 8 173565720 C/T 8.09 3.81E-08 3.65%
10_125107700 10 125107700 C/T 10.04 8.24E-14 18.80%

NLVB BLUP

1_92518968 1 92518968 C/T 1.05 2.76E-06 5.42%
2_215287936 2 215287936 A/G 2.08 7.17E-06 14.47%
3_8885082 3 8885082 C/T 3.03 2.96E-06 21.35%
3_188908168 3 188908168 G/T 3.06 8.46E-07 15.64%
4_138195837 4 138195837 C/G 4.05 2.21E-05 19.44%
4_165119210 4 165119210 G/T 4.06 1.70E-09 16.98%
5_84576385 5 84576385 A/G 5.04 7.75E-07 0.01%
6_39081558 6 39081558 A/G 6.01 9.38E-06 17.50%
7_156667935 7 156667935 C/T 7.04 3.35E-08 29.08%
9_55347902 9 55347902 C/T 9.03 1.23E-05 6.11%
9_117308192 9 117308192 C/G 9.04 1.64E-05 1.09%
9_148210107 9 148210107 C/T 9.06 6.07E-07 10.72%
10_17676178 10 17676178 C/T 10.03 1.01E-05 19.42%

ASVB BLUP 1_30348314 1 30348314 A/G 1.03 8.09E-06 29.90%
2_197691099 2 197691099 A/G 2.07 1.11E-05 6.01%

ALVB BLUP 2_10510180 2 10510180 C/T 2.02 9.46E-06 16.27%

CSA BLUP

4_233224669 4 233224669 C/T 4.09 1.65E-05 30.88%
7_156667935 7 156667935 C/T 7.04 2.48E-06 21.35%
7_156667951 7 156667951 A/G 7.04 2.48E-06 21.35%
7_164199008 7 164199008 C/G 7.04 4.26E-06 21.05%
10_114005725 10 114005725 G/T 10.04 1.87E-05 22.89%

NSVB, NLVB, ASVB, ALVB, and CSA.
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FIGURE 5 | GO-second class of candidate gene.

TABLE 4 | Co-loci of vascular bundle-related traits.

Number Traits SNP Chr Position Allele Bin P-value PVE 
(%)

Candidate Gene RefGen_v2 Annotated Gene 
Description

1 NSVB 3_8885082 3 8885082 C/T 3.03 1.29E-11 29.40 GRMZM2G084125 Uncharacterized LOC100277349

NLVB 3_8885082 3 8885082

C/T

3.03 2.96E-06 21.35

GRMZM2G083810 Heat shock protein18f

GRMZM2G083763
Polynucleotide 5'-hydroxyl-kinase 
NOL9

GRMZM2G083797
Probable inactive leucine-rich repeat 
receptor kinase XIAO

GRMZM2G111846
Small subunit processome 
component 20 homolog

GRMZM2G120271 Thioredoxin superfamily protein
GRMZM2G144615 Uncharacterized LOC100384398

GRMZM2G144668
1-aminocyclopropane-1-carboxylate 
oxidase

2 NLVB 7_156667935 7 156667935 C/T 7.04 3.35E-08 29.08 GRMZM2G051090 Uncharacterized LOC103633284

CSA 7_156667935 7 156667935

C/T

7.04 2.48E-06 21.35

GRMZM2G050933 CYCD6

GRMZM2G129973
Octicosapeptide/Phox/Bem1p family 
protein

GRMZM2G153162
Eukaryotic translation initiation 
factor 4G

GRMZM2G153454 Uncharacterized LOC100282357
GRMZM2G153438 Uncharacterized LOC100383796
GRMZM2G366977 Equilibrative nucleotide transporter 3

NSVB, NLVB, and CSA.
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