



# Transcriptome and DNA Methylome Reveal Insights Into Phytoplasma Infection Responses in Mulberry (*Morus multicaulis* Perr.)

Chaorui Liu<sup>1,2</sup>, Xiaonan Dong<sup>2</sup>, Yuqi Xu<sup>2</sup>, Qing Dong<sup>1</sup>, Yuqi Wang<sup>1</sup>, Yingping Gai<sup>1\*</sup> and Xianling Ji<sup>2\*</sup>

<sup>1</sup> State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China, <sup>2</sup> College of Forestry, Shandong Agricultural University, Taian, China

To reveal whether the response of mulberry to phytoplasma infection is associated with genome-wide DNA methylation changes, the methylome and transcriptome patterns of mulberry in response to phytoplasma infection were explored. Though the average methylation level of the infected leaves showed no significant difference from that of healthy leaves, there were 1,253 differentially methylated genes (DMGs) and 1,168 differentially expressed genes (DEGs) in the infected leaves, and 51 genes were found simultaneously to be differently methylated and expressed. It was found that the expression of G-type lectin S-receptor-like serine/threonine protein kinase gene (Mu-GsSRK) was increased, but its methylation level was decreased in the pathogen-infected or salicylic acid (SA)-treated leaves. Overexpression of Mu-GsSRK in Arabidopsis and in the hairy roots of mulberry enhanced transgenic plant resistance to the phytoplasma. Moreover, overexpression of Mu-GsSRK enhanced the expressions of pathogenesis-related protein 1, plant defensin, and cytochrome P450 protein CYP82C2 genes in transgenic plants inoculated with pathogens, which may contribute to the enhanced disease resistance against various pathogens. Finally, the DNA methylation dynamic patterns and functions of the differentially expressed and methylated genes were discussed. The results suggested that DNA methylation has important roles in mulberry responses to phytoplasma infection.

Keywords: mulberry, phytoplasma, DNA methylation, transcriptome, G-type lectin S-receptor-like serine/threonine protein kinase

### INTRODUCTION

Phytoplasmas are cell wall-less plant pathogens of the class, *Mollicutes* (Sugio et al., 2011), and they are associated with hundreds of diseases in more than 1,000 plants in the world and cause serious losses in vegetables, fruit crops, and ornamental plants (Bertaccini and Duduk, 2009; Cao et al., 2019). Phytoplasmas colonize in the host phloem tissue, where they secrete a variety of effector molecules to affect the expression of host genes, resulting in the metabolism disorder of hosts which shows various symptoms (Christensen et al., 2005; Gai et al., 2018). Though some virulence factors of phytoplasmas have been described, how these pathogens manipulate the physiological functions of plant hosts remains unclear (Namba, 2019).

### OPEN ACCESS

#### Edited by:

Dirk Albert Balmer, Syngenta, Switzerland

### Reviewed by:

Du Seok Choi, LG Chem, South Korea Khayalethu Ntushelo, University of South Africa, South Africa

#### \*Correspondence:

Yingping Gai gyp@sdau.edu.cn Xianling Ji xlji@sdau.edu.cn

#### Specialty section:

This article was submitted to Plant Pathogen Interactions, a section of the journal Frontiers in Plant Science

Received: 20 April 2021 Accepted: 05 July 2021 Published: 03 August 2021

#### Citation:

Liu C, Dong X, Xu Y, Dong Q, Wang Y, Gai Y and Ji X (2021) Transcriptome and DNA Methylome Reveal Insights Into Phytoplasma Infection Responses in Mulberry (Morus multicaulis Perr.). Front. Plant Sci. 12:697702. doi: 10.3389/fpls.2021.697702

1

As an important epigenetic mechanism, DNA methylation is associated with many biological processes, including transcriptional silencing, gene regulation, and genomic imprinting (Ji et al., 2018; Huang et al., 2019). It was reported that DNA methylation plays important roles in regulating responses to biotic stresses in plants, and evidence showed that DNA methylation levels were altered in potato (Solanum tuberosum), Arabidopsis thaliana, and tomato (S. lycopersicum) plants infected by pathogenic fungi, bacteria, or virus (Pavet et al., 2006; Torchetti et al., 2016; Zhu et al., 2016; De Palma et al., 2019). Some studies also showed that phytoplasmas were involved in the methylation changes of host genes. In Candidatus Phytoplasma aurantifolia-infected periwinkle (Catharanthus roseus) and tomato plants, sterol-Cmethyltransferase and some methylase and demethylase genes were downregulated (Jagoueix-Eveillard et al., 2001), and it was found that DNA methylation was involved in the epigenetic regulation of SIDEFICIENS (Ahmad et al., 2012). In addition, it was shown that demethylation of some genes associated with floral development were inhibited in tomato plants infected by phytoplasmas (Pracros et al., 2006). It was also revealed that there were different DNA methylation marks between spontaneous and cultivar-dependent recovery and healthy leaves, occurring within the promoters of genes involved in secondary metabolism and photosynthesis (Pagliarani et al., 2020). Moreover, it has been shown that the global DNA methylation level was reduced in the phytoplasma-infected Paulownia seedlings (Cao et al., 2014). Taken together, these studies suggested that DNA methylation may play an important role in regulating gene expression in phytoplasma-infected plants.

Mulberry trees are planted all over the world and have been used to feed silkworms for about 5,000 years. Mulberry is not only the sole feed tree for silkworms, but it is also a nutritionally and economically important fruit tree, and mulberry fruits have long been used as edible fruits and traditional medicines. Mulberry plants are susceptible to dwarf disease associated with the presence of phytoplasma belonging to the subgroup, 16SrI-B (aster yellows) (Gai et al., 2014), and when faced with phytoplasma infection, they will activate radical changes of gene expression (Gai et al., 2018). Phytoplasmas are introduced into mulberry phloem by vector insects, parasitize in the sieve elements of phloem, and directly contact the cytoplasm of sieve elements and companion cells (Sugio et al., 2011). In the process of mulberry-phytoplasma interaction, the sieve elements and companion cells can not only perceive phytoplasma invasion and initiate local defense responses but can also transmit the infection signal over long distances and activate the response at the wholeplant level (Henry et al., 2013; Gai et al., 2018). Previous studies have shown that phytoplasma infection can cause differential expression of some genes involved in signal transduction in plants (Hren et al., 2009; Gai et al., 2018; Liu et al., 2019). Since gene transcriptional reprogramming may be controlled by epigenetic modifications triggered by pathogen challenges, the infection of phytoplasma may cause the differential expression of some genes involved in signal transduction mediated by DNA methylation in plants. However, the gene expression changes associated with phytoplasma infection and the molecular mechanism at DNA methylation level are still not well understood. In this study, methylation-dependent restriction site-associated DNA sequencing (MethylRAD-Seq) which allows for *de novo* (reference-free) methylation analysis can be applied to both model plants and non-eschatological plants, and it is performed to assess genome-wide DNA methylation patterns and to identify the differentially methylated genes (DMGs) involved in response to phytoplasma infection. The information provided will facilitate the elucidation of the epigenetic mechanisms underlying the responses of mulberry to phytoplasma infection, and also provide important clues for further studying the disease resistance genes for mulberry breeding.

## MATERIALS AND METHODS

### **Plant Materials and Growth Conditions**

Mulberry (Morus multicaulis) cutting seedlings were inoculated with phytoplasmas by being grafted with the scions collected from phytoplasma-infected mulberry trees Gai et al. (2018), and the cutting seedlings derived from the same mother tree were grafted with healthy scions and used as controls. The grafted mulberry seedlings were cultivated in a greenhouse under light/dark regime (16h light/8h dark) at 24°C with 50-60% humidity. The grafted mulberry seedlings showing Witches' broom disease symptoms were used to detect phytoplasma by PCR amplification of the 16S rRNA gene of phytoplasma using a universal primer set (Forward primer: 5' TAAAAGACCTAGCAATAGG 3'; Reverse primer: 5' CAATCCGAACTGAGACTGT 3') (Ji et al., 2009). The sixth leaves from the top of the grafted healthy and phytoplasmainfected shoots were used for subsequent experiments, and three phytoplasma-infected and healthy plants were used as independent biological replicates for RNA sequencing (RNAseq) and MethylRAD sequencing analyses. A. thaliana (Col-0) and Nicotiana benthamiana seedlings were cultivated in the greenhouse under light/dark regime (16 h light/8 h dark) at 22 and 24°C, respectively, with 50–60% humidity.

### **Transcriptome Analysis**

Total RNA was extracted using a TRIzol reagent (Invitrogen Corporation, CA, United States), and the poly-A-containing messenger RNAs (mRNAs) were purified using beads with Oligo (dT). The purified mRNAs were used as templates to synthesize complementary DNAs (cDNAs) which were then added to a single "A" base to their ends. These cDNA fragments were subsequently connected with sequencing adapters and then were purified and underwent PCR amplification to create cDNA libraries. Transcriptome sequencing was conducted on the Illumina HiSeq<sup>TM</sup> 2000S platform, Illumina, San Diego, CA, United States. Raw reads were cleaned and assembled into unigenes and then the assembled unigenes were annotated by BLASTn searches against the M. notabilis genome (https:// www.ncbi.nlm.nih.gov/genome/?term=Morus). The expressions of genes were calculated using the reads per kilobase million (RPKM), and if the expression value of a gene changed more than two times ( $P \le 0.05$ ), and the false discovery rate (FDR) was <0.01 between infected and healthy samples, it was designated as a significantly differentially expressed gene (DEG). The identification of DEGs was performed using DESeq software (Zenoni et al., 2010). Three biological replicate experiments for healthy and infected samples and three technical replicates per biological experiment were performed.

# MethylRAD Sequencing and Relative Quantification of DNA Methylation Levels

Genomic DNA was extracted from the infected and healthy mulberry leaves using the cetyltrimethyl ammonium bromide method (Clarke, 2009) and then was digested with FspEI. The digestion productions were added with adaptor primers and amplified through PCR to create the MethylRAD libraries which were subjected to sequencing on an Illumina HiSeq2000 sequencer, Illumina, San Diego, CA, United States. Input sequencing data were cleaned and then subjected to Pair-End sequencing on a HiSeq X Ten platform. After mapping the paired-end sequencing reads, the MethylRAD sequencing data were cleaned to obtain high quality reads which were mapped to the reference CCGG/CCWGG sites built with the FspEI sites extracted from the *M. notabilis* genome using the SOAP program. A site with the sequencing depth of not <3 was determined as a reliable methylation site, and the RPKM was used to determine the relative DNA methylation levels of each site. If the methylation level of a methylation site changed more than two times ( $P \le 0.05$ ) between the infected and healthy samples, it was designated as a significantly differentially methylated site. Then the methylation levels of sites that were localized in the gene regions were summed to evaluate the DNA methylation levels of the genes using the R package edge R (Robinson et al., 2010), and the thresholds of statistically significant difference were found to have a p < 0.05 and log2FC > 1.

# **Gene Ontology Analysis**

BlastN searches against the reference *M. notabilis* database were performed with online tools (https://morus.swu.edu.cn/morusdb/blast) to provide gene ID for the target genes. Gene ontology (GO) analysis was performed with online tools (https://morus.swu.edu.cn/morusdb/searchgo) based on the gene IDs obtained.

# **Quantitative Real-Time PCR Analysis**

Total RNA was extracted using a TRIzol reagent (Invitrogen Corporation, CA, United States) following the instructions of the manufacturer and then it was digested with DNase I. The cDNA was synthesized from 1 µg of total RNA extracted using oligo (dT)<sub>18</sub> primers (Invitrogen Corporation, CA, United States) with reverse transcriptase M-MLV (Promega Corporation, Madison, WI, United States) in 20 ml reactions. The qRT-PCR was performed on the CFX96TM Real-time System (Bio-Rad Laboratories, CA, United States) according to the protocol of the kit (SYBR Premix Ex Taq<sup>TM</sup>) with 20  $\mu$ l of PCR mix. The PCR mix contains 2  $\mu$ l of synthesized cDNA, 10  $\mu$ l of 2  $\times$ SYBR Premix Ex Taq, 200 nmol l<sup>-1</sup> of gene-specific primers, and 0.4  $\mu$ l of 50  $\times$  ROX Reference Dye II. The PCR mix was preheated to 95°C for 30s followed by 39 cycles of 95°C for 10 s and 58°C for 30 s. Melting curve analysis was conducted from 65°C up to 95°C followed by a 0.5°C incremental ramp to validate product specificity. The two genes, *EF1-a* and *ACTIN*, were used as endogenous controls to quantify the gene expression levels by the  $2^{-\Delta\Delta CT}$  method (Livak and Schmittgen, 2001). All samples were assayed in at least three biological replicates, and three technical replicates were run for each of them. The primers used for quantitative real-time PCR (qRT-PCR) are given in **Supplementary Table 1**.

# DNA Methylation Analysis by Semi-Quantitative PCR

Since the restriction endonuclease, FspEI can recognize 5methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in the CmC and mCDS sites in genomic DNA, the genomic DNA double-strand can be cleaved by FspEI at CCGG and CCWGG methylated sites. The extracted genomic DNA was digested with FspEI, and then the digested DNA was used as a template to perform 28 cycles of PCR amplification. The genomic DNA without being digested was also used as a template to perform 28 cycles of PCR amplification using the same primers and PCR conditions. All the PCR experiments were repeated at least three times. The primers used for semi-quantitative PCR are listed in **Supplementary Table 1**.

# Gene Cloning and Phylogenetic Analysis

The isolated RNA was used to synthesize cDNA using the reverse transcriptase, M-MLV (Promega). The specific primers (Supplementary Table 2) used for PCR amplifications were designed based on the nucleotide sequence of the gene available from the *M. notabilis* genome (https://www.ncbi.nlm. nih.gov/genome/?term=Morus) database; the PCR products were separated by electrophoresis and the target DNA fragment was recovered and subcloned into the pMD18-T vector (Invitrogen). After transformation into DH5α, the positive clones were identified and selected for further sequencing. The multiple alignments of the deduced amino acid sequences with the sequences from other plants were conducted using the DNAMAN program. SignalP-5.0 Server (http://www.cbs.dtu. dk/services/SignalP/) was used with the default parameters to predict signal peptides, and TargetP-2.0 Server (http://www.cbs. dtu.dk/services/TargetP/) was used to predict the subcellular localization of proteins. Putative conserved domains were detected using the online NCBI program (https://www.ncbi. nlm.nih.gov/Structure/cdd/wrpsb.cgi). A phylogenetic tree was generated using the MEGA program by the neighbor-joining method, and bootstrapping was run 1,000 times. The threedimensional (3D) structure of the protein was generated by the SWISS-MODEL pipeline.

## **Subcellular Localization**

In order to elucidate its subcellular localization, the fusion gene of Mu-GsSRK (GenBank: MN364943.1) and the green fluorescent protein gene (*GFP*) under the control of 35S was generated and cloned into the binary vector, pBI121 to produce the 35S::Mu-GsSRK-GFP expression vector. The *N. benthamiana* leaf epidermal cells were infiltrated with *Agrobacteria*, containing the vector with an optical density of 0.4. After filtration for about 48–72 h, small sections of the infiltrated leaves were excised and mounted in water. Confocal imaging was performed using a

Bio-Rad MRC1024 confocal laser scanning microscope (Bio-Rad Microscience Ltd., Manchester, United Kingdom).

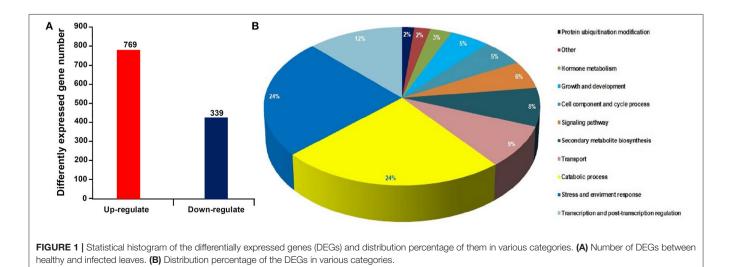
### **Promoter Activity Analysis**

The promoter of *Mu-GsSRK* (designed as *pMu-GsSRK*) was obtained with specific primers (**Supplementary Table 2**), and designed based on the nucleotide sequence of the gene available from the *M. notabilis* genome and used to create the promoter expression vector, *pMu-GsSRK::GUS* by replacing the 35S promoter and fusing it with the *GUS* gene. The *pMu-GsSRK::GUS* vector was then introduced into the *Agrobacterium tumefaciens* strain, GV3101 which was used to infiltrate *N. benthamiana* leaves as described previously (Arpat et al., 2012), and β-glucuronidase (GUS) expression in the infiltrated tobacco leaves was assessed by histochemical staining (Jefferson et al., 1987).

## Production of Transgenic Arabidopsis Lines

The coding region of the *Mu-GsSRK* gene was amplified and ligated into binary plasmid vector, pBI121 under the control of the 35S promoter. Then, the constructed transgenic plant expression vectors were introduced into *the A. tumefaciens* strain, GV3101 which was used to transform the wild-type (WT) Arabidopsis plants with the floral dip method (Harrison et al., 2006). Transgenic seeds were selected on selection plates [Murashige and Skoog (MS) media supplemented with 50 mg l<sup>-1</sup> of kanamycin], and the T3 generation seeds from independent transgenic lines were used for further functional studies.

### **Plant Treatment**


Jasmonate (JA) and salicylic acid (SA) treatments were conducted by spraying 100  $\mu$ mol l<sup>-1</sup> of JA or 5 mmol l<sup>-1</sup> of SA solution onto the adaxial surface of mulberry leaves. *Pseudomonas syringae* pv. *mori* inoculation was performed by spraying the bacterial suspension (10<sup>8</sup> CFU ml<sup>-1</sup>) onto the adaxial surface of young leaves of mulberry. As for *Colletotrichum dematium* inoculation, it was conducted by spraying the conidial suspension (2.5 × 10<sup>6</sup> ml<sup>-1</sup> of conidia) onto the adaxial surface of mulberry leaves. The leaves sprayed with sterilized water were used as controls. All of the inoculated and control mulberry seedlings were incubated in a glass chamber for 48 h to maintain sufficient humidity. *P. syringae* pv. tomato DC3000 (*Pst* DC3000) inoculation was performed by injecting 50  $\mu$ l of *Pst* DC3000 (10<sup>5</sup> CFU ml<sup>-1</sup>) bacterial suspensions into the rosette leaves of 4-weekold Arabidopsis plants. The rosette leaves were detached and inoculated with *Botrytis cinerea* or *Phytophthora capsici* using 2mm-diameter mycelium plugs taken from the actively growing strain colonies. The inoculated leaves were placed in covered Petri dishes to maintain high humidity, and disease symptoms were evaluated by determining the diameter of the lesions 1 week after inoculation. Three biological replicates per treatment were assayed and three technical replicates were performed for each sample.

## **Detection of Colony-Forming Units**

The leaves inoculated with *Pst* DC3000 were sampled 72 h after inoculation and ground in sterile water, and the suspension was continuously diluted 10 times with sterile water and spread-plated onto King's B medium. Colonies were counted after 48 h of incubation. All the experiments were conducted at least three times.

### Production of Hairy Root Transgenic Mulberry Plants

The *Mu-GsSRK* gene was cloned into the vector, pROK2 under the control of the 35S promoter to produce 35S::Mu-GsSRK. The pROK2 vector containing 35S::Mu-GsSRK was introduced into *A. rhizogenes* strains, K599 that are used for the transformation of mulberry seedlings. Gui sang You 62 mulberry seeds were sown in plastic pots containing vermiculite medium and watered with MS medium and grown in an artificial growth chamber at  $25^{\circ}$ C with a photoperiod of 16 h of light and 8 h of darkness. About 2 weeks after germination, the seedlings with the first two fully expanded true leaves were selected for agro infiltration. The *A. rhizogenes* strains, K599 harboring vectors, pROK2 containing 35S::Mu-GsSRK were cultured in yeast extract peptone (YEP)



### TABLE 1 | The top 40 up and downregulated genes in the infected mulberry leaves.

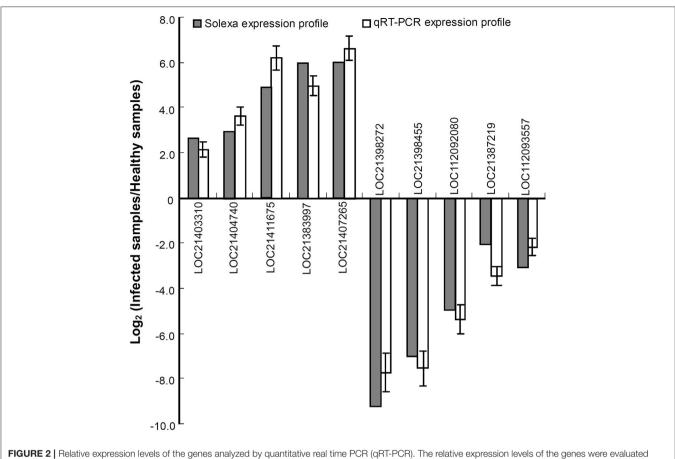
| Gene id      | Normaliz  | zed value | Fold change  | P-value   | Description                                                        |  |  |
|--------------|-----------|-----------|--------------|-----------|--------------------------------------------------------------------|--|--|
|              | FPKM-HL   | FPKM-IL   | log2 (IL/HL) |           |                                                                    |  |  |
| LOC21398272  | 97.8557   | 0.159728  | -9.407890495 | 3.06E-18  | Glycine-rich protein 5                                             |  |  |
| LOC21407207  | 184.53    | 0.431035  | -8.725662659 | 8.57E-21  | GDSL esterase/lipase LTL1                                          |  |  |
| LOC21404980  | 272.232   | 1.82726   | -7.716454421 | 1.28E-17  | Putative cell wall protein                                         |  |  |
| LOC21406637  | 20.257    | 0.141202  | -7.572542307 | 2.34E-12  | Protein ECERIFERUM 1                                               |  |  |
| LOC21398455  | 3.80282   | 0.0331535 | -6.950610547 | 0.0001536 | Endoglucanase CX                                                   |  |  |
| LOC112094895 | 12.2097   | 0.161187  | -6.774760712 | 6.39E-06  | Probable protein ABIL5                                             |  |  |
| LOC21388546  | 9.18549   | 0         | -6.359723213 | 6.26E-05  | Uncharacterized LOC21388546                                        |  |  |
| LOC21398449  | 8.74903   | 0.112155  | -6.30064398  | 9.37E-07  | Aldehyde oxidase GLOX1                                             |  |  |
| LOC21384564  | 10.3027   | 0.172242  | -5.938736447 | 6.12E-07  | Pyruvate decarboxylase 2                                           |  |  |
| LOC21400381  | 3.48914   | 0.0588077 | -5.902516259 | 0.0004514 | WUSCHEL-related homeobox 1                                         |  |  |
| LOC21392218  | 14.5559   | 0.277756  | -5.835790145 | 1.35E-06  | Peroxidase 19                                                      |  |  |
| LOC112093771 | 1.92941   | 0.0356849 | -5.774760712 | 0.0063877 | Ethylene-responsive transcription factor ERF027-like               |  |  |
| LOC21406889  | 48.1223   | 0.847472  | -5.758149749 | 1.55E-13  | Beta-xylosidase/alpha-L-arabinofuranosidase 2                      |  |  |
| LOC112090497 | 2.11941   | 0.0340144 | -5.6637294   | 0.0010682 | Beta-glucosidase 17-like                                           |  |  |
| LOC21400066  | 1.82909   | 0.0380568 | -5.574462061 | 0.0101566 | Vinorine synthase                                                  |  |  |
| LOC21410381  | 8.04636   | 0.20616   | -5.559032021 | 0.0015119 | Transcription factor WER                                           |  |  |
| LOC21407204  | 432.403   | 9.33457   | -5.521719826 | 2.31E-10  | GDSL esterase/lipase At5g18430                                     |  |  |
| LOC21400479  | 30.6721   | 0.556548  | -5.490193145 | 8.92E-07  | Leucine-rich repeat extensin-like protein 3                        |  |  |
| LOC112094128 | 4.28121   | 0.0969415 | -5.446137965 | 0.0133982 | Non-specific lipid-transfer protein 3                              |  |  |
| LOC21398811  | 5.90189   | 0.14015   | -5.365648047 | 0.0007296 | Dehydration-responsive element-binding protein 1A                  |  |  |
| LOC21406989  | 2.65862   | 0         | -5.267800723 | 0.0036485 | Homeobox protein 12                                                |  |  |
| LOC21410147  | 8.85473   | 0.247533  | -5.173678546 | 0.0002083 | Ethylene-responsive transcription factor ERF109                    |  |  |
| LOC21388813  | 1.78319   | 0.0511076 | -5.149156227 | 0.0240884 | Piriformospora indica-insensitive protein 2                        |  |  |
| LOC21403374  | 4.10804   | 0.16164   | -5.149156227 | 0.0240884 | Glutaredoxin-C11                                                   |  |  |
| LOC21390405  | 38.8617   | 1.16881   | -5.108482412 | 2.74E-10  | Probable pectinesterase 53                                         |  |  |
| LOC21410363  | 22.572    | 0.672281  | -5.062900493 | 1.35E-09  | Polygalacturonase At1g48100                                        |  |  |
| LOC21397360  | 97.3877   | 2.96022   | -5.060235039 | 1.81E-11  | ABC transporter G family member 8                                  |  |  |
| LOC21403148  | 44.9254   | 1.38588   | -5.031733365 | 6.80E-11  | Probable inactive leucine-rich repeat receptor-like protein kinase |  |  |
| LOC21410425  | 518.057   | 16.6239   | -5.015647321 | 2.87E-10  | MLP-like protein 423                                               |  |  |
| LOC112094985 | 14.6446   | 0.606895  | -4.97406952  | 0.0027701 | GDSL esterase/lipase At5g45950-like                                |  |  |
| LOC112092080 | 5.82597   | 0.200124  | -4.950610547 | 0.0002691 | Glycine-rich protein 23-like                                       |  |  |
| LOC21391660  | 0.624074  | 0.0242434 | -4.877854205 | 0.0387887 | Uncharacterized LOC21391660                                        |  |  |
| LOC21401277  | 1.26248   | 0.0578608 | -4.877854205 | 0.010022  | Isoprene synthase, chloroplastic                                   |  |  |
| LOC21399349  | 29.8954   | 1.0711    | -4.864222339 | 2.17E-05  | Uncharacterized LOC21399349                                        |  |  |
| LOC21385960  | 1.97066   | 0.0731959 | -4.827228132 | 0.0421538 | Dehydration-responsive element-binding protein 2F                  |  |  |
| LOC21404198  | 3.95103   | 0.159303  | -4.827228132 | 0.0421538 | Uncharacterized LOC21404198                                        |  |  |
| LOC112092755 | 6.40799   | 0.286809  | -4.756838804 | 0.0052371 | Protein GAST1-like                                                 |  |  |
| LOC21403098  | 14.7994   | 0.638994  | -4.628682452 | 0.0001386 | Uncharacterized LOC21403098                                        |  |  |
| LOC112093610 | 1.2145    | 0.0354831 | -4.584657829 | 0.0082983 | Phospholipase D alpha 4                                            |  |  |
| LOC21384131  | 1.88234   | 0.0821832 | -4.543435166 | 0.0209278 | Fatty alcohol:caffeoyl-CoA acyltransferase                         |  |  |
| LOC21412323  | 0.108055  | 5.12639   | 5.565089291  | 0.000318  | Chalcone synthase 2                                                |  |  |
| LOC21406747  | 0.303922  | 15.0906   | 5.586399797  | 2.55E-06  | WAT1-related protein At5g07050                                     |  |  |
| LOC21387954  | 0.0538491 | 2.08807   | 5.594836634  | 0.0095267 | 5'-nucleotidase SurE                                               |  |  |
| LOC21411915  | 0.0303165 | 1.29367   | 5.680566508  | 0.0078289 | receptor-like Serine/threonine-protein kinase SD1-7                |  |  |
| LOC21396421  | 0.320406  | 19.7363   | 5.708047245  | 1.77E-08  | Patatin-like protein 3                                             |  |  |
| LOC21390421  | 0.520400  | 31.6888   | 5.789626984  | 3.27E-09  | Blue copper protein                                                |  |  |
| LOC21399007  | 0.0190003 | 0.920417  | 5.813016804  | 0.0056975 | Probable LRR receptor-like serine/threonine-protein kinase         |  |  |
| LOC21384783  | 0.167765  | 8.72595   | 5.813016804  | 0.0056975 | Protein RSI-1                                                      |  |  |
| 20021403020  | 0.10//00  | 0.12000   | 0.010010004  | 0.0000870 | TO CONTROL T                                                       |  |  |

(Continued)

### TABLE 1 | Continued

| Gene id      | Normaliz  | ed value | Fold change  | P-value   | Description                                                   |  |  |  |
|--------------|-----------|----------|--------------|-----------|---------------------------------------------------------------|--|--|--|
|              | FPKM-HL   | FPKM-IL  | log2 (IL/HL) |           |                                                               |  |  |  |
| _OC21386441  | 0.627389  | 45.8209  | 5.857325701  | 2.84E-08  | Miraculin                                                     |  |  |  |
| LOC21407265  | 0.173024  | 12.8049  | 5.949753141  | 5.11E-07  | Ethylene-responsive transcription factor 1B                   |  |  |  |
| LOC21409203  | 0.0336459 | 1.90077  | 5.957406714  | 0.0039441 | Uncharacterized LOC21409203                                   |  |  |  |
| _OC21383997  | 0.0664015 | 3.96772  | 5.957406714  | 5.00E-05  | G-type lectin S-receptor-like serine/threonine-protein kinase |  |  |  |
| _OC21397142  | 0.904786  | 52.6317  | 5.978873907  | 7.54E-12  | Cationic peroxidase 1                                         |  |  |  |
| _OC21406662  | 1.59494   | 95.6586  | 6.09016557   | 5.21E-14  | Uncharacterized LOC21406662                                   |  |  |  |
| OC21408088   | 0         | 7.15596  | 6.139998127  | 0.0001645 | WAT1-related protein At2g39510                                |  |  |  |
| OC21406422   | 0.138474  | 8.26998  | 6.189580156  | 0.0001322 | Probable glutathione S-transferase                            |  |  |  |
| _OC21390992  | 1.87224   | 126.612  | 6.200677865  | 7.14E-14  | Asparagine synthetase                                         |  |  |  |
| _OC112091386 | 0.843582  | 65.6859  | 6.250032673  | 3.34E-14  | Feruloyl CoA ortho-hydroxylase 1-like                         |  |  |  |
| _OC21387901  | 0         | 2.3289   | 6.254388451  | 1.96E-07  | Uncharacterized LOC21387901                                   |  |  |  |
| _OC21410222  | 0.03294   | 2.42332  | 6.283907538  | 0.0015681 | Cytochrome P450 71A1                                          |  |  |  |
| OC112090407  | 0.0500086 | 4.46122  | 6.455860221  | 0.0009121 | Basic 7S globulin-like                                        |  |  |  |
| _OC21406339  | 0.0984316 | 8.62995  | 6.471979887  | 0.000865  | Monothiol glutaredoxin-S2                                     |  |  |  |
| _OC21404511  | 0.04668   | 8.29125  | 6.519285601  | 2.61E-05  | Gibberellin 2-beta-dioxygenase                                |  |  |  |
| _OC21398446  | 0.350073  | 33.1774  | 6.545636928  | 1.13E-13  | Cytochrome P450 78A9                                          |  |  |  |
| OC21412472   | 16.9977   | 1631.78  | 6.591718641  | 0.0180694 | Probable linoleate 9S-lipoxygenase 5                          |  |  |  |
| _OC21391507  | 0.156937  | 14.3566  | 6.60217861   | 7.71E-08  | 1-aminocyclopropane-1-carboxylate oxidase homolog 1           |  |  |  |
| _OC21397864  | 0.0394556 | 3.97442  | 6.774542657  | 0.0002963 | Probable glycosyltransferase At5g03795                        |  |  |  |
| OC112092542  | 0.151226  | 16.4573  | 6.842247516  | 1.50E-07  | Feruloyl CoA ortho-hydroxylase 1-like                         |  |  |  |
| _OC112091995 | 0.0271129 | 3.24284  | 6.922641296  | 0.0001653 | Berberine bridge enzyme-like 8                                |  |  |  |
| _OC21384862  | 0.158268  | 29.2499  | 6.995077132  | 4.08E-08  | Kirola                                                        |  |  |  |
| _OC21403962  | 0.0282105 | 3.40499  | 7.035409226  | 0.000103  | Probable WRKY transcription factor 72                         |  |  |  |
| _OC21385733  | 0         | 15.5682  | 7.208945481  | 4.70E-05  | Ribonuclease 1                                                |  |  |  |
| _OC21400980  | 0         | 1.02752  | 7.342070564  | 1.13E-07  | Uncharacterized LOC21400980                                   |  |  |  |
| _OC21393656  | 11.555    | 2029.74  | 7.481901134  | 0.000226  | Phospholipase A1-Ildelta                                      |  |  |  |
| OC21399608   | 0.0501056 | 9.8623   | 7.666627317  | 3.99E-06  | Glucan endo-1,3-beta-glucosidase, basic isoform               |  |  |  |
| OC21393606   | 0.0424996 | 23.1696  | 8.242221636  | 1.14E-11  | Probable aminotransferase TAT2                                |  |  |  |
| _OC21395229  | 0.324153  | 90.5203  | 8.2533396    | 1.56E-19  | Pectinesterase                                                |  |  |  |
| _OC21398841  | 0.0645814 | 58.631   | 9.989955408  | 1.59E-16  | CEN-like protein 1                                            |  |  |  |
| _OC21386143  | 0.0544122 | 91.2163  | 10.72411965  | 7.50E-21  | Small heat shock protein                                      |  |  |  |

FPKM, fragment per kilobase of transcript per million mapped reads. HL and IL indicate healthy and infected leaves, respectively.


liquid medium containing rifampicin (20 mg l<sup>-1</sup>) and kanamycin (50 mg l<sup>-1</sup>), and then were centrifuged when its OD<sub>600</sub> value reached 0.4 followed by re-suspension in 2-N-morpholino ethanesulfonic acid (MES) buffer (10 mmol l<sup>-1</sup> MgCl<sub>2</sub>, 10 mmol l<sup>-1</sup> MES-KOH and 100  $\mu$ mol l<sup>-1</sup> acetosyringone, pH 5.2). About 0.1 ml of *A. rhizogenes* harboring vectors pROK2 containing 35S::Mu-GsSRK suspension was injected into the junction of true leaves and cotyledons as described previously (Meng et al., 2019). At the same time, the plant injected with *A. rhizogenes* strains K599 harboring empty vectors, pROK2 were used as the control group. About 1 month later, when the hairy roots developed well, they were detected by PCR and the original roots were cut off.

# Phytoplasma Inoculation and Determination

To obtain mulberry yellow dwarf phytoplasma (16SrI-B)infected leafhoppers (*Hishmonus sellatus*), the leafhoppers were

transferred to phytoplasma-infected mulberry plants for 2 weeks. A. thaliana and mulberry seedlings were inoculated with mulberry phytoplasma by the sap-feeding method with phytoplasma-infected leafhoppers (Sugio et al., 2011), and the seedlings challenged with uninfected leafhoppers were used as controls. Each of the A. thaliana or mulberry seedling was challenged with six adult leafhoppers for 6 days. All the seedlings were incubated in a growth chamber at 26°C, 60% humidity, and under 12h of light. Four weeks after inoculation, the DNA was extracted following the method described previously (Prince, 1993), and phytoplasma concentration in the plants was determined using real-time PCR described previously (Christensen et al., 2004). The primers and TaqMan probes used to amplify the 16S rRNA gene of phytoplasma, Arabidopsis, and mulberry are listed in Supplementary Table 2. Three biological replicates per treatment were assayed and three technical replicates were performed for each sample.

Liu et al.



**FIGURE 2** Helative expression levels of the genes analyzed by quantitative real time PCR (qR1-PCR). The relative expression levels of the genes were evaluated using the  $2^{-\Delta Ct}$  method with *Mul-ACTIN* and *Mul-EF1-a* as reference genes. The column indicates the log<sub>2</sub> ratio of phytoplasma-infected leaves/healthy leaves. Statistical values are expressed as the mean  $\pm$  SD, n = 3 in each group.

### RESULTS

### Differential Transcriptome Analysis Between Phytoplasma-Infected and Healthy Mulberry Leaves

Using RNA-seq, a total of 48.9 and 48.7 million clean reads were obtained in the healthy and phytoplasma-infected mulberry (M. multicaulis Perr.) leaf mRNA libraries, respectively. The expression level of genes identified was calculated, and a total of 1,168 genes were found to be differentially expressed between phytoplasma-infected and healthy leaves, among which 769 genes were upregulated and 399 genes were downregulated (Figure 1A). All the detected DEGs are shown in Supplementary Table 1 and the top 40 up and downregulated ones are listed in Table 1. The GO analysis of the DEGs classified them into 11 functional categories (Figure 1B). The first category of gene was involved in stress and environment response, and the genes associated with catabolic process belonged to the second category, and the third category included the genes involved in transcription and post-transcription regulation. The other DEGs belonged to categories, such as secondary metabolite biosynthesis, signaling pathway, growth and development, cell component, and cycle process. The detailed functional GO terms of the DEGs are given in **Supplementary Table 3**. Interestingly, 6% of the DEGs were found to be associated with signal transduction pathways, indicating that diverse signal transduction pathways were involved in the response of mulberry to phytoplasma infection. Therefore, the regulatory networks involved in response to phytoplasma infection in mulberry plants are found to be complex.

To validate the expression profiles obtained by RNA-seq, a qRT-PCR analysis was performed for 10 genes including the upregulated and downregulated ones in response to phytoplasma infection (**Figure 2**). The data showed that all the selected genes exhibited similar changes in expression levels between qRT-PCR and RNA-seq results, indicating that the differential expression profiles of these genes obtained by RNA-seq are reliable.

### **DNA Methylation Site Distributions**

There were 23,056 CCGG and 8,520 CCWGG DNA methylation sites detected in the phytoplasma-infected leaves, and a total of 22,733 CCGG and 7,856 CCWGG DNA methylation sites were found in healthy leaves. When the MethyIRAD reads were aligned onto a unique locus in different regions of the genome, the genome-wide methylation pattern was obtained, and the results showed that the distributions of

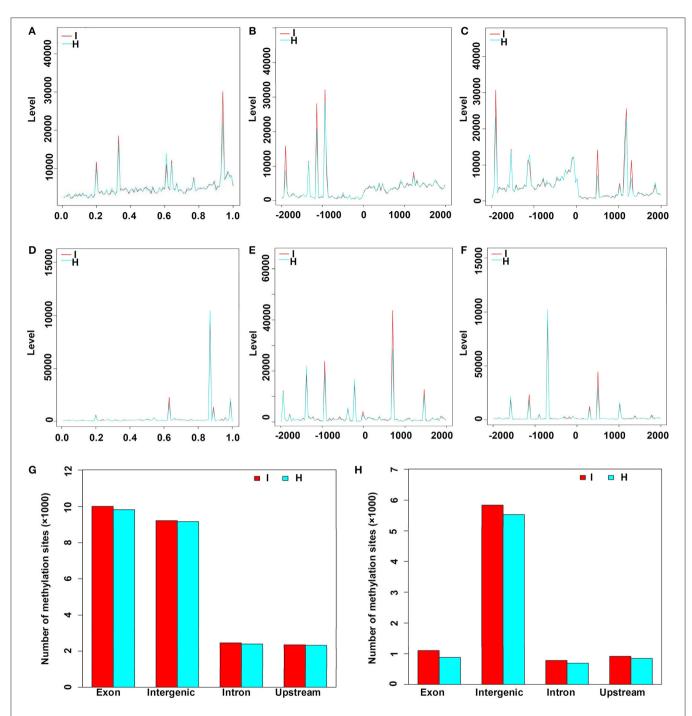



FIGURE 3 | Distribution of methylation sites in different gene regions and elements. (A) Distribution of CCGG methylation sites in the genes. X-axis represents the relative position of the locus on the gene. (B) Distribution of CCGG methylation sites 2 kb upstream or downstream of the transcriptional start sites (TSS). (C) Distribution of CCGG methylation sites 2 kb upstream or downstream of the transcriptional termination sites (TTS). (D) Distribution of CCWGG methylation sites in genes. X-axis represents the relative position of the locus on the gene. (E) Distribution of CCWGG methylation sites 2 kb upstream or downstream of the TTS. (G) CCGG methylation sites 2 kb upstream or downstream of the TTS. (G) CCGG methylation sites are shown. (H) CCWGG methylation sites are shown. I, infected leaves; H, healthy leaves. Exon indicates the exon regions; Intergenic indicates the intergenic regions; Intron indicates the intron regions; Upstream indicates 2 kb upstream of TSS.

methylation sites in different components of the genome were differential. However, it was found that the distribution patterns of methylation sites at different elements of genomes were similar in the phytoplasma-infected and healthy mulberry leaves (Figures 3A–F). Most CCGG DNA methylation sites were mainly enriched in the exon regions followed by the intergenic,

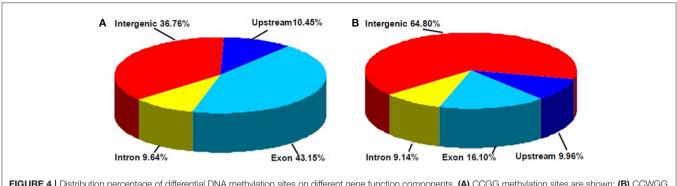
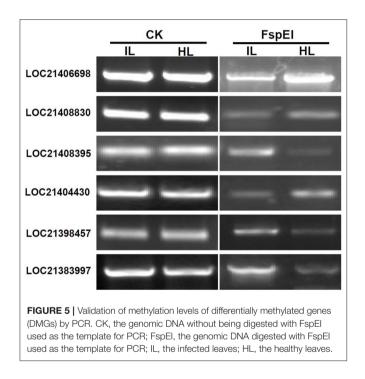




FIGURE 4 | Distribution percentage of differential DNA methylation sites on different gene function components. (A) CCGG methylation sites are shown; (B) CCWGG methylation sites are shown. Exon, the regions of exon; Upstream, the upstream 2,000 bp of the transcriptional start sites (TSS); Intron, the whole introns of genes; Intergenic, the intergenic regions.



intron, and upstream regions (**Figure 3G**). As for the CCWGG DNA methylation sites, the major sites were mainly enriched in the intergenic regions followed by the exon, upstream, and intron regions (**Figure 3H**).

# **DNA Methylation Levels**

In this study, a total of 3,676 and 1,366 differentially methylated sites in CCGG and CCWGG, respectively, were found between phytoplasma-infected and healthy mulberry leaves. Most of the differentially methylated sites were found in the intergenic and exon regions, and only about 10% of the differentially methylated sites were found in the upstream and intron regions, respectively (**Figure 4**). The genes with differentially methylated sites in phytoplasma-infected and healthy mulberry leaves were screened and termed as DMGs. In total, 935 and 347 DMGs were

identified in CCGG (**Supplementary Table 4**) and CCWGG sites (**Supplementary Table 5**), respectively. The results revealed that 511 DMGs in CCGG sites as well as 220 DMGs in CCWGG sites showed upregulation and 424 DMGs in CCGG sites as well as 127 DMGs in CCWGG sites showed downregulation in the phytoplasma-infected leaves compared to healthy leaves. Interestingly, there were 29 genes which were differentially methylated at both CCGG and CCWGG sites. These results suggested that phytoplasma infection induced the changes of methylation level of some genes.

To validate the results obtained with MethylRAD-seq data, six genes were selected for analysis by PCR. The genomic DNA digested with FspEI was used as the template for semiquantitative PCR, and there were more amplification products obtained from the samples, in which the genomic DNAs were lower methylated than those from the samples in which the genomic DNAs were highly methylated at CCGG or CCWGG sites (**Figure 5**). The PCR results showed a high degree of consistency with the MethylRAD-seq data, indicating that the genomic DNA methylation results obtained by MethylRAD are reliable.

# Association Analysis of MethylRAD and Transcriptome Sequencing

Based on the RNA-Seq and MethylRAD sequencing data, the methylation and expression levels of the genes in the infected and healthy leaves were compared. Though a lot of genes were methylated or expressed differently, only 51 genes were differentially methylated and expressed between the infected and healthy leaves. Among these differentially expressed and methylated genes (DEMGs), there were 40 and 11 genes with CCGG and CCWGG differential methylation sites, respectively (**Tables 2, 3**). The correlation between DNA methylation and gene expression showed that the expression levels of 33 genes were negatively correlated with their methylation levels, while the expression levels of 18 genes were positively correlated with their methylation levels. Moreover, it was found that most of the DEMGs were differentially methylated in the expression, and only 5 DEMGs were differentially methylated in the intron

TABLE 2 | Association analysis of the DNA methylation levels in CCGG sites and expression levels of genes in the healthy and infected mulberry leaves.

| Gene_id     |       | DN           | A methylation le         | vels of genes |            |          | Ex        | pression levels o        | Description |            |                                                         |
|-------------|-------|--------------|--------------------------|---------------|------------|----------|-----------|--------------------------|-------------|------------|---------------------------------------------------------|
|             | Norm  | alized value | Fold-change              | P-value       | Up or down | Normaliz | zed value | Fold-change              | P-value     | Up or down |                                                         |
|             | IL    | HL           | log <sub>2</sub> (IL/HL) |               |            | IL       | HL        | Log <sub>2</sub> (IL/HL) |             |            |                                                         |
| LOC21384119 | 6.64  | 1.22         | 2.377247933              | 0.03133688    | Up         | 10.6218  | 3.30881   | 1.696733297              | 0.032050552 | Up         | Probable acyl-activating enzyme 6                       |
| LOC21385272 | 57.3  | 28.75        | 1.001931754              | 0.010023735   | Up         | 0.465949 | 4.52085   | -3.07234063              | 0.005695407 | Down       | Protein NPGR1                                           |
| LOC21386068 | 43.43 | 7.34         | 2.561160615              | 2.84E-07      | Up         | 0.944625 | 6.06198   | -2.574462061             | 0.005256016 | Down       | Proteinaceous RNase P 1,<br>chloroplastic/mitochondrial |
| LOC21386721 | 4.22  | 0            | 5.8272901                | 0.019032971   | Up         | 17.2715  | 96.0452   | -2.450768342             | 0.000338362 | Down       | Root phototropism protein 3                             |
| LOC21387791 | 43.43 | 100.34       | -1.197632275             | 0.000829776   | Down       | 24.8383  | 5.11056   | 2.41804818               | 0.001789791 | Up         | Alpha-galactosidase                                     |
| LOC21387864 | 4.83  | 20.8         | -2.081703374             | 0.000736236   | Down       | 6.71571  | 0.585538  | 3.62398298               | 0.000389018 | Up         | Glutamate receptor 2.8                                  |
| LOC21388450 | 0     | 26.92        | -8.469230915             | 9.21E-11      | Down       | 18.8595  | 2.8335    | 2.770898828              | 0.000484906 | Up         | Remorin 4.1                                             |
| LOC21389708 | 7.24  | 0            | 6.594271611              | 0.000883472   | Up         | 9.63342  | 2.92863   | 1.734370376              | 0.025735456 | Up         | Disease resistance protein RPM1                         |
| LOC21390958 | 6.03  | 0            | 6.334220402              | 0.002947321   | Up         | 0.694153 | 4.57108   | -2.726142007             | 0.009576037 | Down       | LRR receptor-like serine/threonine-protei kinase RPK2   |
| LOC21391131 | 21.11 | 9.79         | 1.111840833              | 0.037905668   | Up         | 6.46363  | 0.863553  | 2.895734603              | 0.001660231 | Up         | Putative beta-D-xylosidase                              |
| LOC21392066 | 29.56 | 13.46        | 1.139403922              | 0.01657984    | Up         | 24.0147  | 7.56114   | 1.682886327              | 0.019554235 | Up         | GEM-like protein 5                                      |
| LOC21393642 | 21.71 | 3.66         | 2.548929333              | 6.57E-05      | Up         | 14.2876  | 3.80657   | 1.936906262              | 0.014112871 | Up         | F-box/LRR-repeat MAX2 homolog A                         |
| LOC21393677 | 2.41  | 9.79         | -1.978038631             | 0.021106192   | Down       | 13.2822  | 174.208   | -3.731234214             | 2.37E-06    | Down       | Cucumisin                                               |
| LOC21393969 | 1.81  | 24.47        | -3.693749899             | 3.50E-07      | Down       | 11.1303  | 3.7693    | 1.622102897              | 0.028591888 | Up         | Probable serine/threonine-protein kinase<br>WNK4        |
| LOC21394169 | 1.21  | 6.73         | -2.399293322             | 0.03133688    | Down       | 3.38758  | 0.742111  | 2.40116303               | 0.020972852 | Up         | Receptor-like protein kinase 5                          |
| LOC21394538 | 6.03  | 27.53        | -2.167341525             | 0.000108188   | Down       | 16.638   | 0.407073  | 5.423070286              | 3.29E-06    | Up         | Heat stress transcription factor B-3                    |
| LOC21394858 | 25.33 | 1.84         | 3.741571181              | 1.60E-07      | Up         | 24.5254  | 5.97396   | 1.911342808              | 0.006640769 | Up         | Uncharacterized LOC21394858                             |
| LOC21395936 | 38    | 10.4         | 1.870737662              | 8.77E-05      | Up         | 7.55023  | 1.51213   | 2.185595908              | 0.036028134 | Up         | Serine/threonine-protein kinase SAPK2                   |
| LOC21396002 | 2.41  | 26.92        | -3.430363844             | 3.31E-07      | Down       | 69.4173  | 12.1258   | 2.535104142              | 0.000156284 | Up         | 1-aminocyclopropane-1-carboxylate<br>oxidase homolog 1  |
| LOC21397122 | 3.02  | 18.35        | -2.566597169             | 0.000219215   | Down       | 7.61102  | 2.04864   | 1.952859924              | 0.006201517 | Up         | ABC transporter B family member 15                      |
| LOC21397198 | 2.41  | 14.68        | -2.559283094             | 0.000828701   | Down       | 23.5105  | 5.63271   | 2.089577933              | 0.003807881 | Up         | Rust resistance kinase Lr10                             |
| LOC21397218 | 14.48 | 30.59        | -1.066380385             | 0.025670151   | Down       | 21.892   | 1.09766   | 4.344062412              | 1.23E-05    | Up         | Homogentisate solanesyltransferase, chloroplastic       |
| LOC21399822 | 8.44  | 1.22         | 2.721679835              | 0.007515641   | Up         | 9.31064  | 29.8075   | -1.661090591             | 0.012513308 | Down       | Cytochrome P450 77A4                                    |
| LOC21400231 | 0     | 4.28         | -5.838512532             | 0.019032971   | Down       | 13.808   | 1.86419   | 2.866470008              | 0.007529116 | Up         | Cationic peroxidase 2                                   |
| LOC21400376 | 9.05  | 1.84         | 2.26385989               | 0.013506003   | Up         | 25.8076  | 155.143   | -2.551084391             | 0.000280295 | Down       | Phosphomethylethanolamine<br>N-methyltransferase        |
| LOC21400775 | 0     | 9.79         | -7.016905701             | 8.65E-05      | Down       | 38.1527  | 3.69448   | 3.341711085              | 4.67E-06    | Up         | Aspartic proteinase nepenthesin-1                       |
| LOC21401505 | 4.22  | 23.25        | -2.431079327             | 8.45E-05      | Down       | 3.63616  | 12.0921   | -1.810864686             | 0.022105531 | Down       | Endoglucanase 24                                        |
| LOC21401979 | 60.32 | 24.48        | 1.307831037              | 0.000939169   | Up         | 22.8469  | 86.1436   | -1.910609869             | 0.003886471 | Down       | Monocopper oxidase-like protein SKU5                    |
| LOC21402514 | 7.24  | 17.74        | -1.275612742             | 0.032805023   | Down       | 2.45421  | 10.1068   | -2.01987321              | 0.03799655  | Down       | Glucan endo-1,3-beta-glucosidase 5                      |
| LOC21403912 | 59.11 | 26.92        | 1.141625094              | 0.003513335   | Up         | 14.0438  | 57.7734   | -2.050289552             | 0.002115063 | Down       | Putative methylesterase 11, chloroplastic               |
| LOC21406110 | 0     | 7.95         | -6.719913843             | 0.000489065   | Down       | 2.90947  | 0.153392  | 4.265529009              | 0.035230409 | Up         | Probable purine permease 11                             |

(Continued)

Methylome Changes of Phytoplasma-Infected Mulberry

TABLE 2 | Continued

| Gene_id     |                  | DN    | A methylation lev        | els of genes |            |          | Ex       | pression levels o        | Description |            |                                      |
|-------------|------------------|-------|--------------------------|--------------|------------|----------|----------|--------------------------|-------------|------------|--------------------------------------|
|             | Normalized value |       | Fold-change              | P-value      | Up or down | Normaliz | ed value | Fold-change              | P-value     | Up or down |                                      |
|             | IL               | HL    | log <sub>2</sub> (IL/HL) |              |            | IL       | HL       | Log <sub>2</sub> (IL/HL) |             |            |                                      |
| LOC21407221 | 38               | 17.74 | 1.104566424              | 0.011630501  | Up         | 35.4039  | 14.059   | 1.363421941              | 0.033134801 | Up         | Uncharacterized LOC21407221          |
| LOC21407679 | 36.79            | 11.62 | 1.66492899               | 0.000397285  | Up         | 15.3024  | 2.69869  | 2.52582986               | 0.000680367 | Up         | Protodermal factor 1                 |
| LOC21407908 | 3.02             | 11.01 | -1.833601232             | 0.020788721  | Down       | 15.3024  | 2.69869  | 2.52582986               | 0.000680367 | Up         | Heat shock cognate 70 kDa protein 2  |
| _OC21408351 | 0                | 3.67  | -5.620316002             | 0.036026696  | Down       | 8.9252   | 1.23402  | 2.856855415              | 0.010383176 | Up         | CBS domain-containing protein CBSX5  |
| LOC21410042 | 3.02             | 18.35 | -2.566597169             | 0.000219215  | Down       | 40.1702  | 1.30865  | 4.890219818              | 1.18E-08    | Up         | Epoxide hydrolase A                  |
| LOC21410115 | 13.27            | 29.38 | -1.132484815             | 0.020094715  | Down       | 1.06778  | 7.68425  | -2.888368427             | 0.00713277  | Down       | O-acyltransferase WSD1               |
| LOC21410270 | 22.92            | 11.01 | 1.061391626              | 0.039801044  | Up         | 81.0559  | 10.3012  | 2.964684515              | 1.20E-05    | Up         | Cytochrome P450 71B37                |
| LOC21410363 | 10.25            | 1.84  | 2.443023224              | 0.005647968  | Up         | 0.672281 | 22.572   | -5.062900493             | 1.35E-09    | Down       | Polygalacturonase At1g48100          |
| LOC21410440 | 3.62             | 0     | 5.609126288              | 0.036026696  | Up         | 21.5948  | 7.89128  | 1.504927856              | 0.037234392 | Up         | IAA-amino acid hydrolase ILR1-like 2 |

TABLE 3 Association analysis of the DNA methylation levels in CCWGG sites and expression levels of genes in the healthy and infected mulberry leaves.

| Gene_id     |                  | DN    | A methylation leve       | ls of genes |            |                  | Ex        | Description              |             |            |                                                               |
|-------------|------------------|-------|--------------------------|-------------|------------|------------------|-----------|--------------------------|-------------|------------|---------------------------------------------------------------|
|             | Normalized value |       | Fold-change              | P-value     | Up or down | Normalized value |           | Fold-change              | P-value     | Up or down |                                                               |
|             | IL               | HL    | log <sub>2</sub> (IL/HL) |             |            | IL               | HL        | Log <sub>2</sub> (IL/HL) |             |            |                                                               |
| LOC21383997 | 3                | 8.7   | -1.5360529               | 0.020021665 | Down       | 3.96772          | 0.0664015 | 5.957406714              | 5.00E-05    | Up         | G-type lectin S-receptor-like serine/threonine-protein kinase |
| LOC21385193 | 2.77             | 46.21 | -4.041846754             | 1.89E-06    | Down       | 0.460683         | 0         | Inf                      | 0.038255631 | Up         | Uncharacterized LOC21385193                                   |
| LOC21385834 | 31.81            | 9.24  | 1.6961249                | 0.019332873 | Up         | 1.14305          | 0.0640711 | 4.150051792              | 0.04322622  | Up         | Uncharacterized acetyltransferas<br>At3g50280                 |
| LOC21386217 | 6.91             | 24.65 | -1.873520354             | 0.014149991 | Down       | 28.5432          | 82.7777   | -1.540807039             | 0.017915134 | Down       | GATA transcription factor 8                                   |
| LOC21386728 | 17.98            | 1.54  | 3.33439691               | 0.005616358 | Up         | 83.5981          | 14.2825   | 2.545951498              | 0.000663556 | Up         | Pleiotropic drug resistance prote<br>1                        |
| LOC21397798 | 12.45            | 1.54  | 2.81044098               | 0.047691132 | Up         | 32.6897          | 103.274   | -1.662120382             | 0.02164995  | Down       | Alpha-xylosidase 1                                            |
| LOC21405760 | 88.53            | 35.43 | 1.2488273                | 0.00565644  | Up         | 32.0943          | 75.4566   | -1.260241675             | 0.049769593 | Down       | Multicopper oxidase LPR1                                      |
| LOC21406640 | 8.3              | 0     | 5.50959106               | 0.036026696 | Up         | 6.21539          | 58.0157   | -3.31628674              | 1.45E-06    | Down       | Protein ECERIFERUM 1                                          |
| LOC21408202 | 2.76             | 27.73 | -3.308560094             | 0.000697104 | Down       | 8.81421          | 1.16728   | 2.850158208              | 0.000787834 | Up         | Non-lysosomal<br>glucosylceramidase                           |
| LOC21408270 | 8.3              | 0     | 5.50959106               | 0.036026696 | Up         | 6.28344          | 16.8424   | -1.455547002             | 0.038863479 | Down       | UDP-glucuronate 4-epimerase 3                                 |
| LOC21409371 | 8.3              | 0     | 5.50959106               | 0.036026696 | Up         | 47.4971          | 2.87226   | 4.036016548              | 1.97E-08    | Up         | Cytochrome P450 84A1                                          |

Methylome Changes of Phytoplasma-Infected Mulberry

regions and one was differentially methylated in the intergenic region (**Supplementary Tables 6, 7**).

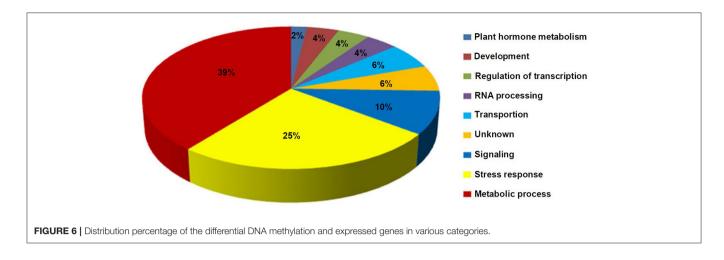
The GO analysis of these DEMGs indicated that these genes were classified into nine functional categories (**Figure 6**). The first category of genes was involved in metabolism followed by the second category of genes which was associated with stress response, and the third category of genes was involved in signal transduction. The other genes were classified into transportion, RNA processing, regulation of transcription, development, and unknown categories.

### Characterization of the Phytoplasma-Responsive G-Type Lectin S-Receptor-Like Serine/Threonine Protein Kinase

Integrated analysis showed that the expression of LOC21383997, which was annotated as Mu-GsSRK was increased, but its methylation level was decreased in the phytoplasma-infected leaves, and these results were confirmed by qRT-PCR (Figure 2) and semi-quantitative PCR analyses (Figure 5). The protein encoded by the Mu-GsSRK gene contains 781 amino acids, and its predicted molecular weight (MW) and isoelectric point (pI) were found to be 87.6 kDa and 6.28, respectively. Multiple sequence alignments revealed the protein-shared homology regions with GsSRKs in various species (Figure 7A). Similar to other typical G-type lectin receptor-like kinases (LecRLKs), Mu-GsSRK protein has some putative conserved domains, such as protein kinase active sites, ATP binding sites, substrate binding sites, and two activation loops. Besides these conserved kinase domains, the protein also contains a B lectin (bulb-type mannose-specific lectin) region and an Slocus-glycoprotein region at the N terminus. In addition, a plant PAN/APPLE-like domain associated with various biological functions by mediating protein-carbohydrate or proteinprotein interactions was detected in the Mu-GsSRK protein (Figure 7B).

Phylogenetic analysis of Mu-GsSRK and GsSRKs from other plants showed that there was closest homology between Mu-GsSRK and GsSRK in M. notabilis (Figure 8A). The structural properties of the Mu-GsSRK protein was predicted using SWISS-MODEL, and the result showed that the protein contained 54.93% random coil, 23.30% alpha helix, and 21.77% extended strands and had a  $\beta$ -barrel structure composed of a number of strands in their N-terminal lectin domains (Figure 8B). The prediction of N-terminal extension suggested that Mu-GsSRK contained an obvious signal peptide, but no obvious sublocalization sequence was detected. In order to elucidate its subcellular localization, Mu-GsSRK was fused to a green fluorescent protein gene and introduced into N. benthamiana leaves. The green fluorescent signal was detected within the plasma membrane suggesting the localization of Mu-GsSRK in the plasma membrane (Figure 8C). Therefore, as a protein kinase, Mu-GsSRK may play a role in sensing and transmitting signals arising from different biotic stress conditions.

# Expression Profile of Mu-GsSRK


To explore the function of the Mu-GsSRK gene, its expression pattern in different tissues and organs was analyzed by qRT-PCR. The results showed that Mu-GsSRK was expressed ubiquitously in the investigated parts of mulberry plants, but its expression level was higher in the leaves than that in other parts (Figure 9A). Moreover, the induced expression pattern of Mu-GsSRK was explored by challenging the mulberry seedlings with P. syringae pv. mori and C. dematium and by treating the seedlings with JA and SA, respectively. The results indicated that the expression level of Mu-GsSRK was increased in the leaves challenged by P. syringae pv. mori or C. dematium. Furthermore, it showed that the exogenous application of JA or SA enhanced the expression of Mu-GsSRK in the leaves (Figure 9B). In addition, pMu-GsSRK was fused with the GUS gene and then was transiently expressed in tobacco leaves. The results of GUS staining showed that GUS activity was induced in the leaves infected by B. cinerea or Pst DC3000, as well as in the leaves upon inoculation with JA or SA (Figure 9C). These data indicated that Mu-GsSRK may be associated with stress resistance, and JA and SA may modulate its expression in mulberry.

## Methylation Profile of Mu-GsSRK

To explore whether DNA methylation was involved in the expression change of the Mu-GsSRK gene, genomic DNA digested with FspEI was used as the template for PCR analysis. The semi-quantitative PCR results indicated that the Mu-GsSRK gene was methylated at CCGG or CCWGG sites, but the methylation level of Mu-GsSRK did not differ significantly among the different parts of mulberry plants (Figure 10A). Therefore, the expression difference of Mu-GsSRK in the different parts is not caused by DNA methylation. However, the PCR results indicated that the methylation level of the Mu-GsSRK gene was reduced significantly in the leaves inoculated with P. syringae pv. mori or C. dematium or treated with SA, but its DNA methylation level may not be affected by JA treatment. So, the expression change of Mu-GsSRK in the leaves inoculated with Pst DC3000 or C. dematium or treated with SA may be also caused by its methylation level change (Figure 10B).

### Overexpression of *Mu-GsSRK* in *A. thaliana* Enhances Disease Resistance

To explore the defensive role of *Mu-GsSRK*, wild-type (WT) and transgenic *Mu-GsSRK* plants were challenged by *Pst* DC3000. Three days post-inoculation (DPI), the WT plants showed severe disease symptoms. In contrast, there were no evident disease symptoms observed in the leaves of transgenic plants. Meanwhile, the transgenic *Mu-GsSRK A. thaliana* plants were challenged by *B. cinerea* or *Phytophthora capsici* to explore the possible role of *Mu-GsSRK* in defense against fungal pathogens. Four DPI, *B. cinerea* or *P. capsici* were successfully colonized on the inoculation leaf surface of WT plants, and obvious necrotic lesions were observed on the leaves. On the contrary, mild disease symptoms were observed on the inoculated leaf surface of *Mu-GsSRK*-overexpressing plants (**Figure 11A**). In addition, the bacterial populations of *Pst* DC3000 strains in the inoculated leaves



were determined, and the result revealed that the population of the strains in the leaves of WT plants was significantly higher than that in the ones of Mu-GsSRK-overexpressing plants at 3 DPI (**Figure 11B**). Moreover, the lesion areas in the leaves of WT plants inoculated with *B. cinerea* and *P. capsici* were larger than those in the leaves of Mu-GsSRKoverexpressing plants (**Figure 11C**). These results indicate that the overexpression of Mu-GsSRK in Arabidopsis confer enhanced resistance to *Pst* DC 3000, *B. cinerea*, and *P. capsici*, and the Mu-GsSRK gene may play an important role in disease resistance.

To examine whether the expressions of some defense-related genes were elevated in the Mu-GsSRK-overexpressing A. thaliana plants, the expression levels of the pathogenesis-related protein 1 (PR-1) gene, plant defensin gene (PDF1.2), and cytochrome P450 protein CYP82C2 gene in the transgenic Mu-GsSRK plants were evaluated. The data showed that the expression levels of PR-1, PDF1.2, and CYP82C2 genes were all very low both in the WT and transgenic Mu-GsSRK plants in the absence of Pst DC3000 inoculation, indicating that the constitutive overexpression of the Mu-GsSRK gene might not affect the basal expression levels of these defense-related genes. However, after Pst DC3000 treatment, the expression levels of PR-1, PDF1.2, and CYP82C2 genes were higher in the Mu-GsSRKoverexpressing plants than in WT plants at 12 and 24 h postinoculation (Figure 11D). These results demonstrated that Mu-GsSRK may have a positive role in the regulation of defense gene expressions, but pathogen induction is a necessary step for defense gene expression.

## Overexpression of *Mu-GsSRK* in Mulberry Enhances Resistance to Phytoplasma

Since the efficient genetic transformation and regeneration system has not yet been established in mulberry trees, in order to examine the role of *Mu-GsSRK* in the defense response to phytoplasma, transgenic *Mu-GsSRK* mulberry plants with hairy roots were generated

(Supplementary Figure 1A). qRT-PCR showed that the Mu-GsSRK gene was constitutively highly expressed in the transgenic hairy roots (Supplementary Figure 1B). After the confirmation of transgenic Mu-GsSRK hairy roots, the original roots were cut off and the seedlings carrying the transgenic hairy roots were used in the follow-up of phytoplasma challenge experiments using the sap-feeding method. Four weeks post-challenge, the mulberry seedlings carrying the non-transgenic hairy roots showed severe symptoms of Witches' broom disease, such as short internodes, leaf curling, and axillary bud sprouting. Contrarily, the mulberry seedlings carrying the transgenic Mu-GsSRK hairy roots showed mild dwarfism symptoms and enhanced resistance to phytoplasma (Figures 12A,B). Quantitative PCR analysis showed that the concentrations of phytoplasmas in the aboveground parts and roots of the seedlings carrying the non-transgenic hairy roots were about  $22.5 \times 10^5$ and  $1.3 \times 10^5$  cells  $\mu g^{-1}$  plant DNA, respectively. While the concentrations of phytoplasmas in the aboveground parts and roots of the seedlings carrying the transgenic Mu-GsSRK hairy roots were about  $6.0 \times 10^5$  and  $0.4 \times 10^5$  cells  $\mu g^{-1}$  plant DNA, respectively, there was no phytoplasma detected in the plants challenged by healthy leafhoppers (Figure 12C). Therefore, the concentrations of phytoplasmas in the aboveground parts and roots of the seedlings carrying the non-transgenic hairy roots were higher than those in the seedlings carrying the transgenic Mu-GsSRK hairy roots, and the overexpression of the Mu-GsSRK gene in the hairy roots partially inhibited the growth of phytoplasmas and led to enhanced resistance to phytoplasma.

### DISCUSSION

### DNA Dynamic Methylation Levels Were Associated With Expression Changes of the Genes Involved in Response to Phytoplasma Infection

As an important and conserved epigenetic modification, DNA methylation is associated with many important biological

| A | Glycine max MALCTSSFET TFFFTFFLFLFLUQPSVSQQQFTSENISHSFULF.ACMKTLLSPMKNETAGFFPLPRSSNVTTSEIMTSKVPPSANPFVMNAT   Malus domestica MSTFLLSILLAFILSNLPPS.AQUNSESSNDTTSQQNKTLLSPNSTAFAGFFPLPRSSNVTTSEIMTSKVPPSANPFVMNAT   Morus multicaulis MSTFLLSILLAFILSNLPPS.AQQUNSESS.LPWYQ.TONRTLLSPNSVFAGFSPISCSSNLTRSIMTRYQAAGFSPISCSSNLTRSIMTRYQAAGFSPISCSSNLTRSIMTRYAAGFSPISCSSNLTRSIMTRYAAGFSPISCSSNLTRSIMTRYAAGFSPISCSSNLTRSIMTRYAAGFSPISCSSNLTRSIMTRYSANSTF   Populus trichcoarpa MSTFLFLLISTELSPSFSCRQQMNSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92<br>85<br>82<br>84<br>87<br>85<br>95        |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|   | Glycine max v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 175<br>175<br>165<br>168<br>174<br>183<br>184 |
|   | Glycine max   RFIXSQNEVLSSTSDCHYNTPSQLLNMDDNEKMSMQ. DNSFLTSTYDD. FAFRAUVLDDDENLSINSTTEQKNQWEVMKGIWKMGRIKEKSOPNAL     Malus domestica   SVVNASCLVFINT. DVYQNLTNAFQSLGSECKVQQANGASFIASDFGL.NSSRUTIDDDGNERINGFDSLR.QONTVWQAGYELQVHCTCOPNAL     Morus multicaulis   SVKNASCLVFINT.DVYQNLTNAFQSLGSECKVQQANGASFIASDFGL.NSSRUTIDDDGNERINGFDSLR.QONTVWQAGYELQVHCTCOPNAL     Rosa chinensis   RTNSTKUVFILT.EQUQULTDAFKNLDFDCKNTQANCKSFIVECKNASLVTENTELDINDGNARINGFDSLR.VGVDVEXCGWATCOPNAL     Populus trichocarpa RFLNSSSSNSTIS.DNWTSDNVFAQLESDFCKVQCKSVSIISADYEV.ANKRUTIDNDGNARINGFDSL.QOFIANGALCSSKVPCKTOPNAL     Zea mays   RVVNSATLQFINS.NNAANISGGSALLNLTADCKLLFS.GSQLIASDQTTNVKRUTIDDGNARINGTVKNYSVDESLC.QAFIANGALCSSKVPCKTOAGER     Nicotiana_tabacum   OFLGSRTFFINGN.DSFFAQNSLQRLEDTELVTOSSINFFYSTEFED.LLTRUKKLKTOGNLQVMSFDEVVLK.QUTVVXQAIYQLETINFTCTNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 271<br>270<br>263<br>263<br>269<br>280<br>279 |
|   | Glycine max VPKEDLSTSTYCVCSSTPAIQNDPEKGERRIPLSQNTCBLRLEYVCSSDGHLNEIKALMFAMCANSSREKTELGEGRYTDS   Malus domestica VS.DCSSSY.CVCPGFRESAGGIKDGGCREKIKETNL.GNTFDERLEYVFTGGSNQTNWPATHFSVCSSPCLVRNHLLGMFRYDGK   Morus multicaulis VS.DCSSSY.CVCPGFRESAGGIKDGGCREKIKETNL.GNTFDERLEYVFTGGSNQTNWPATHFSVCSSPCLVRNHLLGMFRYDGK   Rosa chinensis VS.DCTSSYDCVCPGPQAPGAIEDQCORGEREKIKETNL.SNTKDLKUPVFTGGSNQTNWPATHFSICSSPCLPRANEGOMFRYDGK   Populus trichocarpa UT.DCSNSMS.VCCPGPQAPGAIEDQCORGEREKETSNTKDVQUPYGFGGSNQTNWPATHFSICSSPCLPRANEGOMFRYDGK   Zea mays VP.VGADSTT.CVCPGFRQSTTSREAGERREKETSNTKDVQUPYGFGGQTSLNVRNLTTGANCLALAVGEKLGSNSTVAGGYRGCD   Nicotiana_tabacum VY.DASTTKTSLVCPGFRKKISGESEGRVPLLSKTKDLPLEYVFTGGVDLKVLNFSSQRQCGCDTHELEDMFRYDCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 359<br>358<br>350<br>350<br>353<br>375<br>359 |
|   | Glycine max<br>Malus domestica<br>Maris domestica<br>Morus multicaulis<br>So y Huber. LLY GYNSPOTE ALLY YN UKSESSYSKE I GMTEVNOTT CEVNOSLEHUER DSNATARNI ALI CTLEA BLISGUL FYNSILKY I LYRDM<br>Morus multicaulis<br>So y Huber. LLY GYNSPOTE SAMF LW DRS PANT BRYDT I LETTCRY CHELDIER DSNATARNI YN LCTLEA BLISGUL FYNSILKY I LYRDM<br>Rosa chinensis<br>Populus trichocarpa<br>So y Huber. LLY GYNSPOTE SAMF LW DRS PANT BRYDT BLETTCRY CHELDIER DSNATARNI HIL CTLEA BLISGUL FYNSILKY I LYRDM<br>Populus trichocarpa<br>So y Huber. LLY GYNSPOTE SAMF LW DRS PANT BRYDT BLETTCRY CHELDIER DSNATARNI HIL CTLEA BLISGUL FYNSILKY I LYRDM<br>Populus trichocarpa<br>So y Huber. LLY GYNSPOTE SAMF LW DRS CTDETNET GYNEN LETTCRY CHELDIER DSNATARNI HICTLEA BLISGUL FYNSILKY I LYRDM<br>Populus trichocarpa<br>So y Huber. LLY GYNSPATEMYNY LWYRDM<br>Zea mays<br>RT LLY GYNSPATEMYNY HYNDNE KDYNFT GYNT MLETY CPYCLAL PROSNT THNI ALI CTLEA BLISGUL FYNSILKY I LYRDM<br>Nicotiana_tabacum<br>Y CYNLLDR. LLY GYNSPATEMYNY HYNDNE KDYNFT GYNT SLMETS CPYSIS LEFTPRESKATTEN Y UL YN FYNSILW FYNG M<br>Nicotiana_tabacum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 459<br>457<br>449<br>452<br>473<br>458        |
|   | Glycine max ATTELGELL PAGEPRETYSBIRMATKI FSNLTGROT GLVYRGE FOREVVAVROLKNVTGGDA EWAEVTI I ARMHHLNLVRUWGFCAEK GORL LVYE<br>Malus domestica ARTIGLEL PAGEPRETSYABLEMATKI FSNLTGROT GLVYRGE FOREVVAVROLKNVTGGDA EWAEVTI I ARMHHLNLVRUWGFCAEK GORL LVYE<br>Morus multicaulis ARTIGLEL PAGEPRETSYABLEMATKI FSNLTGROT GLVYRGE FOREVVAVROLKNVTGGDA EWAEVTI I ARMHHLNLVRUWGFCAEK GORL LVYE<br>Rosa chinensis ARTIGLEL PAGEPRETSYABLEMATKI FSNLTGROT GLVYRGE FOREVVAVROLKNVTGGDA EWAEVTI I ARMHHLNLVRUWGFCAEK GORL LVYE<br>Populus trichocarpation I GLEFI PAGEPRETSYABLEMATKI FSNLTGROT GLVYRGE FOREVVAVROLKNVTGGDT EWAEVTI I ARMHHLNLVRUWGFCAEK GORL LVYE<br>Zea mays ARTIGLEY PAGEPRETSHABLE OTTRE FSNLTGROT GLVYRGE FOREVAVROLKNVTGGDA EWAEVTI I ARMHHLNLVRUWGFCAEK GORL LVYE<br>Nicotiana_tabacum ARTIGLEY DAGEPRETSE FIRGATNI FI DKIGO GOVYRGE FOREVVAVROLKNVTGGDA EWAEVTI I ARMHHLNLVRUWGFCAEK GORL LVYE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 559<br>557<br>549<br>552<br>552<br>573<br>558 |
|   | Glycine max<br>Malus domestica<br>Morus multicaulis<br>Morus multicaulis<br>Mo | 659<br>653<br>635<br>645<br>648<br>668<br>645 |
|   | Glycine max<br>Malus domestica<br>Morus multicaulis<br>Morus multicaulis<br>Morus multicaulis<br>Morus multicaulis<br>Morus multicaulis<br>Env SLS ALRGRE GY APEMYKS. UNITAKADYSFG VLLEUVSGVRNTE IQG MILSOD YFR MADIKYFR MAVE DILDRO HKO SKISKAHFRWN<br>Morus multicaulis<br>Morus multicaulis<br>Morus SLS ALRGRE GY APEMYKS. UNITAKADYSFG VLLEUVSGVRNTE IQG MILSOD YFR MADIKYFR MAVE DILDRO HKO SKISKAHFRWN<br>Populus trichocarpa<br>Morus SH FGT GY APEMYKS. UNITAKADYSFG VLLEUVSGVRNTE IQG MILSOD YFR MAFRWYRD ILDRO HKO SKISKAHFRWN<br>Populus trichocarpa<br>Morus SH FGT GY APEMYKA. UPIT PKADYYSFG VLLEUVSGVRNYE FGG SUGSED YFR MAFRWYRD MUC DILDRO HKO SKISKAHFRWN<br>Zea mays<br>Nicotiana_tabacum<br>Egy TMS FFGT GY APEMYKA. UPIT PKADYYSFG VLLEIVSGRNFEHTDSKVDSOC YFR MAFRWYRD MILD DILDPR MATYDARSYN<br>Nicotiana_tabacum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 758<br>752<br>734<br>744<br>747<br>768<br>744 |
|   | Glycine max RMW TANKELOD BIELEFTMGKVA KMLEGTUELTEPRKPTVEPLGEE.   Malus domestica RMW TANKELOD BIELEFTMGKVA KMLEGTUELTEPRKPTVEPLGEE.   Morus multicaulis RMW TANKELOS PERRESMEKVA KMLEGTUELTEPRKPTTEPLGDE.   Rosa chinensis RMW TANKELOD BIELEFTMGKVA KMLEGTUELTEPRKPTTEPLTDD.   Populus trichocarpa RMW TANKELOD BIELEFTMGKVA KMLEGTUELTEPRKPTTEPLTDD.   Zea mays RMW TANKELOD BARPSMGKVA KMLEGTUELTEPKRPTTECVODD.   Nicotiana_tabacum RMV TANKELOD BARPSMGKVA KMLEGTUELTEPKRPTTEFLGEEQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 805<br>799<br>781<br>791<br>793<br>815<br>792 |
| в | ATP binding site 482 624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |
|   | Mannose binding site 60 135 Active site 482 651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |
|   | Mannose binding site   169   231   Polypeptide substrate binding site   621   651     1   22   80   145   220   280   292   379   417   440   465   762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 781                                           |
|   | SP B_lectin S-locus glycoprotein PAN_AP TM Ser/Thr kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |

FIGURE 7 | Multiple sequence alignment of Mu-GsSRK with other GsSRK proteins (A) and its putative conserved domains (B). Amino acid residues black and red or blue-shaded are conserved and similar amino acid residues, respectively. The aligned sequences included those GsSRK proteins from *Glycine max* (XP\_003529230.1), *Malus domestica* (XP\_028951539.1), *Rosa chinensis* (XP\_024193513.1), *Populus trichocarpa* (XP\_002314767.3), *Zea mays* (PWZ52786.1), and *Nicotiana tabacum* (XP\_016458326.1).

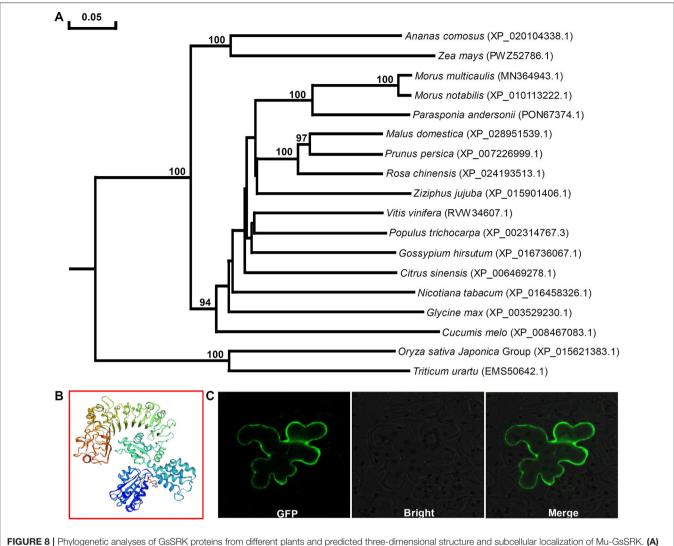
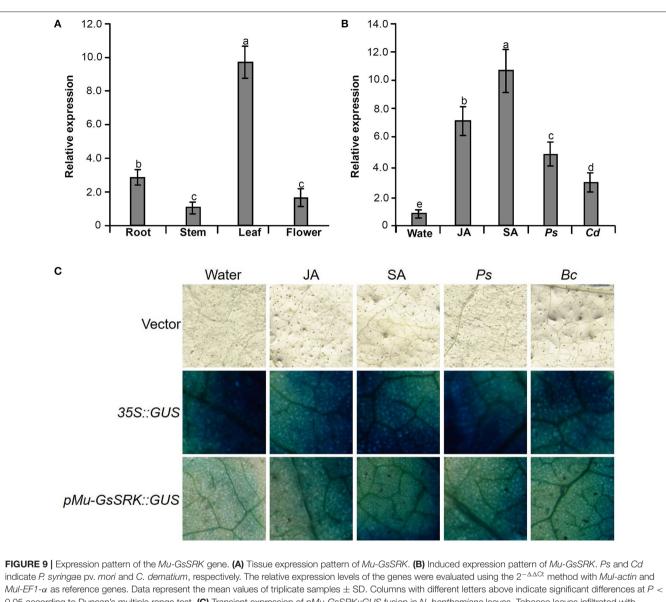
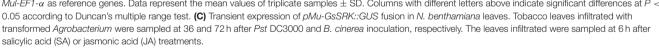
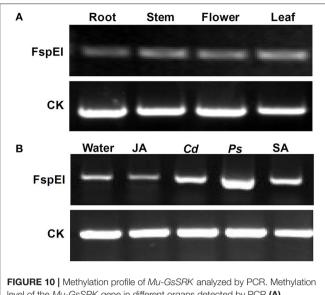





FIGURE 8 | Phylogenetic analyses of GsSRK proteins from different plants and predicted three-dimensional structure and subcellular localization of Mu-GsSRK. (A) Phylogenetic tree was generalized using the neighbor-joining method. The numbers given on the nodes are bootstrap values, and the scale indicates genetic distance. GenBank accession numbers of the proteins are shown in the brackets. (B) Three-dimensional structure of Mu-GsSRK proteins was established by SWISS-MODEL. (C) Subcellular localization of Mu-GsSRK-GFP in *N. benthamiana* leaf epidermal cells. Mu-GsSRK-GFP fusion protein was transiently expressed in *N. benthamiana* leaf epidermal cells and visualized with a confocal laser scanning microscope (Zeiss LSM880, Zeiss, Jena, Germany). The left image shows the cell with GFP signal, and the bright-field view of the same cells is shown in the middle image. The right image indicates the overlays of the fluorescent and bright images.

processes, and has been extensively studied in recent years. However, few studies have focused on mulberry, and this is the first report about the genome-wide DNA methylation profiles in mulberry. Previous reports showed that DNA methylation is not randomly distributed in genomes. In plants, the gene body regions are often highly methylated, while the transcriptional start sites (TSS) and transcriptional termination sites (TTS) mostly lack DNA methylation. Moreover, many intergenic regions also show hypermethylation; on the contrary, most promoter regions are hypomethylated (Zhang et al., 2006). The results presented here showed that DNA methylation is enriched in intergenic and gene body regions, whereas the promoter regions are also hypomethylated in mulberry genomes. In addition, it was also observed that the methylation level in exons was higher than that in introns and CCGG methylation sites (**Figure 4**). These results indicated that DNA methylation profiles of mulberry are analogous to those of other plants, and the methylation patterns among different plant species may be conservative. It is widely accepted that DNA methylation is a major transcription silencing pathway, which is negatively correlated with gene expression in plants (Zhang et al., 2006). However, it has also been reported that DNA methylation is positively correlated with gene expression (Lou et al., 2014). Analysis of gene expression differences between the healthy and infected leaves indicated that DNA hypermethylation is associated with activation of several genes during phytoplasma infection (**Tables 2**, **3**). Therefore, the mechanism of gene regulation mediated by DNA methylation is





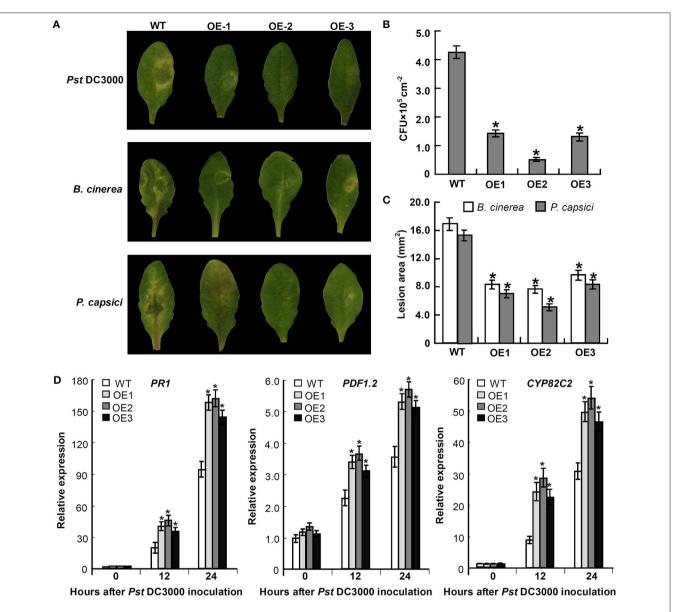

very complicated and further study is necessary to elucidate it in detail.

Previous studies have shown that DNA methylation patterns can be changed when plants are infected with pathogens, and it was reported that the DNA methylation levels decreased in Paulownia plantlets infected with phytoplasma (Cao et al., 2014). However, no significant difference in the average DNA methylation level between healthy and phytoplasma-infected mulberry samples was detected (**Figure 3**). The transcriptome data also indicated that phytoplasma infection did not lead to significant changes in the expression of methyltransferase and demethylase in the infected samples. Although the average DNA methylation level was not changed, the methylation levels of more than 1,253 genes were changed significantly in the infected samples (**Supplementary Tables 4**, **5**). So the methylation levels of certain genes may be dynamically regulated to control plant resistance against phytoplasma infection, but the genome was closely monitored to maintain stability. However, whether there is a link between locispecific methylation and phytoplasma infection remains to be established.

It has been reported that DNA methylation is associated with gene expression changes in response to phytoplasma infection (Jagoueix-Eveillard et al., 2001; Pracros et al., 2006; Ahmad et al., 2012; Cao et al., 2014; Pagliarani et al., 2020). In this study, 51 DEMGs were identified in the infected



level of the *Mu-GsSRK* gene in different organs detected by PCR (**A**). Methylation level of the *Mu-GsSRK* gene in the leaves inoculated with *P. syringae* pv. *mori* or *C. dematium* and treated with SA or JA detected by PCR (**B**). *Ps* and *Cd* indicate *P. syringae* pv. *mori* and *C. dematium*, respectively.

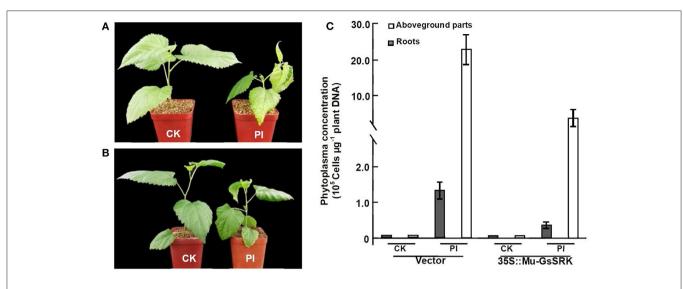

leaves. Among these, there were some receptor kinase genes, such as LRR receptor-like serine/threonine-protein kinase, Mu-GsSRK, and serine/threonine-protein kinase SAPK2e (Tables 2, 3), which play a central role in signaling during the pathogen recognition in plants (Bouwmeester and Govers, 2009; Wang and Bouwmeester, 2017). By adjusting the methylation levels of these genes, plants can regulate their expression levels to enhance the perception of phytoplasma infection. On the other hand, phytoplasma may change the methylation level of these genes to affect their expression, thus avoiding plant perception (Zhai et al., 2010; Cao et al., 2014). In addition, there were 22 DEMGs involved in metabolic, growth and developmental processes were found in the infected leaves; the changes of these genes may disturb the normal metabolic growth and developmental processes leading to various symptoms. Although these symptoms may hinder the normal growth and development of mulberry plants, they may promote parasite multiplication of phytoplasma in the infected plants. Moreover, among these DEMGs, there were 13 genes associated with stress response (Tables 2, 3). This suggests that mulberry plants can change the expression of some disease resistance genes by altering their methylation status, so as to improve their resistance to phytoplasma. Therefore, our evidence supported that the DNA dynamic methylation levels were associated with expression changes of the genes involved in response to phytoplasma infection. Although there were many genes which were simultaneously methylated and expressed differently in the infected and healthy leaves, there is a wide variety of mechanisms that control gene expression, and DNA methylation may be the reason for the change of gene expression, but the change may be affected by other factors rather than DNA methylation.

### DNA Methylation Plays an Important Role in Regulating *Mu-GsSRK* Gene Expression in Response to Phytoplasma Infection

The lectin receptor-like kinases (LecRLKs) are categorized into three sub-classes: G-, L-, and C-type depending on the features of their N-terminal lectin domains (Vaid et al., 2012), and the Mu-GsSRK protein has some domains conserved in G-type LecRLKs (Figure 7B). So it might have similar biological functions with other G-type LecRLKs. Due to the resemblance of the extracellular domain with the lectin protein, known to bind to fungal and bacterial cell wall components, LecRLKs are hypothesized to predominantly participate in biotic stress tolerance (Wang and Bouwmeester, 2017). There were many G-type LecRLKs that have been found to be associated with the responses to pathogen infections, and some LecRLKs have been reported to confer resistance to a variety of pathogens (Chen et al., 2006; Sanabria et al., 2012; Vaid et al., 2013; Ranf et al., 2015). However, to the best of our knowledge, the current study is the first to report that G-type LecRLK genes are associated with the response to phytoplasma infection.

It was reported that some members of the LecRLK family are located on the plasma membrane and can sense signals arising from different biotic stress conditions and transmit the stress signal to the nucleus (Vaid et al., 2013). So some LecRLK family genes were proposed to play a role in mediating and strengthening the cell wall-plasma membrane (CW-PM) links and continuum which is essential for defense against pathogens (André et al., 2005; Bouwmeester et al., 2011; Singh et al., 2012; Ranf et al., 2015). Our results showed that the Mu-GsSRK protein is localized on the plasma membrane (Figure 8C), and it can significantly increase the expressions of disease resistancerelated genes upon pathogenic infection (Figure 11C) and enhanced resistance to the pathogens (Figure 11A). Moreover, our results showed that the overexpression of Mu-GsSRK in the roots not only enhanced the roots but also the resistance of the aboveground parts to phytoplasma (Figure 12). Therefore, the Mu-GsSRK protein may be able to sense the signals arising from phytoplasma infection and transmit the signals to the nucleus and regulate the expressions of disease resistance-related genes, and the signal might be transmitted a long distance and stimulate the immune response of the whole plant.

It was reported that there was an increase in endogenous SA in the phytoplasma-infected plants (Dermastia, 2019). In addition, our results showed that the methylation level of the Mu-GsSRK gene was reduced significantly in the leaves treated with SA (Figure 10B). Therefore, the endogenous SA may be increased in the phytoplasma-infected mulberry leaves, which may reduce the methylation level and enhance the expression of Mu-GsSRK. Moreover, our results showed that the activity of the Mu-GsSRK promoter was induced by SA (Figure 9C). So,




**FIGURE 11** Transgenic *Mu-GsSRK* gene *A. thaliana* plants that are resistant to *Pst* DC 3000, *B. cinerea*, and *P. capsici*. (A) Disease symptoms observed on the leaves at 3 days post-inoculation (DPI) with *Pst* DC 3000 and 4 DPI with *B. cinerea* or *P. capsici*. (B) Bacterial populations of *Pst* DC 3000 strains in the inoculated leaves at 3 DPI. Values represent the mean and SD of three leaves for three independent plants. The asterisk indicates significant difference at P < 0.05 between WT and OE according to Student's *t*-test. (C) Lesion area in the leaves of WT and OE plants inoculated with *B. cinerea* and *P. capsici*. Lesion areas were measured 7 days after inoculation by determining the average lesion diameter on three leaves per line. Values represent the mean and SD of three leaves for three independent's *t*-test. (D) Expression of *PR-1*, *PDF1.2*, and *CYP82C2* in *Mu-GsSRK*-overexpressing *A. thaliana* plants. The relative expression levels of the genes were evaluated using the  $2^{-\Delta\Delta Ct}$  method with *Ath-actin* and *Ath-EF1-α* as reference genes. Data represent the mean values of triplicate samples  $\pm$  SD. The relative expressions of the genes were compared with their expressions in WT without treatment, and the asterisk indicates significant difference at P < 0.05 between WT and OE according to Student's *t*-test. WT indicates wild-type plants and OE indicates *Mu-GsSRK*-overexpressing plants.

the activities of the *Mu-GsSRK* promoter may be induced by the increase of endogenous SA caused by phytoplasma infection and enhance the expression of the *Mu-GsSRK* gene. In response to phytoplasma infection, SA may be an important factor in the regulation of methylation and the expression level of *Mu-GsSRK* in mulberry; further study is required to elucidate the precise mechanism behind this process.

## CONCLUSION

In conclusion, a large number of genes with different methylation and expression levels were identified, which laid a foundation for further study on the regulation mechanism of gene expression during the response to phytoplasma infection in mulberry. Our results proved that phytoplasma infection



**FIGURE 12** Transgenic *Mu-GsSRK* gene mulberry seedlings were resistant to phytoplasma. (A) Phenotypes of mulberry seedlings carrying the transgenic empty vector hairy roots challenged by phytoplasma. (B) Phenotypes of mulberry seedlings carrying the transgenic *Mu-GsSRK* hairy roots challenged by phytoplasma. (C) Phytoplasma concentration in the plants detected by real-time PCR amplification of phytoplasma 16S rDNA. Statistics values are expressed as the mean  $\pm$  SD, n = 3 in each group. CK, plants challenged by uninfected leafhoppers. PI, plants challenged by phytoplasma-infected leafhoppers. Vector, mulberry seedlings carrying the transgenic *Mu-GsSRK* hairy roots. 35S::Mu-GsSRK, mulberry seedlings carrying the transgenic *Mu-GsSRK* hairy roots.

induced changes both in the methylation and expression of *Mu-GsSRK* gene which positively regulates the resistance of plant disease. The information provided here is particularly useful to better understand the interactions between mulberry and phytoplasma.

## DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found at: PRJNA718973 (https://www.ncbi.nlm.nih.gov/sra/PRJNA718973).

# **AUTHOR CONTRIBUTIONS**

XJ conceived and designed the experiments. CL, XD, YX, YW, and QD performed the experiments and analyzed the data. YG wrote the manuscript. All authors read and approved the final manuscript.

### FUNDING

This work was supported by the National Key R&D Program of China (2018YFD1000602), the National Natural Science Foundation of China (31670600), the Natural Science Foundation of Shandong Province (ZR2019MC017), and the Modern Agricultural Technology System of Shandong Province (No. SDAIT-18-04).

# SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2021. 697702/full#supplementary-material

Supplementary Table 1 | The primers used for gene cloning.

Supplementary Table 2 | The primers used for qRT-PCR and semi-quantitative PCR.

Supplementary Table 3 | Differentially expressed genes (DEGs) between the healthy and infected mulberry leaves.

Supplementary Table 4 | Differentially methylated genes (DMGs) in CCGG sites between the healthy and infected mulberry leaves.

 $\label{eq:steps} \begin{array}{l} \textbf{Supplementary Table 5} \mid \textbf{Differentially methylated genes (DMGs) in CCWGG} \\ \textbf{sites between the healthy and infected mulberry leaves.} \end{array}$ 

**Supplementary Table 6** | Differentially methylated levels in CCGG sites in the gene regions of differentially methylated and expressed genes in the healthy and infected mulberry leaves.

**Supplementary Table 7** | Differentially methylated levels in CCWGG sites in the gene regions of differential methylated and expressed genes in the healthy and infected mulberry leaves.

**Supplementary Figure 1** | Regeneration of transgenic *Mu-GsSRK* hairy roots in mulberry seedling. **(A)** The hairy root phenotype of mulberry seedling. The arrow points to the hairy root. **(B)** Quantitative analysis of the expression levels of the *Mu-GsSRK* genes in the transgenic hairy roots. The relative expression levels of the genes were evaluated using the  $2^{-\Delta\Delta Ct}$  method with the *Mul-actin* and *Mul-EF1-α* as reference genes. Data represent the mean values of triplicate samples  $\pm$  SD. Asterisk indicates significant difference at *P* < 0.05 between WT and OE plants according to Student's *t*-test. WT, wild type plants; CK, the transgenic empty vector hairy roots; OE, the transgenic *Mu-GsSRK* hairy roots.

# REFERENCES

- Ahmad, J. N., Garcion, C., Teyssier, E., Hernould, M., Gallusci, P., Pracros, P., et al. (2012). Effects of stolbur phytoplasma infection on DNA methylation processes in tomato plants. *Plant Pathol.* 62, 205–216. doi: 10.1111/j.1365-3059.2012.02605.x
- André, S., Siebert, H. C., Nishiguchi, M., Tazaki, K., and Gabius, H. J. (2005). Evidence for lectin activity of a plant receptor-like protein kinase by application of neoglycoproteins and bioinformatic algorithms. *Biochim. Biophys. Acta* 1725, 222–232. doi: 10.1016/j.bbagen.2005.04.004
- Arpat, A. B., Magliano, P., Wege, S., Rouached, H., Stefanovic, A., and Poirier, Y. (2012). Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. *Plant J.* 71, 479–491. doi: 10.1111/j.1365-313X.2012.05004.x
- Bertaccini, A., and Duduk, B. (2009). Phytoplasma and phytoplasma diseases: a review of recent research. *Phytopathol. Mediterr.* 48, 355–378. doi: 10.14601/Phytopathol\_Mediterr-3300
- Bouwmeester, K., de Sain, M., Weide, R., Gouget, A., Klamer, S., Canut, H., et al. (2011). The lectin receptor kinase lecRK-I.9 is a novel phytophthora resistance component and a potential host target for a RXLR effector. *PLoS Pathog.* 7:e1001327. doi: 10.1371/journal.ppat.1001327
- Bouwmeester, K., and Govers, F. (2009). Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. *J. Exp. Bot.* 60, 4383–4396. doi: 10.1093/jxb/erp277
- Cao, X., Fan, G., Deng, M., Zhao, Z., and Dong, Y. (2014). Identification of genes related to Paulownia witches' broom by AFLP and MSAP. *Int. J. Mol. Sci.* 15, 14669–14683. doi: 10.3390/ijms150814669
- Cao, Y., Fan, G., Wang, Z., and Gu, Z. (2019). Phytoplasma-induced changes in the acetylome and succinylome of *Paulownia tomentosa* provide evidence for involvement of acetylated proteins in witches' broom disease. *Mol. Cell. Proteomics* 18, 1210–1226. doi: 10.1074/mcp.RA118.001104
- Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., et al. (2006). A Blectin receptor kinase gene conferring rice blast resistance. *Plant J.* 46, 794–804. doi: 10.1111/j.1365-313X.2006.02739.x
- Christensen, N. M., Axelsen, K. B., Nicolaisen, M., and Schulz, A. (2005). Phytoplasmas and their interactions with hosts. *Trends Plant Sci.* 10, 526–535. doi: 10.1016/j.tplants.2005.09.008
- Christensen, N. M., Nicolaisen, M., Hansen, M., and Schulz, A. (2004). Distribution of phytoplasmas in infected plants as revealed by realtime PCR and bioimaging. *Mol. Plant Microbe Interact.* 17, 1175–1184. doi: 10.1094/MPMI.2004.17.11.1175
- Clarke, J. D. (2009). Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. *Cold Spring Harb. Protoc.* 4, 1–2. doi: 10.1101/pdb.prot5177
- De Palma, M., Salzano, M., Villano, C., Aversano, R., Lorito, M., Ruocco, M., et al. (2019). Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus *Trichoderma harzianum*. *Hortic. Res.* 6:5. doi: 10.1038/s41438-018-0079-1
- Dermastia, M. (2019). Plant hormones in phytoplasma infected plants. *Front. Plant Sci.* 10:477. doi: 10.3389/fpls.2019.00477
- Gai, Y. P., Han, X. J., Li, Y. Q., Yuan, C. Z., Mo, Y. Y., Guo, F. Y., et al. (2014). Metabolomic analysis reveals the potential metabolites and pathogenesis involved in mulberry yellow dwarf disease. *Plant Cell Environ.* 37, 1474–1490. doi: 10.1111/pce.12255
- Gai, Y. P., Yuan, S. S., Liu, Z. Y., Zhao, H. N., Liu, Q., Qin, R. L., et al. (2018). Integrated phloem sap mRNA and protein expression analysis reveals phytoplasma-infection responses in mulberry. *Mol. Cell. Proteomics* 17, 1702–1719. doi: 10.1074/mcp.RA118.000670
- Harrison, S. J., Mott, E. K., Parsley, K., Aspinall, S., Gray, J. C., and Cottage, A. (2006). A rapid and robust method of identifying transformed *Arabidopsis thaliana* seedlings following floral dip transformation. *Plant Methods* 2:19. doi: 10.1186/1746-4811-2-19
- Henry, E., Yadeta, K. A., and Coaker, G. (2013). Recognition of bacterial plant pathogens: local, systemic and transgene rational immunity. *New Phytol.* 199, 908–915. doi: 10.1111/nph.12214
- Hren, M., Nikolić, P., Rotter, A., Blejec, A., Terrier, N., Ravnikar, M., et al. (2009). 'Bois noir' phytoplasma induces significant reprogramming of the

leaf transcriptome in the field grown grapevine. BMC Genomics 10:460. doi: 10.1186/1471-2164-10-460

- Huang, H., Liu, R., Niu, Q., Tang, K., Zhang, B., Zhang, H., et al. (2019). Global increase in DNA methylation during orange fruit development and ripening. *Proc. Natl. Acad. Sci. U.S.A.* 116, 1430–1436. doi: 10.1073/pnas.1815441116
- Jagoueix-Eveillard, S., Tarendeau, F., Guolter, K., Danet, J. L., Bové, J. M., and Garnier, M. (2001). *Catharanthus roseus* genes regulated differentially by mollicute infections. *Mol. Plant Microbe Interact.* 14, 225–233. doi: 10.1094/MPMI.2001.14.2.225
- Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987). GUS fusions:  $\beta$ -glucuronidase as a sensitive and versatile gene fusion marker in higher plants. *EMBO J.* 6, 3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x
- Ji, L., Jordan, W. T., Shi, X., Hu, L., He, C., and Schmitz, R. J. (2018). TET-mediated epimutagenesis of the Arabidopsis thaliana methylome. Nat. Commun. 9:895. doi: 10.1038/s41467-018-03289-7
- Ji, X., Gai, Y., Zheng, C., and Mu, Z. (2009). Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry (*Morus alba* L.). *Proteomics* 9, 5328–5339. doi: 10.1002/pmic.200900012
- Liu, Z. G., Zhao, Z. H., Xue, C. L., Wang, L. X., Wang, L. L., Feng, C. F., et al. (2019). Three main genes in the MAPK cascade involved in the Chinese jujube-phytoplasma interaction. *Forests* 10:392. doi: 10.3390/f10050392
- Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. *Methods* 25, 402–408. doi: 10.1006/meth.2001.1262
- Lou, S., Lee, H. M., Qin, H., Li, J. W., Gao, Z., Liu, X., et al. (2014). Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. *Genome Biol.* 15:408. doi: 10.1186/s13059-014-0408-0
- Meng, D., Yang, Q., Dong, B., Song, Z., Niu, L., Wang, L., et al. (2019). Development of an efficient root transgenic system for pigeon pea and its application to other important economically plants. *Plant Biotechnol. J.* 17, 1804–1813. doi: 10.1111/pbi.13101
- Namba, S. (2019). Molecular and biological properties of phytoplasmas. *Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci.* 95, 401–418. doi: 10.2183/pjab.95.028
- Pagliarani, C., Gambino, G., Ferrandino, A., Chitarra, W., Vrhovsek, U., Cantu, D., et al. (2020). Molecular memory of *Flavescence dorée* phytoplasma in recovering grapevines. *Hortic. Res.* 7:126. doi: 10.1038/s41438-020-00348-3
- Pavet, V., Quintero, C., Cecchini, N. M., Rosa, A. L., and Alvarez, M. E. (2006). Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by *Pseudomonas syringae*. *Mol. Plant Microbe Interact.* 19, 577–587. doi: 10.1094/MPMI-19-0577
- Pracros, P., Renaudin, J., Eveillard, S., Mouras, A., and Hernould, M. (2006). Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. *Mol. Plant Microbe Interact.* 19, 62–68. doi: 10.1094/MPMI-19-0062
- Prince, J. P. (1993). Molecular detection of diverse mycoplasma like organisms (MLOs) associated with grapevine yellows and their classification with aster yellows, X-disease, and elm yellows MLOs. *Phytopathology* 83, 1130–1137. doi: 10.1094/Phyto-83-1130
- Ranf, S., Gisch, N., Schäffer, M., Illig, T., Westphal, L., Knirel, Y. A., et al. (2015). A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in *Arabidopsis thaliana*. *Nat. Immunol.* 16, 426–433. doi: 10.1038/ni.3124
- Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 26, 139–140. doi: 10.1093/bioinformatics/btp616
- Sanabria, N. M., van Heerden, H., and Dubery, I. A. (2012). Molecular characterisation and regulation of a *Nicotiana tabacum* S-domain receptorlike kinase gene induced during an early rapid response to lipopolysaccharides. *Gene* 501, 39–48. doi: 10.1016/j.gene.2012.03.073
- Singh, P., Kuo, Y. C., Mishra, S., Tsai, C. H., Chien, C. C., Chen, C. W., et al. (2012). The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. *Plant Cell* 24, 1256–1270. doi: 10.1105/tpc.112.095778
- Sugio, A., Kingdom, H. N., MacLean, A. M., Grieve, V. M., and Hogenhout, S.A. (2011). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. *Proc. Natl. Acad. Sci. U.S.A.* 108, 19111–19112. doi: 10.1073/pnas.1105664108

- Torchetti, E. M., Pegoraro, M., Navarro, B., Catoni, M., and Noris, E. (2016). A nuclear-replicating viroid antagonizes infectivity and accumulation of a geminivirus by upregulating methylation-related genes and inducing hypermethylation of viral DNA. Sci. Rep. 6:35101. doi: 10.1038/srep35101
- Vaid, N., Macovei, A., and Tuteja, N. (2013). Knights in action: lectin receptor-like kinases in plant development and stress responses. *Mol. Plant.* 6, 1405–1418. doi: 10.1093/mp/sst033
- Vaid, N., Pandey, P. K., and Tuteja, N. (2012). Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice. *Plant Mol. Biol.* 80, 365–388. doi: 10.1007/s11103-012-9952-8
- Wang, Y., and Bouwmeester, K. (2017). L-type lectin receptor kinases: new forces in plant immunity. *PLoS Pathog.* 13:e1006433. doi: 10.1371/journal.ppat.1006433
- Zenoni, S., Ferrarini, A., Giacomelli, E., Xumerle, L., Fasoli, M., Malerba, G., et al. (2010). Characterization of transcriptional complexity during berry development in *Vitis vinifera* using RNA-Seq. *Plant Physiol.* 152, 1787–1795. doi: 10.1104/pp.109.149716
- Zhai, X. Q., Cao, X. B., and Fan, G. Q. (2010). Growth of paulownia witches' broom seedlings treated with methyl methane sulphonate and SSR analysis. *Sci. Silva Sin.* 46, 176–181.
- Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S. W., Chen, H., et al. (2006). Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. *Cell* 126, 1189–1201. doi: 10.1016/j.cell.2006.08.003

Zhu, Q. H., Shan, W. X., Ayliffe, M. A., and Wang, M. B. (2016). Epigenetic mechanisms: an emerging player in plant-microbe interactions. *Mol. Plant Microbe Interact.* 29, 187–196. doi: 10.1094/MPMI-08-15-0194-FI

**Conflict of Interest:** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

**Publisher's Note:** All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Liu, Dong, Xu, Dong, Wang, Gai and Ji. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.