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Plant fine root turnover is a continuous process both spatially and temporally, and fine root

decomposition is affected by many biotic and abiotic factors. However, the effect of the

living roots and the associated mycorrhizal fungal mycelia on fine root decomposition

remains unclear. The objective of this study is to explore the influence of these biotic

factors on fine root decomposition in a semi-arid ecosystem. In this study, we investigated

the effect of fine roots and mycelia on fine root decomposition of a pioneer shrub

(Artemisia halodendron) in Horqin sandy land, northeast China, by the ingrowth core

method combined with the litterbag method. Litterbags were installed in cores. Results

showed that core a allowed the growth of both fine roots and mycelia (treatment R + M),

core b only allowed the growth of mycelia (treatment M), and in core c the fine root

and mycelia growth were restricted and only bulk soil was present (treatment S). These

findings suggest that the process of root decomposition was significantly affected by

the living roots and mycelia, and carbon (C) and nitrogen (N) concentration dynamics

during root decomposition differed among treatments. Mycelia significantly stimulated the

mass loss and C and N release during root decomposition. Treatment R + M significantly

stimulated the accumulation of soil total C, total N, and organic N under litterbags. The

mycelia significantly stimulated the accumulation of the inorganic N (ammonium-N and

nitrate-N) but the presence of fine roots weakened nitrate-N accumulation. The presence

of living roots and associatedmycelia strongly affected the process of root decomposition

and matter release in the litter-soil system. The results of this study should strengthen

the understanding of root-soil interactions.
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INTRODUCTION

Litter decomposition is a major process within nutrient cycling
and energy flows in terrestrial ecosystems. Fine root turnover
is an important source of soil carbon (C) and nitrogen (N)
during the development of plant roots (Jackson et al., 1997;
Silver and Miya, 2001). The carbon contribution of fine roots
to terrestrial ecosystems is of great importance because of their
rapid turnover despite the relatively small proportion of fine
roots (Silver and Miya, 2001; Stover et al., 2010; Finér et al.,
2011; Huang et al., 2012; Sariyildiz, 2015). The study of Jackson
et al. (1997) showed that plants in terrestrial ecosystems store
38.1 × 109 mg of C in their fine roots, which is ∼5% of
the size of the atmospheric C pool. Moreover, studies have
also shown that soil C accumulates even more through plant
root decomposition than through the aboveground biomass
(Usman et al., 2000; Kätterer et al., 2011; Bolinder et al., 2012).
Therefore, root decomposition is the main and stable source for
the accumulation of soil matter such as organic C and nutrient
elements (Luo et al., 2016a; Liebmann et al., 2020).

The production of root exudates is an important process by
which plants influence the material cycle of the plant-soil system
through roots (Phillips et al., 2011; Zhang et al., 2015; Zwetsloot
et al., 2018). However, the precise influence of root exudates
on soil C and N cycle is still uncertain. Taking soil C as an
example, root exudates can promote the decomposition of soil
organic carbon (SOC) through the improvement of rhizosphere
soil microbial activity and soil enzyme activity (Rukshana et al.,
2012; Girkina et al., 2018). Conversely, it has also been shown
that the root exudates can limit the decomposition of SOC
by inhibiting soil microbial activity and enzyme activity in
the rhizosphere, therefore promoting the accumulation of SOC
(Zhang et al., 2015; Zwetsloot et al., 2018). Furthermore, the
current studies have mainly focused on the forest ecosystem,
while the related study in semi-arid degraded grassland
remains scarce.

Most existing studies about litter decomposition have
reported that root exudate can stimulate litter decomposition
through promoting population and activity of soil
microorganisms (Baudoin et al., 2003; Landi et al., 2006;
Técher et al., 2011) and altering the form of soil N (Nardi et al.,
2002; Landi et al., 2006). However, in the case of water-limited
arid or semi-arid zones, the absorption of water by plant roots
leads to the decrease of soil moisture content (Schwinning and
Ehleringer, 2001; Loik et al., 2004; Zhou et al., 2015), which limits
litter decomposition. Therefore, it remains uncertain whether
the presence of plant roots would stimulate litter decomposition
via its promotion effect derived from root exudates or
inhibit litter decomposition because of the reduced soil
moisture content.

Mycorrhiza plays important role in plant root growth and

soil C and N cycle in the plant-soil system (Cheng et al., 2012;

Phillips et al., 2012). The colonization of arbuscular mycorrhizal
fungi (AMF) is considered to promote the decomposition of
the aboveground litter (Schädler et al., 2010), while it showed
insignificant influence on root litter (Urcelay et al., 2011).
N is considered a key factor in the process of mycorrhiza

influence on litter decomposition. The AMF could enhance the
decomposition rate of litter and obtain inorganic N released
from the litter during its decomposition, and thus mycelium
growth was promoted by effective utilization of decomposition
products (Hodge et al., 2001). The study of Cheng et al. (2012)
showed that AMF accelerated litter decomposition by changing
the contents of ammonium-N and nitrate-N in the soil. Most of
the relevant studies at present have focused on forest ecosystems
with non-limited water conditions, and the research objects are
mainly aboveground litter. In water-limited ecosystems with less
precipitation, the mechanism of the mycorrhizal fungal mycelia
effect on root decomposition remains unclear.

The previous studies in Horqin degraded sandy grassland
(a typical semi-arid climate region in northeast China) found
that soil C under litterbags varied greatly after 1 year of
decomposition for the fine roots of Artemisia halodendron
compared with no litterbags under natural conditions (Luo
et al., 2016a). This is a typical AMF infestation species (Te,
2007) and is one of the dominant shrubs in Horqin sandy
land and plays an important role during the process of dune
stabilization (Huang et al., 2012; Luo et al., 2020a). Meanwhile,
the decomposition rate of the fine root of A. halodendron
under natural conditions also differed significantly compared
with another study in the same region (Li et al., 2016; Luo
et al., 2020b). Therefore, we preliminarily hypothesized that the
difference of water and temperature in the initial decomposition
stage (caused by the difference in the starting date) would be
the main factor for these differences. Thus, we carried out
an experiment focusing on the effect of starting time on root
decomposition of A. halodendron (Luo et al., 2020b). It was
found that the fine root decomposition rate of A. halodendron
at different starting times differed significantly; however, the
difference was small, and the root decomposition is likely to be
affected by other factors such as the variance of soil moisture and
its interaction with soil temperature (Luo et al., 2016a, 2020b).
Given that the plant community in this area is dominated by
short-lived annual species, and the composition and structure
of plant community varied greatly in both spatial and temporal
scales (Wang, 1989; Zuo et al., 2009; Duan et al., 2014; Wang
et al., 2018), we then hypothesized that the existence of the
living roots and their related processes such as mycorrhizal
fungal mycelia and root exudates in the vicinity of litterbags
might affect the process of root decomposition and element
transformations in the litter-soil system. Therefore, a litter
decomposition experiment under the canopy of A. halodendron
was conducted by the ingrowth core method combined with the
litterbag method in a semi-fixed dune in the Horqin sandy land.
The specific objectives of this study were as follows: (1) to clearly
describe the effects of plant fine roots and related mycorrhizal
fungal mycelia on the decomposition of fine root (0–2mm) of
A. halodendron under the canopy, and (2) to clarify the effects
of fine roots and mycelia of A. halodendron on soil C and N
variation during fine root decomposition in semi-arid degraded
sandy grassland. Overall, the study aimed to strengthen the
understanding of the influence of living plant roots and mycelia
on fine root decomposition and soil C and N variations under
water-limited conditions.
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MATERIALS AND METHODS

Study Site
The study was conducted at the Naiman Desertification Research
Station of the Chinese Academy of Sciences (42◦58′ N, 120◦43′

E; elevation 360m.a.s.l.), in the southwestern part of the Horqin
sandy land, located in the eastern part of Inner Mongolia
Autonomous Region in China. This region belongs to the
cold temperate zone, with a semi-arid continental monsoon
climate. Mean annual precipitation and annual mean potential
evaporation are 343 and 1,935mm, respectively. The mean
annual temperature is 6.7◦C, with a minimum monthly mean
temperature of −12.6◦C in January and a maximum of 24.3◦C
in July. The soil is classified as Cambic Arenosols of sandy
origin in the Food and Agriculture Organization (FAO) soil
classification system (FAO, 2006). The soil is sandy, with a
coarse texture (medium to coarse sand) and a loose structure,
and particularly susceptible to wind erosion (Luo et al., 2020a).
In semi-fixed dune, the SOC concentration ranging from 0.35
to 0.87 g m2 and the soil bulk density ranging from 1.57 to
1.6 g cm3 among soil depth of 0–100 cm (Luo et al., 2015). The
landscape is characterized by sand dunes formed by grassland
degradation at different stages, including mobile, semi-fixed,
and fixed dunes. The state of these sand dunes can convert
from each other through the influence of biotic and abiotic
factors. For example, intensive human activities (especially
overgrazing) have accelerated the process of desertification and
large areas of fixed dunes have been converted into mobile
dunes in the last century (Wang, 1989). In recent decades,
the area of severely degraded mobile dune land has declined
substantially because of the efficient implementation of a series
of governmental protection programs (Duan et al., 2014).
In the semi-fixed dune, the vegetation coverage is ranging
from 30 to 60%, and the plant community is dominated by
perennial shrubs, i.e., A. halodendron, Caragana microphylla,
and Salix gordejevii, and some annual herbs, i.e., Chenopodium
acuminatum, Corispermum macrocarpum, Bassia dasyphylla,
Artemisia scoparia, and Setaria viridis.

Experimental Design
Artemisia halodendron has the property of asexual reproduction,
and this characteristic combined with the frequent sand burial
makes it difficult to define the specific age of the plant. Age
is considered an important controlling factor on plant fine
root turnover and mycorrhiza colonization. This is because,
with increasing age, the fine root production (Fogel, 1983) and
mycorrhizal infection rate both decrease (Cheng et al., 2005).
Thus, we designed a field transplantation experiment to reduce
the error from plant age by specifying all the transplanted
plants as about 1 year old. In this transplantation field, six plots
(each 9 × 9m) were selected, and 49 plants were planted in
each plot with a 1m spacing. Each of the plots was separated
from the adjacent plots by a 1m buffer zone. This transplanted
experimental field represents the semi-fixed dunes in this region.
Detailed information about this transplanted field is given in the
earlier research (Luo et al., 2020a). After 4 years of growth, in
April 25, 2016, A. halodendron with similar form were randomly

FIGURE 1 | Illustration of PVC ingrowth core installation for the fine root

decomposition of Artemisia halodendron under the canopy of an

A. halodendron plant. Cores a and b had two windows on each side of the

PVC pipe and all faced vertically toward the center of the canopy. There were

no windows for core c. The mesh sizes of the nylon mesh for core a and core

b were 2mm and 50µm, respectively; thus, core a allowed the growth of both

fine root and mycelia (R + M), core b only allowed the growth of the mycelia

(M), and core c contained only bulk soil (S). This group of ingrowth cores was

installed at the point of half canopy width toward the center at an angle

of 120◦.

chosen from these six plots with 294 plants (49 × 6) for this
decomposition experiment (5 samplings× 5 replications).

At the end of October 2015, we collected root samples of
A. halodendron by excavating to a depth of 30 cm (samples to
this depth contain the majority of the roots) from semi-fixed
dunes within 10 km of the station. All samples were washed
carefully with tap water to remove the soil, and the fine root
with a diameter of <2mmwas separated by hand. Afterward, the
fine root sample was oven-dried at 65◦C for 48 h. The dried root
sample was cut into lengths of 2–3 cm, and 5 g portions of the
roots were placed in separate nylon mesh bags (10× 10 cm, with
a 0.1-mmmesh spacing). The bags were then sealed and stored in
a vacuum desiccator in the dark to prevent decomposition before
the start of the incubation. We prepared a total of 80 mesh bags
for use in this study (3 treatments × 5 decomposition periods
× 5 duplication, and the remaining 5 bags were used for initial
chemical determination).

Three points were selected at the point of half canopy width
toward the center at an angle of 120◦ of each plant and marked as
a, b, and c, respectively (Figure 1). The ingrowth core method
was modified from that used by the study of Phillips et al.
(2012). One ingrowth core comprising a PVC pipe (10 cm in
diameter and 30 cm in height) was installed in each plot vertically
(Figure 1). Large segments (20 cm in height and 5 cm in width)
of each PVC pipe at each side were cut to create “windows” to
allow the growth of the fine root and mycelia for core a and core
b, while there were no windows for core c. Windows were tightly
wrapped with a mesh of two different pore sizes. The mesh size
was 2mm and 50µm for cores a and b, respectively. Thus, core
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a allowed the growth of both fine root and mycelia (treatment R
+ M), core b only allowed the growth of the mycelia (treatment
M), and both the fine root and the mycelia were restricted in core
c and only bulk soil was present (treatment S). The windows of
each core faced vertically toward the center of the canopy. The
windows were 5 cm apart from the top and the bottom edge of
the PVC pipe, respectively.

At the beginning of the growing season, May 4, 2016, all
ingrowth cores were installed and the litterbag with 5 g fine root
sample of A. halodendron was placed horizontally in the middle
layer of each core (15 cm to the top edge of the pipe, in the middle
of the window, Figure 1). All excavated soil from the ingrowth
core installation was filled back to the core immediately after 2-
mm sieving by the depth of every 10 cm. Thus, organic matters,
including living roots and the necromass, were removed and soil
bulk density was close to that in the natural state. From the
beginning of the decomposition experiment, we checked the core
every 5 or 7 days and fallen litter at the soil surface or germinated
seedlings were all removed to reduce the influence of new plant
roots and litter on the experiment.

Sampling and Measurement
The decomposed fine root samples of each ingrowth core were
collected on June 3, August 3, and October 3, 2016; May 3,
2017; October 3, 2018. On each sampling date, five litterbags for
each treatment were sampled. These bags were then air-dried
and stored in the fridge at 5◦C in darkness until the end of the
experiment. After the final sampling on October 3, 2018, all roots
remaining in the litterbag, including the previously collected and
stored litterbags, were washed carefully with water and then dried
for 48 h at 65◦C. Masses of the root samples were measured, and
then they were ground to pass through a 2mm mesh and stored
in a fridge at 5◦C until analysis. Then, C and N concentrations
of all decomposed root samples and the control were measured
using the dry combustion method with a Vario Macro Cube
elemental analyzer (Elementar, Hanau, Germany).

After 1 year of decomposition, together with the fourth litter
sample collection on May 3, 2017, the soil samples under the
litterbag of each treatment were collected at the depths of 0–1, 1–
2, 2–3, 3–4, 4–5, 5–6, and 6–10 cm with a 10 × 10 cm horizontal
area directly below each litterbag (the previous studies have
shown that after 1 year of root decomposition of A. halodendron,
the potential depth of influence on soil C and N content is 0–6 cm
under litter bags (Luo et al., 2016a). The collected soil was divided
into two parts. The first part was preserved as a fresh sample
for the determination of soil water content through the drying
method (105◦C for 48 h) and of nitrate-N and ammonium-N
by the colorimetric method after KCl extraction. The second
part was air-dried for the determination of total C and N
using the dry combustion method with the Vario Macro Cube
elemental analyzer.

The climate data were obtained from the meteorological
station at the Naiman Desertification Research Station (http://
nmd.cern.ac.cn/meta/metaData), which was located <100m
from the transplanting field.

Statistical Analysis
The statistical analysis was conducted using version 20 of the
SPSS software (www.ibm.com/software/analytics/spss/). For the
fine root decomposition characterization of A. halodendron, we
analyzed differences in the remaining mass, in the C and N
concentrations, in the C:N ratio, and in the C and N remaining
among the treatments (T) and decomposition time (Dt) by using
a two-way ANOVA with T and Dt as factors. We performed
multiple comparisons using the LSD test whenever the ANOVA
indicated a significant difference (P < 0.05). The effect size of fine
root and mycorrhiza on root C and N remaining was calculated
by the following equations:

Effectsize(%) = (Ta/b − Tc)/Tc×100% (1)

where Ta/b is the average C or N remaining in core a or core b,
and Tc is the C or N remaining in core c.

For the soil properties under fine root litterbag of
A. halodendron, we analyzed differences in soil moisture,
total C concentration, total N concentration, C:N ratio, organic-
N, inorganic-N, nitrate-N, and ammonium-N among the
treatments (T), and soil depth (D) by two-way ANOVA, with T
and D as factors. We performed multiple comparisons using the
LSD test whenever the ANOVA indicated a significant difference
(P < 0.05). The inorganic N concentration in this study was
defined as the sum of nitrate-N and ammonium-N, and the
organic N was defined as the total N minus inorganic N.

RESULTS

Climate Conditions
From May 4, 2016, to October 3, 2018, there were 154
precipitation events in total with a total amount of 1,009.4mm,
and there were 70 effective precipitation (daily precipitation
amount > 2mm) events with a total amount of 956.4mm.
There were 13 heavy precipitation (daily precipitation amount >
25mm) events and the greatest amount of precipitation in 1 day
was 104.2mm onAugust 3, 2017. The daily mean air temperature
during the experiment was 10◦C, and in the growing season (May
1–October 31) daily mean air temperature ranged from 18 to
18.2◦C (Figure 2).

Fine Root Decomposition and Dynamics of
C and N
The fine root mass loss and concentrations of C and N of
A. halodendron varied among decomposition times (Table 1).
Themass decomposed rapidly in the initial period, in whichmore
than 40% of themass was lost within the first 33 days (Figure 3A).
The carbon and nitrogen concentrations both increased over
time, and the significant differences among treatments only
existed at the latal stage (last two samplings, Figures 3B,C). The
ratio of C and N also varied greatly in the initial stage but finally
declined with decomposition, and the significant differences
among treatments also existed in the latal stage (Figure 3D).

The mass remaining and N concentration were also affected
by treatment (Table 1). The presence of mycelia stimulated fine
root decomposition of A. halodendron in the late-stage except
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FIGURE 2 | Precipitation and air temperature during the study period.

TABLE 1 | Results of the two-way ANOVA for the effect of treatment (T) and decomposition time (Dt) on the variation of fine root decomposition traits

of Artemisia halodendron.

Parameter Treatment (T) Decomposition time (Dt) T ×Dt

F Sig. F Sig. F Sig.

Mass remaining (%) 6.659 0.002 166.137 <0.001 1.553 0.151

C concentration (%) 1.948 0.149 16.515 <0.001 2.695 0.011

N concentration (%) 5.09 0.008 98.740 <0.001 3.680 0.001

C:N 3.948 0.023 41.892 <0.001 3.194 0.003

C remaining (%) 4.726 0.017 99.573 <0.001 2.631 0.013

N remaining (%) 8.709 <0.000 10.350 <0.001 1.455 0.186

The bold values indicate significant differences of the fine root decomposition traits of A. halodendron under different treatments (ANOVA followed by LSD test, P < 0.05).

in the final sampling when the mass remaining did not differ
significantly among treatments (Figure 3A). Treatment R +

M and treatment M both increased the C concentration but
decreased the N concentration in the last two samplings; thus, the
C:N was promoted by treatment R +M and treatment M after 1
year of decomposition (Figures 3B–D).

Furthermore, there were significant interactions among
treatment and decomposition times for C concentration, N
concentration, and C:N (Table 1). This indicates that the
presence of plant fine root or mycelia affected the dynamic
during decomposition. For example, the C concentration varied
among decomposition times for treatments R +M and M in the
initial stage. In contrast, the C concentration increased gradually
with decomposition in treatment S. In the following stage, the
C concentration varied slightly for treatment S but gradually
increased for treatments R+M and M (Figure 3B).

There were also interactions between treatment and
decomposition time for the C remaining during decomposition
(Table 1). Both the C remaining and the N remaining varied

similarly with the mass remaining during decomposition.
However, the dynamics of C remaining of the fine roots during
decomposition differed among treatments. For example, the C
remaining decreased gradually for treatment R + M at the end
of the first growing season (from August 3 to October 3, 2016),
whereas it slightly increased for treatment M and treatment S
(Figure 4).

Soil Properties Under the Litterbag
Two-way ANOVA showed that soil properties (except soil
moisture) under the litterbag were all significantly affected by
treatments, and only soil C concentration significantly differed
with soil depth (Table 2). Moreover, no significant interactive
effects among treatment and soil depth on soil properties were
observed. The soil C, total-N, and organic-N under the litterbag
were all significantly higher under treatment R + M than those
under treatment M and under treatment S. The inorganic-N and
ammonium-N under the litterbag were both significantly lower
in treatment S than in the other treatments. The nitrate-N under

Frontiers in Plant Science | www.frontiersin.org 5 September 2021 | Volume 12 | Article 698054

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Liu et al. Root and Mycelia on Decomposition

FIGURE 3 | Fine root traits of A. halodendron during decomposition under the following three treatments: fine root and mycelia (R + M), mycelia (M), and bulk soil (S).

(A) indicates the dynamic of mass remaining to the initial value; (B) and (C) indicate the changes of carbon (C) and nitrogen (N) concentrations, respectively; and (D)

indicates the change of root C:N ratio. Values represent M ± SD. Values of a parameter on a given date labeled with * differed significantly among treatments

(P < 0.05).

the litterbag also varied significantly among treatments and was
significantly higher under treatment R + M than that under
treatment S. Soil C declined gradually but significantly with
soil depth (Figure 5). However, this significant vertical pattern
under the litterbag was only observed for C and not for other
soil properties.

DISCUSSION

Effect of Fine Roots and Mycelia on Fine
Root Decomposition
Mass Loss

As a general pattern of litter decomposition, the decomposition
rate is rapid in the early stage and then gradually slows (Camir
et al., 1991; Olsson et al., 1996; Silver and Miya, 2001). The
results of this study also fit this profile (Figure 3A). In this
study, the mass loss of the fine roots of A. halodendron was
as high as 41.7–45.3% at the initial stage of decomposition (33
days), which was higher than the previous study (Luo et al.,
2016a). In addition, the mass loss after 1 year of decomposition
in the current study ranged from 65.5 to 72%, which is also

higher than the former studies (Luo et al., 2016a, 2020b). The
relatively higher decomposition rate for the fine roots of A.
halodendron would result from the patterns of precipitation over
years (Luo et al., 2016a, 2020b).

The difference in mass loss between treatments in this study
indicated that the presence of the mycelia significantly promoted
the decomposition of the fine roots of A. halodendron. Existed
study showed that, the presence of mycelia can retard the
fine root decomposition via its changes on fine root quality
(Langley and Hungate, 2003) or via the decrease in enzyme
activities related to cellulose and lignin decomposition (Lin
et al., 2019). Some studies demonstrated that the fine root
decomposition would accelerate by the presence of mycelia
(Pigott, 1982; Tu et al., 2006; Pritsch and Garbaye, 2011),
which is consistent with the study. Research has shown that
mycelia can promote the activity of soil microorganisms through
the input of fresh C, thus promoting the decomposition
of SOC, especially the inert C pool (Blagodatskaya and
Kuzyakov, 2008; Kuzyakov, 2010; Zhang et al., 2018). It can
be inferred that the excitation effect of mycelia may be
an important reason for the accelerated root decomposition
of A. halodendron.

Frontiers in Plant Science | www.frontiersin.org 6 September 2021 | Volume 12 | Article 698054

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Liu et al. Root and Mycelia on Decomposition

FIGURE 4 | Carbon and nitrogen remaining during decomposition for fine

roots of A. halodendron under the following three treatments: fine roots and

mycelia (R + M), mycelia (M), and bulk soil (S). Values represent M± SD. The

small bar plot inset top-right indicates the effect size of R + M (red bar) and M

(white bar) compared with S for C remaining (A) and N remaining (B). Bars

labeled with * indicate significant differences (P < 0.05) compared with the S

treatment.

However, the presence of mycelia in addition to the fine
roots did not stimulate the root decomposition (Figure 3A).
This may relate to other factors derived from the living fine
roots. Root exudate is considered to have an important role
in litter decomposition and the soil nutrient cycle (Nardi
et al., 2002; Landi et al., 2006; Phillips et al., 2011; Yin et al.,
2014), and the secondary metabolites of the exudates inhibit
SOC decomposition by the suppression of soil microorganisms
(Zhang et al., 2015; Zwetsloot et al., 2018). Thus, it can be inferred

TABLE 2 | Results of the two-way ANOVA for the effect of treatment (T) and soil

depth (D) on the variation of soil moisture, soil carbon (C) concentration, soil total

nitrogen (TN) concentration, soil C:N ratio, soil organic-N (ON) concentration, soil

inorganic N (IN) concentration, ammonium N (NH4-N) concentration, and nitrate N

(NO3-N) concentration.

Parameter Treatment (T) Depth (D) T×D

F Sig. F Sig. F Sig.

Moisture 0.790 0.457 0.077 0.998 0.126 1.000

C 8.538 0.000 3.205 0.007 0.854 0.595

ln(TN) 5.749 0.005 1.941 0.084 0.830 0.620

ln(C:N) 3.647 0.030 1.135 0.350 0.834 0.616

ln(ON) 5.967 0.004 1.903 0.090 0.878 0.572

ln(IN) 8.445 0.000 1.893 0.092 0.823 0.626

ln(NH4-N) 18.815 0.000 1.666 0.140 0.965 0.489

ln(NO3-N) 3.109 0.050 1.514 0.184 1.304 0.233

Because the original soil moisture and C data were normally distributed, they were

analyzed directly, whereas the other parameters were not distributed normally, and thus

we analyzed these parameters after ln transformation.

The bold values indicate significant differences of soil properties under different treatments

(ANOVA followed by LSD test, P < 0.05).

that that mycorrhizal and exudate effects on decomposition
canceled each other out.

In addition, in arid and semi-arid regions with high water
limitation, the water absorption by the root system during
plant growth significantly reduces the soil moisture content
(Schwinning and Ehleringer, 2001; Loik et al., 2004; Zhou et al.,
2015). This reduction of soil moisture thereby decreased the
root decomposition. In this study, soil moisture content after 1-
year decomposition showed that, a relatively lower soil moisture
content in treatment R+M (Supplementary Figure 1). Thus,
it can be inferred that the combined effect of root exudates
and water adsorption should reduce the promotion of root
decomposition by mycelia, leading to the observation of no
significant differences in the mass remaining between the R +

M and S treatments (Figure 3A).

C and N Concentrations in Roots

In this study, root C concentration increased during
decomposition (Figure 3B), this result was also consistent
with the former study (Luo et al., 2016a). These dynamics may
have occurred because of the rapid emission of nonstructural
matter including phosphorus, potassium, and manganese at
the early stage of decomposition (Lemma et al., 2007; Gómez-
Muñoz et al., 2014). Contrastingly, nonstructural carbohydrates
decomposed faster than structural carbohydrates such as lignin
and cellulose (Camiré et al., 1991; Steinberger et al., 1995).

There was also a significant interaction between treatment
and decomposition time for parameters of C concentration
(Table 1). This indicates that the presence of fine roots and
mycelia in the ingrowth core changed the variation of root C
concentration during decomposition compared with treatment
S (Figure 3B). Therefore, it can be hypothesized that the
fine roots and mycelia influence the decomposition model
of different components of litter, i.e., structural or non-
structural carbohydrates. Determination of the stoichiometric
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FIGURE 5 | Soil properties of soil C concentration (A), soil total-N (TN) concentration (B), soil C:N ratio (C), soil organic-N (ON) concentration (D), soil inorganic-N (IN)

concentration (E), ammonium-N (NH4-N) concentration (F), and nitrate-N (NO3-N) concentration (G) under the litterbag after 1 year of decomposition of the fine roots

of A. halodendron. (H) indicates the concentration variation of soil C concentration among soil depths. Values represent M ± SD. Bars labeled with different letters

differed significantly among the treatments (P < 0.05).
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characteristics of litter and identification of the microbial
community during decomposition in future studies may provide
a clearer explanation of this hypothesis.

The results of this study showed that the fine root N
concentrations during decomposition in treatments R + M and
M were both lower than those in treatment S (Figure 3C).
This may be related to the promotion effect of mycelia on N
mineralization (Phillips et al., 2011; Yin et al., 2014; Zhang
et al., 2018, 2019). This explanation was supported by the soil
properties under litterbags, which showed that the inorganic
N in treatment R + M and treatment M were both higher
than in treatment S (Figure 5E). In addition, it has also been
demonstrated that mycorrhiza can absorb and utilize organic
N from the refractory organic matter of plant litter via the
associated saprophytic microorganisms (Colpaert and Van Laere,
1996). Therefore, the absorption of organic N by mycorrhiza
from the decomposing root may be an important factor leading
to the decreased N concentration in decomposing roots.

This study was conducted in semi-arid sandy grasslands
with a typical water limitation; the root absorption of soil pore
water can significantly reduce the soil moisture (Schwinning and
Ehleringer, 2001; Loik et al., 2004; Zhou et al., 2015). The living
roots would suppress the root N release during decomposition
via this change in soil moisture, thereby leading to the observed
difference of N remaining (N remaining in treatment S is higher
than in treatment R+M and in treatment M) (Figure 4B).

Effect of Fine Roots and Mycelia on Soil
Properties Under the Litterbag
Soil C

There was a significant vertical pattern in soil C distribution
under litterbags in which the SOC decreased gradually
(Figure 5H). This result is consistent with the previous research
(Luo et al., 2016a). The study of Liebmann et al. (2020) showed
that the main form of C transformation from plant litter to
the soil during decomposition was dissolved organic C rather
than particulate organic C. The shift of plant C allocation to
mycorrhizal fungi could promote carbon accumulation in soil,
and the fine root litter could directly contribute to the process
of stable soil organic matter formation (Langley et al., 2006). In
this study, the experiment was conducted in the dune, the sandy
soil texture allowed the quick leaching (Yao et al., 2013). Thus,
the process of leaching the dissolved organic C from precipitation
may be an explanation of this vertical pattern.

Meanwhile, the vertical pattern of soil C distribution was
weakened in treatments R+M and M compared with treatment
S (Supplementary Figure 2), which may be related to the living
fine roots. It has been reported that plant roots increase the
decomposition of soil organic matter but also promote the
formation of stable soil organic matter in low-N ecosystems
(Adamczyk et al., 2019). Studies have also shown that root
exudates have a positive or negative priming effect on SOC
(Kuzyakov, 2002); decomposition of SOC was promoted by the
primary metabolites of root exudates (Rukshana et al., 2012;
Girkina et al., 2018), which also can be inhibited by the secondary
metabolites of root exudates (Zhang et al., 2015; Zwetsloot et al.,

2018). The current study showed that there was no significant
difference in soil C between treatment M and treatment S, but
both were lower than that under treatment R + M (Figure 5A).
This reveals that the existence of fine roots of A. halodendron
has an accumulation effect on the soil C concentration. This
accumulation only resulted from the fine root but not from the
mycorrhiza. In addition, a previous study suggested that the
mycelia could promote soil stable C accumulation due to its
slower decomposition, which may become physically fractured
but resist chemical decomposition, and then contribute directly
to the formation of stable soil C (Langley et al., 2006). However,
the presence of mycelia did not increase the soil C concentration,
as the result of this study showed (Figure 5A). Therefore, it can
be inferred that exudates from the fine roots of A. halodendron
are one of the important factors in soil carbon accumulation
in Horqin sandy land. However, this inference needs to be
specifically tested in subsequent studies.

In addition, there was no significant difference in soil C
concentration among treatments M and S (Figure 5A). Previous
studies have shown that the fresh C released by mycorrhiza
can promote the decomposition of soil C, especially the inert
C (Blagodatskaya and Kuzyakov, 2008; Kuzyakov, 2010; Zhang
et al., 2018). Meanwhile, the rapid turnover of the mycorrhiza
stimulates the accumulation of soil C (Heinemeyer et al., 2007;
Pickles et al., 2010; Cairney, 2012). Therefore, another tradeoff
between promotion on SOC decomposition and stimulation of
SOC accumulation may explain the lack of significant difference
in soil C concentrations among the M and S treatments
(Figure 5A).

Soil N

There was no vertical effect on soil N content under the litterbag
(Table 2), which indicates that the N distribution under the
litterbag was not affected by the fine root decomposition. This
finding is consistent with the previous research (Luo et al.,
2016a), which showed that root decomposition ofA. halodendron
for both the fine roots (≤2mm) and the coarse roots (>2mm)
did not affect soil N concentration under litterbags. This result
may be related to leaching interaction with resorption by plant
roots (Luo et al., 2016a). In this study, there was no significant
difference in the soil total N and the organic N between
M and S treatments (Figures 5B,D). This indicates that the
existence of the mycelia did not affect soil total N and organic
N concentrations. However, these concentrations were both
enhanced by the treatment of R +M (Figures 5B,D). Therefore,
it can be hypothesized that the organic N in the soil is derived
from the living fine roots.Moreover, the living roots can stimulate
the activities of microorganisms in rhizosphere soil by the release
of root exudates (Landi et al., 2006; Phillips et al., 2011; Yin
et al., 2014). The turnover of the enhanced microbes may be a
possible reason for the organic N accumulation. In addition, the
fast turnover rate of the fine roots ofA. halodendron (Huang et al.,
2012; Luo et al., 2016b) would contribute N to the soil.

The study of Zhang et al. (2019) demonstrated that the soil
inorganic N pool was significantly higher in soil with fine roots
plus mycelia in the alpine forest than in bulk soil in the eastern
Tibetan Plateau of China. This supports the findings of our
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study in degraded grassland (Figure 5E). The explanation for this
difference was that the release of new C from the fine root or the
mycelia stimulated the N cycle (Phillips et al., 2011; Yin et al.,
2014; Zhang et al., 2018). For example, the root exudate from
Cupressus funebris significantly enhanced the concentration of
alkali-hydrolysable N of potted Toona sinensis (Yi et al., 2019).
An in situ observation study of mature loblolly pine (Pinus taeda)
found that the enhanced root exudation stimulated by the carbon
dioxide (CO2) enrichment can accelerate the turnover of N pools
in the rhizosphere (Phillips et al., 2011).

CONCLUSIONS

During the fine root decomposition of A. halodendron in a
degraded sandy grassland, the loss of the mass and the release
of litter C and N were all stimulated by the presence of mycelia.
Under the litterbag, the mycelia significantly stimulated soil
inorganic N (ammonium-N and nitrate-N) accumulation but the
presence of fine roots weakened the accumulation of soil nitrate-
N. The presence of living roots and associated mycelia strongly
affected the process of root decomposition and matter release in
the litter-soil system.
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Supplementary Figure 1 | Vertical patterns of soil moisture content under

litterbags after 1 year of decomposition of the fine roots of A. halodendron of the

following three treatments: fine root and mycelia (R + M), mycelia (M) and bulk soil

(S). Values represent M± SD.

Supplementary Figure 2 | Vertical patterns of soil C concentration under

litterbags after 1 year of decomposition of the fine roots of A. halodendron. Values

represent M± SD. Bars labeled with different letters differed significantly among

treatments (P < 0.05). Soil C concentration decreased gradually with the increase

of soil depth. This vertical pattern was significant for the bulk soil (S) and was

weakened by the presence of fine root + mycelia (R + M) and of mycelia (M)

under the A. halodendron canopy in Horqin sandy land, northeast China.
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