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Root rot is a major constraint to snap bean (Phaseolus vulgaris) production in the
United States and around the world. Genetic resistance is needed to effectively
control root rot disease because cultural control methods are ineffective, and the
pathogen will be present at the end of one season of production on previously clean
land. A diversity panel of 149 snap bean pure lines was evaluated for resistance
to Fusarium root rot in Oregon. Morphological traits potentially associated with root
rot resistance, such as aboveground biomass, adventitious roots, taproot diameter,
basal root diameter, deepest root angle, shallowest root angle, root angle average,
root angle difference, and root angle geometric mean were evaluated and correlated
to disease severity. A genome wide association study (GWAS) using the Fixed and
random model Circulating Probability Unification (FarmCPU) statistical method, identified
five associated single nucleotide polymorphisms (SNPs) for disease severity and two
SNPs for biomass. The SNPs were found on Pv03, Pv07, Pv08, Pv10, and Pv11. One
candidate gene for disease reaction near a SNP on Pv03 codes for a peroxidase, and
two candidates associated with biomass SNPs were a 2-alkenal reductase gene cluster
on Pv10 and a Pentatricopeptide repeat domain on Pv11. Bean lines utilized in the
study were ranked by genomic estimated breeding values (GEBV) for disease severity,
biomass, and the root architecture traits, and the observed and predicted values had
high to moderate correlations. Cross validation of genomic predictions showed slightly
lower correlational accuracy. Bean lines with the highest GEBV were among the most
resistant, but did not necessarily rank at the very top numerically. This study provides
information on the relationship of root architecture traits to root rot disease reaction.
Snap bean lines with genetic merit for genomic selection were identified and may be
utilized in future breeding efforts.

Keywords: common bean, disease resistance, genome wide association studies, genomic prediction, best linear
unbiased prediction, root morphology, genomic selection
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INTRODUCTION

Root rot is a serious disease that affects common beans (Phaseolus
vulgaris) wherever they are grown. It has been and continues to be
a primary yield limitation in both snap and dry bean production.
Root rot is a broad term that can refer to infection by a variety
of pathogens or complexes thereof (Abawi et al., 1985). The most
serious and widespread causal pathogen, Fusarium solani f. sp.
phaseoli, has been reported to cause yield losses of up to 84% in
the United States (Schneider et al., 2001). This organism is the
primary, although not necessarily exclusive, root rot pathogen
in Oregon snap bean fields. There is currently no satisfactory
management technique to control root rot in snap beans with
cultural and chemical methods having met with limited success
(Burke and Miller, 1983). The best cultural option available to
control root rot is crop rotation but the four-to-five-year interval
that is required is impractical for most farmers. With so few
options, genetic resistance is of paramount importance. The
benefits of resistance extend beyond mitigating disease. Without
functional root systems, it is impossible to select for other traits,
such as abiotic stress and nutrient use efficiency that are needed to
combat climate change and adapt to agricultural intensification.

Most prior genetic analyses of F. solani root rot resistance
have been conducted with biparental dry bean populations
(Supplementary Table 1). Many were conducted with RAPD
marker systems that are difficult to rectify with contemporary
SNP-based maps (Chowdhury et al., 2002; Román-Avilés and
Kelly, 2005; Navarro et al., 2008; Schneider et al., 2001). SNPs
have become the preferred marker for linkage and association
mapping because of their abundance, repeatability and reference
to physical location within the genome (Blair et al., 2013; Cortés
et al., 2011). Unlike others who focused exclusively on dry beans,
Navarro et al. (2008) and Hagerty et al. (2015) used snap x
dry bean populations to map QTL for root rot resistance. In
all cases, resistance was inherited quantitatively with one to 15
QTL explaining from five to 53% of total phenotypic variance.
Where reported, heritabilities have ranged from 10 to 99%, with
the majority being in the low to moderate range. One genome
wide association study (GWAS) has been conducted in dry bean
for resistance to F. solani root rot. This study identified SNP
associations in Andean and Middle American diversity panels
(Zitnick-Anderson et al., 2020). They found sixteen unique SNP
associations in an Andean diversity panel on Pv01, Pv02, Pv03,
Pv04, Pv07, Pv08, Pv09, and Pv11, and seven unique SNP
associations in a Middle American panel on Pv01, Pv03, Pv04,
Pv07, and Pv08 (Zitnick-Anderson et al., 2020). Further GWAS
studies have been conducted on root rot caused by Pythium spp.,
Pythium ultimum, Fusarium oxysporum and Rhizoctonia solani in
dry bean (Oladzad et al., 2019; Dramadri et al., 2020; Diaz L. M.
et al., 2021; Paulino et al., 2021). With F. solani, the studies listed
in Supplementary Table 1 have not found major QTL associated
with resistance and the general consensus is that resistance is
conditioned by several to many genes with small individual effect.

There is evidence that the genetic background of snap
beans has unique characteristics which warrants examination
on its own (Wallace et al., 2018). In particular, the genetic
background of snap beans is highly mixed between the
Andean and Middle American gene pools with unknown

effects on the interactions of genes. Moreover, snap beans
have been selected for succulent, low fiber pods mostly
in isolation from dry beans since their assimilation by
Europeans starting in the 1500’s and this time frame may
have been sufficient for unique resistance traits to evolve
within snap beans.

The traditional GWAS model is a mixed linear model with a
correction for kinship and population structure that adequately
controls type I statistical errors. Last-generation GWAS models,
such as FarmCPU, have improved sensitivity and statistical power
with similar control of type I statistical errors and much improved
control of type II statistical errors (Liu et al., 2016; López-
Hernández and Cortés, 2019). Work on last-generation GWAS
models (FarmCPU, BLINK, and SUPER) indicates that they
are comparable and complement with each other when used
in parallel, although subtle differences have been found, such
as non-redundant results (FarmCPU) or a greater number of
associated SNPs (BLINK) in a study of heat stress in common
bean (López-Hernández and Cortés, 2019). Both BLINK and
FarmCPU iteratively utilize a random and fixed model and may
have an advantage over SUPER in having a lower type II statistical
error rate (López-Hernández and Cortés, 2019).

Marker assisted selection (MAS) have been most successfully
applied to traits conditioned by major genes, or in some cases,
major QTL (Assefa et al., 2019) and specifically in breeding
programs to introgress disease resistance. Over 40 SCAR or
SRAP markers linked to resistance to 11 pathogens are available
in common bean (BIC, 2021b). Only two of these are for
root pathogens (Fusarium oxysporum and Pythium ultimatum),
where resistance is conditioned by major genes. Some studies on
F. solani resistance indicate that the markers that were discovered
may be useful in breeding for resistance. However, there is
little evidence of their application in breeding programs. The
underlying reason for this is probably the polygenic nature of
F. solani resistance. MAS has not proven to be very effective for
such traits. Genomic selection (GS) is emerging in common bean
as a technique that allows selection of quantitative traits without
the labor-intensive approach that traditional MAS would require
(Assefa et al., 2019). GS models generally use many markers
distributed across the genome, and as a result, are more effective
than traditional MAS in selection for traits with many genes with
small effect. GS has been applied to common bean for root rot
(Diaz L. M. et al., 2021) as well as to agronomic traits (Keller
et al., 2020), cooking time (Diaz S. et al., 2021), and nematode
resistance (Wen et al., 2019; Shi et al., 2021) to discover genotypes
with the best breeding values for recombination schemes, but
deployment in breeding programs is only beginning.

Differing models for genomic selection are similar in their
predictive accuracy. One study of maize traits found that rrBLUP
had a slightly higher predictive accuracy in comparison to four
other genomic prediction models (Riedelsheimer et al., 2012).
Other research into genomic selection models in barley and
wheat found no differences, but a study of loblolly pine found
rrBLUP lacking when applied to oligogenic traits with a few major
genes (Heslot et al., 2012; Resende et al., 2012).

The purpose of this research was to improve the
understanding of the genetics underlying resistance to F. solani
sp. phaseoli in snap beans under field conditions typically found
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in a major snap bean growing region of the United States. As the
genetic background of snap beans is unique, this is an important
gap that needs investigation separate from previous dry bean
studies of Fusarium root rot genetic architecture. To achieve
this goal, three research focus areas were identified: (1) Analysis
of root and plant morphological traits in a diversity panel of
snap beans as related to root rot resistance or susceptibility, (2)
GWAS on root rot resistance in a diversity panel of snap beans,
and (3) Genomic prediction of cultivars to identify lines with
superior breeding potential based on the totality of all marker
effects in order to better capture minor allelic effects that may
be missed by GWAS.

MATERIALS AND METHODS

Study Site and Experimental Design
In this study, 149 pure lines of the Common Bean Coordinated
Agricultural Project (BeanCAP) Snap Bean Diversity Panel
(SBDP; see data availability statement for details on this panel)
were evaluated for resistance to root rot, which primarily consists
of F. solani in Oregon. This diversity panel contains pure line
examples of both centers of domestication with a representative
cross section of historical and contemporary snap beans, but
no wild materials. About 83% of the lines in the SBDP are of
Andean center of domestication with the remainder being of
Mesoamerican derivation (Wallace et al., 2018). They can be
further classified into eight groups based on Structure analysis,
with some lines having genetic contributions from as many as
seven groups. Since snap beans have undergone a high level
of intermixing relative to dry beans between the centers of
domestication (Wallace et al., 2018), more than 50% of the snap
beans in the panel contain some genetic background from both
centers of domestication.

Strongly root rot susceptible (‘Seabiscuit’, ‘Shade’, and ‘Zodiac’)
and strongly resistant (‘Black Valentine’, ‘Impact’, and ‘Widusa’)
cultivars were included. The OSU cultivars included in the panel
were bred and selected on the research farm under constant
root rot pressure, and as a result, have high levels of resistance,
and consistently grouped with the most resistant lines in the
diversity panel. Additionally, the panel included ‘FR-266’, an
experimental snap bean line bred in the Pacific Northwest for
F. solani root rot resistance (Silbernagel, 1987). This line has
been used in biparental mapping population studies of root rot
resistance (Schneider et al., 2001). It has been a check in our
root rot breeding nursery trials, where it shows moderate levels
of resistance. The complete panel was used, except for ‘BBL 274’,
which was unavailable for planting. In late spring of 2014 and
2015, four replicates of the SBDP were planted at the Oregon State
University Vegetable Research Farm. The Vegetable Research
Farm is located in Corvallis, Oregon on Chehalis silty clay loam
soil at latitude N44.571209, longitude W123.243261 at 77 masl.
The studies took place in our root rot “purgatory plot” that
had been planted continually with snap beans for over 25 years
in an effort to build a heavy pathogen population and increase
disease pressure for more effective screening. In monitoring of
bean root pathogens present at the Vegetable Research Farm,

we have always found F. solani to be the primary pathogen (see
Cirak and Myers, 2021 for latest assay). To further encourage
heavy and uniform disease pressure, the trials were well irrigated
(2.5 cm of water weekly by solid set sprinklers) in the beginning
of each season, as high soil moisture levels aid in infection. After
pod set, irrigation was reduced to increase abiotic stress levels.
The late season irrigation schedules were determined based on
weather conditions.

The trials were planted with a modified randomized complete
block design with the field divided into four replicated blocks on
a north-south axis. This method of blocking was chosen as the
size of this experiment exceeded previous years’ plantings and
extended into soil that may have had a lower level of disease
pressure. Due to their unique characteristics and need for a trellis
system, the pole beans were planted in a separate four block
randomization at the west end of the field. The plots were 3.0 m
long, planted in a single row at a density of 50 seeds per plot.
Rows were spaced 75 cm apart. A border row of OSU5446, a root
rot susceptible experimental line, was planted on the north and
south edges of the field, as well as 1.5 m end plots on the east and
west ends of each row to minimize edge effects. Planting dates
were 10 June in 2014 and 21 May in 2015. The seed was treated
with captan pre-emergent fungicide (Bonide Products Inc.) prior
to planting to improve germination and emergence uniformity
and reduce differences in stand among lines.

Field Evaluation
Data collection began when the earliest lines were at 50%
buckskin pod stage (when half the pods per bush have lost
their chlorophyll and have taken on a flexible, leathery texture).
Each plot was evaluated at this uniform phenological stage.
A Shovelomics protocol (Lynch and Brown, 2001, 2013) was
used to perform evaluations. The SBDP was evaluated for several
morphological traits including taproot diameter, largest basal
root diameter, deepest and shallowest basal root angles, and
aboveground biomass to investigate correlations between plant
structure and disease resistance. Five consecutive plants from the
center of the plot were dug with a 30 cm radius of soil around
the roots, and carefully shaken and washed to remove the soil
without damaging the roots. The five plants were evaluated on
a 1–5 (1 = least and 5 = most biomass) scale as a single unit for
aboveground biomass (Supplementary Figure 1). A subsample
of two randomly selected plants from the original five were
evaluated independently for taproot diameter, largest basal root
diameter, deepest basal root angle, shallowest basal root angle,
adventitious roots (1–3 scale; 1 = few, 3 = many roots), and
disease severity (1–5 scale; Table 1). In evaluating disease severity
of F. solani, nearly all researchers have used 1–5 or 1–9 visual
rating scales (Azzam, 1956; Baggett et al., 1965; Abawi, 1990;
Hagerty et al., 2015; BIC, 2021a). Taproot and largest basal root
diameter were recorded with digital calipers. The measurements
were taken 1 cm. below where the root emerged from the
hypocotyl. The deepest (closest to the taproot) and shallowest
(closest to the soil line) basal root angles were measured by laying
the specimen on a cutting board marked with protractor angle
increments (Supplementary Figure 2).
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TABLE 1 | Scale for rating Fusarium solani root rot symptoms in the BeanCAP
Snap Bean Diversity Panel grown at the Oregon State University Vegetable
Research Farm for a genome wide association study.

Score Root rot rating scale description

1.0 Clean white root

1.5 Few external red or brown lesions

2.0 Some external lesions, but root still firm and white inside

2.5 Some external lesions, red discoloration of pith, but root is firm

3.0 Significant external infection, red to brown pith

3.5 Spongy brown lesions are present

4.0 Root is soft and rotten

4.5 Root is very rotten, falling off

5.0 Root is absent, plant ends in rotten stump

Root angle difference, root angle average, and root angle
geometric mean were calculated from deepest and shallowest
root measurements. Root angle difference was the shallowest root
angle subtracted from the deepest root angle. This conveys the
span of the soil profile accessed by the plant. Root angle average is
the mean of the deepest and shallowest root angles and expresses
the general orientation of the roots, from zero to 90◦. Root angle
geometric mean is the geometric mean of the root angle average
and the root angle difference and was formulated to provide a
single value that integrated soil profile span and root orientation.

Statistical Analysis of Field Trials
To characterize the variation observed in the 2014 and 2015 trials,
the following statistical approach was used. First, homogeneity
of variances across years was examined using PROC GLIMMIX
(SAS version 9.3: SAS institute, Cary, NC) using the model
[Trait] = Variety Rep(Year) Year Variety∗Year with Year treated
as a random effect and the Covtest option to test for homogeneity
of variances. Variances from 2014 and 2015 demonstrated
homogeneity, and both years of data were combined into a single
analysis. Second, normality by year was examined using PROC
GLM with the model [Trait] = Rep Variety. Third, a mixed model
analysis of variables with years combined was performed using
PROC GLM with the model [Trait] = Variety Year Rep(Year)
Year∗Variety with Year, Rep(Year) and Year∗Variety treated as
random effects. As the two individual plants measured from
each plot were intended to capture information on a plot-mean
basis rather than an individual plant basis, mean scores for
each plot were used.

Multiple Correlation Analysis Among
Traits
To evaluate whether root morphological traits and disease
severity were positively or negatively associated, a Pearson’s
correlation coefficient analysis was performed in SAS 9.3 on the
least square means of the phenotypic data for disease severity,
aboveground biomass, adventitious roots, basal root diameter,
taproot diameter, shallowest root angle, deepest root angle, root
angle difference, root angle average, and root angle geometric
mean. Least square means were generated from combined data
from the 2014 and 2015 trials when ANOVAs were conducted

as described above. Correlations were generated for all pairwise
combinations of traits.

Genotyping
The genotypic dataset consisted of 10,607 SNPs generated by
using two Illumina iSelect 6K Gene Chip sets (BARCBEAN6K_1
and BARCBEAN6K_2) (Song et al., 2015). These BeadChips
were designed following sequencing a diverse set of 17 dry bean
cultivars with 10 from the Mesoamerican and seven from the
Andean centers of domestication. SNPs with 50% or greater
missing data were discarded (Song et al., 2015). Remaining
missing genotypes were imputed using fastPHASE, which uses
the Hidden Markov Model to indicate the cluster membership of
haplotypes (Scheet and Stephens, 2006). Genotypic data for the
‘Panama’ genotype was unavailable and was excluded from the
GWAS and BLUP analysis.

Heritability
Narrow sense and broad sense heritability are essentially
equivalent in a highly inbred crop such as common bean. With
complete homozygosity, it can be assumed that there are no
dominance effects present. In the absence of dominance effects,
variance among inbred lines, or Var(G), provides an estimate of
additive genetic variance or Var(A), rendering the two equations
equivalent (Hallauer et al., 2010). Additive x additive epistasis
may inflate estimates of narrow sense heritability, but is typically
minimal in a diploid crop such as common bean. The formula:

ĥ2
=

σ̂2
g

σ̂2

re +
σ̂2
ge
e + σ̂2

g

was used to determine heritability, where σ̂2
g is the estimated

genotypic variance component, σ̂2
ge is the estimated genotype by

environment interaction variance component, σ̂2 is the estimated
experimental error variance, e is the number of environments,
and r is the number of replications per environment. Heritability
for each trait was calculated using SAS code developed by
Holland et al. (2003). Mixed model analysis (PROC MIXED,
SAS 9.3) was used to obtain variance components. Variance
components were estimated using the restricted maximum
likelihood (REML) method. All model components were
treated as random effects. Heritability was calculated on a
line mean basis.

Genome-Wide Association Study
The entire SNP dataset was utilized for GWAS analysis. The
phenotypic data used for GWAS was a single value for each trait,
averaged across four reps and two years. Due to the incongruity
of a pole bean plant architecture for biomass measurements, pole
type beans were removed from the biomass analysis leaving 139
genotypes (lines) for this analysis. All other traits were measured
with the full set of genotypes.

The FarmCPU statistical method was performed in version
4.0.2 of the R software environment (Liu et al., 2016). To derive
SNP R2 values, FarmCPU was run within GAPIT (version 3)
with the added code, Random.model = TRUE. The SNP data was
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formatted in Microsoft Excel and was filtered for a minor allele
frequency (MAF) of 0.05 within R.

The principal component analysis (PCA) was conducted
in TASSEL, version 5.2.73.1 Principal components one to five
accounted for 22, 33, 41, 48, and 52% of the variation,
respectively. Based on the widely accepted criterion of principal
components accounting for between 25 and 50% of the variation
(Oladzad et al., 2019; Zitnick-Anderson et al., 2020), the choice
of principal components was narrowed to between two and four.
To further narrow the choice of principal components, QQ plots
were examined for fit around the null distribution to make the
final selection of two principal components (Supplementary
Figure 3). Linkage Disequilibrium (LD) heat maps for individual
chromosomes were also generated in TASSEL using the full
matrix in lieu of the sliding window.

Two different thresholds were examined for a cutoff of
significance in the Manhattan plots. The more conservative
threshold was a Bonferroni cutoff that utilized the effective
marker number of 2,411 as determined by the SimpleM method
(Gao et al., 2010). This generated an alpha 0.05 threshold
of 4.68 as expressed as a negative log value. In addition, a
10,000 bootstrap threshold was generated for an alpha of 0.05
(Mamidi et al., 2014). This bootstrap identified a threshold of
4.51 negative log.

Candidate Gene Search
Associated SNP positions were located in the common bean
genome as shown in the Phytozome JBrowse genome browser
(Phytozome, version 12.1; P. vulgaris genome, version 2.1). Using
conservative estimates of linkage disequilibrium in common bean
(Soltani et al., 2018; Oladzad et al., 2019) and in consideration of
the fact that no wild materials are included in our panel, we chose
to bracket a region of ±100 kb in our search for candidate genes.
Each gene model within the bracketed region was researched for
its potential role in disease resistance or biomass.

Genomic Prediction
Genomic estimated breeding values were calculated by adding
the fixed effect BLUE value for a given trait to the random effect
BLUP value for a given bean line and trait as determined by the
rrBLUP R package (Endelman, 2011). rrBLUP is equivalent to
gBLUP when QTLs are many, there are no major QTLs and QTLs
are evenly distributed across the genome (Bernardo, 2020). They
differ in that rrBLUP calculates SNP effects from a set of related
individuals whereas gBLUP uses markers to estimate relatedness
among individuals. Genomic prediction utilized the entire SNP
dataset.

To evaluate the predictive power of the rrBLUP calculations,
cross validation was performed by randomly splitting all the
genotypes within this study into a training set and validation set.
The models evaluated used ratios of training set to validation
set of 60:40, 70:30, 80:20, and 90:10%. Random partitioning
into training and validation sets with the training set used in
rrBLUP to predict the phenotype of the validation set was iterated
10,000 times (utilizing all SNPs) with 10 repetitions at each

1https://www.maizegenetics.net/tassel

level for each trait from which the mean predictive accuracy (r)
was determined. Correlations between observed and predicted
values using the entire population (100%) in both the rrBLUP
calculations and the cross validated rrBLUP calculations were
determined in R using a Pearson correlation coefficient.

Associated SNPs from the GWAS analysis were not added to
the rrBLUP model as fixed effects (Spindel et al., 2016) because
of the relatively low R2 values of variance explained by associated
SNPs but we did investigate the effect of number of SNPs retained
in the model on prediction accuracy. SNPs were sorted from
lowest to highest P value. From these, nine subsets (in addition to
the full set) were created. The full SNP sets had 7,082 for biomass
and 8,032 for all other traits (number of SNPs retained after
filtering for MAF < 0.05). These were reduced in an exponential
manner (3,541, 1,770, 885, 442, 221, 120, 55, 28, and 14 SNPs
for biomass and 4,018, 2,009, 1004, 502, 251, 126, 63, 32, and 16
for all other traits) to create the subsets. Each subset contained
the most highly significant SNPs identified by GWAS. For each
subset, the correlation of observed with predicted values was
computed in rrBLUP.

RESULTS

ANOVA
Means and standard errors for the traits measured in
the BeanCAP SBDP are shown in Table 2. Histograms
(Supplementary Figure 4) based on LSMeans showed traits to
be approximately normal in distribution except for biomass.
Biomass was unimodal but right skewed for LSMeans. The lines
making up the BeanCAP SBDP exhibited large differences for all
of the traits evaluated. Mean squares for the ANOVA model were
highly significant for all traits evaluated (Table 3). Mean squares
for lines were either significant or highly significant for all traits

TABLE 2 | Means and standard error (SE) (N = 16), and narrow sense heritability
(h2) and 95% confidence intervals for heritability for Fusarium solani root rot
symptoms (disease severity), plant biomass and root parameters of lines grown in
the BeanCAP Snap Bean Diversity Panel at the Oregon State University Vegetable
Research Farm in 2014 and 2015.

Trait Mean1 SE (mean) h2 95% Confidence
interval (h2)

Disease severity 3.10 0.01 0.74 (0.66–0.82)

Aboveground Biomass 3.28 0.02 0.75 (0.67–0.83)

Adventitious Roots 1.98 0.02 0.64 (0.52–0.76)

Taproot Diameter (cm) 2.27 0.02 0.51 (0.35–0.67)

Basal Root Diameter (cm) 2.08 0.02 0.47 (0.29–0.64)

Shallowest Root Angle 16.14 0.30 0.38 (0.18–0.58)

Deepest Root Angle 55.68 0.31 0.38 (0.18–0.58)

Root Angle Average 39.55 0.36 0.41 (0.22–0.60)

Root Angle Difference 35.91 0.25 0.32 (0.10–0.54)

Root Angle Geometric Mean 36.10 0.23 0.33 (0.12–0.55)

1Disease severity rated on a 1–5 scale where 1 is resistant and 5 is susceptible;
Biomass rated on a 1–5 scale where 1 is the least and 5 the most biomass
accumulation; Adventitious roots rated on a 1 – 3 scale where 3 = most adventitious
roots; and root angle measurements are in degrees from 0◦ to 90◦ where 0◦

represents a horizontal position.

Frontiers in Plant Science | www.frontiersin.org 5 September 2021 | Volume 12 | Article 697615

https://www.maizegenetics.net/tassel
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-697615 September 28, 2021 Time: 12:43 # 6

Huster et al. Genomics Snap Bean Root-Rot Resistance

TABLE 3 | Degrees of freedom, mean squares, and significance level for model, year, bean line, replicate within year, and year by line interaction from an analysis of
variance for traits associated with Fusarium solani disease reaction and plant and root parameters evaluated in trials at the Oregon State University Vegetable Research
farm near Corvallis, of the BeanCAP Snap Bean Diversity Panel in 2014 and 2015.

Source of variation d.f. Disease severity Aboveground biomass Adventitious roots Taproot diameter Basal root diameter

Disease, plant, and primary root traits

Model 301 0.80*** 2.40*** 1.00*** 0.77*** 0.58***

Year 1 2.03ns 10.80ns 13.04ns 21.51* 22.46*

Line 147 1.25*** 3.71*** 1.33*** 0.89*** 0.62***

Rep(Year) 6 1.47*** 4.97*** 3.66*** 2.58*** 1.99***

Year*Line 147 0.32* 0.92*** 0.48*** 0.43ns 0.33*

R2 0.55 0.58 0.54 0.42 0.44

CV 15. 4 23.4 27.1 26.6 24.2

Source of variation d.f. Shallowest root angle Deepest root angle Root angle difference Root angle average Root angle geometric mean

Derived root traits

Model 301 186.4*** 210.0*** 240.0*** 138.0*** 103.8***

Year 1 5455.4* 5101.0* 6.2ns 5276.6* 1242.2*

Line 147 200.6* 233.2* 285.2* 145.4*** 118.6*

Rep(Year) 6 494.0*** 418.5* 241.4ns 395.8*** 155.7*

Year*Line 147 123.8ns 145.0* 196.2ns 85.2ns 79.2*

R2 0.35 0.38 0.32 0.38 0.36

CV 68.1 19.4 33.0 24.3 22.0

Shown at the bottom of the table are R2 values and coefficient of variation values. R2 is the regression coefficient for fit to the general linear model. ns = not significant;
∗ = significant at P < 0.05; ∗∗∗ = significant at P < 0.001.

evaluated, with lower significance levels corresponding to the
root angle measurements and the traits derived thereof. Mean
squares for replicate were either significant or highly significant,
except for the derived trait root angle difference. The mean
square for year was significant for taproot diameter, basal root
diameter, shallowest root angle, deepest root angle, root angle
average, and root angle geometric mean. It was not significant
for any other traits. In no cases were years highly significant.
Year by line interaction was significant for disease, basal root
diameter, deepest root angle, and root angle geometric mean. It
was highly significant for aboveground biomass and adventitious
roots (Table 3).

Multiple Correlation Analysis Among
Traits
Disease severity was negatively correlated with aboveground
biomass, basal root diameter, and taproot diameter (Table 4),
and positively correlated with adventitious roots, shallowest root
angle, and deepest root angle. Aboveground biomass, basal root
diameter and taproot diameter were highly positively correlated
(Table 4). Aboveground biomass and taproot diameter were
negatively correlated with shallowest and deepest root angle.
Basal root diameter showed the same negative relationship with
shallowest root angle but did not have a significant correlation
with deepest root angle. Shallowest and deepest root angles were
positively correlated with each other.

Heritability
A range of heritabilities was observed for the different
traits measured (Table 2). Aboveground biomass

and disease severity had the highest heritability
with h2 = 0.75 and 0.74, respectively. The root
angle traits had the lowest heritability, ranging from
h2 = 0.32 for root angle difference to h2 = 0.41 for
root angle average.

Genome-Wide Association Study
GWAS assumes normality (Goh and Yap, 2009). The disease
severity and biomass datasets were normally distributed based
on QQ plots of residuals generated from an ANOVA analysis of
years, reps, and genotypes. The tap root diameter and basal root
diameter datasets were also normally distributed for residuals
after a square root transformation. Adventitious roots, short root
angle, and deep root angle could not be made to conform to
normality for their residuals. A GWAS analysis was conducted on
all datasets, including square root transformed tap root diameter
and basal root diameter. GWAS analysis of tap root diameter,
basal root diameter, adventitious roots, short root angle, and deep
root angle did not generate any significant SNP associations with
a two PCA FarmCPU model.

A biplot of the first two PC axes (Supplementary
Figure 3) revealed a clinal gradient along PCA 1 for center
of domestication, with those lines clearly from the Mesoamerican
center of domestication having strong positive scores and those
with Andean background ranging from positive to negative
scores. PCA 2 primarily separated European-bred small sieve
cultivars from blue lake and pole bean types, but without
discernable differentiation for Andean background cultivars.
These results generally match our findings with Structure analysis
(Wallace et al., 2018).
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TABLE 4 | Pearson multiple correlation coefficients1 for Least Square Means of the BeanCAP Snap Bean Diversity Panel evaluated for Fusarium solani disease and plant
and root traits at the Oregon State University Vegetable Research Farm near Corvallis in 2014 and 2015.

Biomass Adventitious
roots

Basal root
diameter

Taproot
diameter

Shallowest
root angle

Deepest root
angle

Root angle
difference

Root angle
average

Root angle
geometric
mean

Disease severity −0.35*** 0.26** −0.27** −0.40*** 0.37*** 0.32*** −0.02ns 0.42*** 0.19*

Biomass 0.13ns 0.21* 0.19* −0.37*** −0.18* 0.14ns
−0.33*** −0.04ns

Adventitious roots −0.09ns
−0.24** 0.03ns 0.13ns 0.09ns 0.10ns 0.13ns

Basal root diameter 0.37*** −0.17* −0.05ns 0.10ns
−0.13ns 0.03ns

Taproot diameter −0.23** −0.46*** −0.23** −0.43*** −0.39***

Shallowest root angle 0.34*** −0.53*** 0.80*** 0.00ns

Deepest root angle 0.62*** 0.83*** 0.93***

Root angle difference 0.08ns 0.84***

Root angle average 0.59***

1Probability > | r| under Ho: Rho = 0. * = significant at P < 0.05; ** = significant at P < 0.01; and *** = significant at P < 0.0001. ns = not significant.

Five SNPs were associated with disease severity on
chromosomes Pv03, Pv07, Pv08, and Pv10 with two SNPs
on Pv10 (Table 5 and Figure 1). SNPs ss715639797, ss715649485,
and ss715646318 on Pv08 and Pv10 were identified through a
Bonferroni threshold. A further two SNPs, ss715647578 and
ss715646526, were identified on Pv03 and Pv07 through a
bootstrap analysis. The phenotypic variation (R2) explained by
SNPs indicated a low contribution to disease resistance by each
SNP ranging in value from 0.9 to 10.8% with the highest value
for ss715647578 on Pv03 and the lowest value for ss715646526
on Pv07. The effect of allelic substitution was negative for three
SNPs and positive for two (Table 5). Effect was relatively small
with a cumulative effect of altering disease severity score by
0.5. Two SNPs were associated with biomass on chromosomes
Pv10 and Pv11 (Table 5 and Figure 1). SNPs ss715649390 and
ss715645486 on Pv10 and Pv11, respectively, were identified
through a Bonferroni threshold. No further SNPs were identified
through a bootstrap analysis. The R2 values were 11.3% for
ss715645486 and 14.8% for ss715649390, and the former had an
allelic substitution effect of -0.12 while the latter had a relatively
larger effect of -0.18 (Table 5). The cumulative effect of these two
SNPs would be to shift the five-point scale by 0.3.

Within a 100 kb window upstream and downstream of these
SNPs, a total of 123 gene models were found across the seven
regions with an average of 18 per region (Table 5). One candidate
gene (peroxidase) was identified as potentially involved in disease
resistance (Table 6). A total of four candidate genes were
identified as potentially involved in biomass and abiotic stress
tolerance, including a pentatricopeptide repeat domain and three
tandem 2-alkenal reductase genes models (Table 6). Two of the
three 2-alkenal reductase gene models were outside of the 100 kb
window, but are included here because they were adjacent to one
within the window.

Based on a threshold of D’ or R2
≥ 0.80 and P ≤ 0.01,

regions of LD were identified around some significant SNPs.
D’ identified extremely large blocks of LD that were on the
order of 1.9–36.0 Mb for disease severity whereas R2 provided
a much more conservative estimate, ranging from 150 to 679 kb
(Supplementary Table 2). The LD heat map and table indicated

that SNPs on Pv03, Pv07, and Pv10 for disease severity, and Pv10
for biomass were within blocks of LD (Figure 2). These ranged
from 150 to 679 kb in size. The other SNPs were in LD blocks
using D’ as a criterion, but not with R2 (Supplementary Table 2).

An ANOVA analysis of the trait-SNP associations supported
the results of the GWAS analysis (Supplementary Figure 5). The
results were uniform for years with no significant differences
between years. The box plot trend supported the trait-SNP
association for SNP ss715639797 with P = 0.08. The other SNPs
for disease were significant with P < 0.05. The only exception was
SNP ss715646526 which was not significant, and the box plots did
not show any particular trend, and this was true for individual
years. For biomass, ss715649390 was highly significant whereas
ss715645486 was not, but it does show a trend.

Genomic Prediction
GEBV rankings represent the general trends seen in the
phenotypic data but with numerous crossovers in ranking due
to the information from relatives reflected in GEBV calculations
(Table 7). This can be seen in the ranking of disease severity,
which has ‘Impact’, ‘Black Valentine’, ‘Widusa’, ‘NY6020-5’, and
‘Romano Gold’ as the top five most resistant lines in the
phenotypic data set (data not shown) but the GEBV calculations
show ‘Widusa’, ‘Impact’, ‘Double Dutch White’, ‘Booster’, and
‘Stringless French Filet’ as having the best GEBV for disease
resistance (Table 7). When compared to the PCA biplot
(Supplementary Figure 3), lines with the highest GEBV rankings
for disease severity come from both Mesoamerican and Andean
centers and provide evidence that population structure is not
influencing choice of significant SNP associations.

Predicted and observed values for all traits resulted in high
to moderate correlations (r) for disease severity, biomass, and
the five root architecture traits (Figure 3 and Supplementary
Table 3; 100% column in histograms and row in table).
Ten thousand iterations of a cross validation with four
training-testing models and replicated 10 times for each trait-
model combination produced moderate to low correlations for
predictive ability. The correlations that were highest under
training and validation were those for disease severity, biomass
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TABLE 5 | SS identification numbers of the SNP, chromosome, position, negative log p-value, minor allele frequency (MAF), proportion of total phenotypic variation
explained by the SNP (R2), allelic effect, chromosomal location and number of gene models found within a 200 kb window proximal and distal to the SNP for significant
associations found from genome wide association study of Fusarium solani root rot disease severity and biomass in the BeanCAP Snap Bean Diversity Panel grown at
the Oregon State University Vegetable Research Farm in 2014 and 2015.

Trait SS ID No. Chromosome Position (bp) -log P. MAF R2 Effect Chromosomal location1 No. gene models

Disease ss715647578 Pv03 12,661,037 4.58 0.09 10.8 −0.15 pericentric 11

Disease ss715646526 Pv07 34,296,485 4.51 0.37 0.9 0.09 pericentric 21

Disease ss715639797 Pv08 32,951,182 5.24 0.23 6.2 −0.13 pericentric 7

Biomass ss715649390 Pv10 5,677,538 4.89 0.37 14.8 −0.12 proximal 11

Disease ss715649485 Pv10 7,910,750 4.85 0.14 7.3 −0.13 pericentric 12

Disease ss715646318 Pv10 40,686,027 5.75 0.39 5.6 0,14 distal 35

Biomass ss715645486 Pv11 766,814 5.35 0.22 11.3 −0.18 proximal 26

1Pericentric location of a SNP is associated with low rates of recombination while proximal and distal locations are in regions of high recombination. Placement based on
Supplementary Figures of physical vs. linkage map distances in Schmutz et al. (2014).

FIGURE 1 | Manhattan and corresponding Q-Q plots from a GWAS analysis of disease severity (A) and biomass (B) in the BeanCAP Snap Bean Diversity Panel
evaluated in 2 years for Fusarium solani reaction at the Oregon State University Vegetable Research Farm. The Bonferroni cutoff based on effective marker number
(-log10 4.68, α = 0.05) is shown as a solid line. For the Q-Q plots, the null distribution is shown as a red line.

TABLE 6 | Putative candidate genes within 350 kb of the associated SNP for Fusarium solani root rot disease severity and plant biomass identified by genome wide
association study using the BeanCAP snap bean diversity panel grown at the Oregon State University Vegetable Research Farm near Corvallis.

Chrom. SNP position Distance1 P. vulgaris gene
model

Start End Gene function References

bp bp

Pv032 12,661,037 74,361 Phvul.003G078600.1 12,584,313 12,586,676 Peroxidase Ray et al., 1998

Pv10 5,677,538 76,042 Phvul.010G039100 5,753,580 5,758,499 2-alkenal reductase Xi et al., 2015

102,406 Phvul.010G039200 5,779,944 5,784,500 2-alkenal reductase Xi et al., 2015

125,106 Phvul.010G039300 5,802,644 5,808,058 2-alkenal reductase Xi et al., 2015

Pv11 766,814 72,566 Phvul.011G010900 839,380 841,056 Pentatricopeptide
repeat domain
(PPR_3)

Jiang et al., 2015;
Cao et al., 2020

1Distance between SNP and nearest end of candidate gene. 2QTN on Pv03 associated with disease severity while those on Pv10 and Pv11 are associated with biomass.
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FIGURE 2 | Linkage disequilibrium (LD) heat map of common bean chromosomes Pv03, 07, 08, 10, and 11 showing all possible pairwise comparisons of SNPs
arranged along the chromosome. R2 values are displayed above and right of the diagonal and corresponding probabilities below and left of the diagonal. Color
scales show corresponding R2 and probabilities where red for each would indicate strong and highly significant LD. SNPs associated with disease severity (black ∗)
or biomass (yellow ∗) are indicated along the diagonal.
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TABLE 7 | Genomic estimated breeding values (GEBV) calculated from BLUPs and BLUEs for the 10 highest and 10 lowest ranked lines in the BeanCAP Snap Bean Diversity Panel for Fusarium solani root rot disease
severity, plant biomass, tap root, basal root diameter, adventitious roots, deepest and shallowest root angle.

Disease severity Biomass Tap root diameter Basal root diameter Adventitious roots Deep root angle Shallow root angle

Accession GEBV1 Accession GEBV2 Accession GEBV
(mm)

Accession GEBV
(mm)

Accession GEBV3 Accession GEBV4 Accession GEBV4

Widusa 2.61 Oregon 2065 4.32 Widusa 2.71 Goldrush 2.28 Widusa 1.7 Booster 48.8 Oregon Giant
Pole

11.51

Impact 2.64 Idaho Refugee 4.15 Trail of Tears 2.66 Oregon 91G 2.27 Serin 1.71 Oregon 2065 48.88 Roma II 11.68

Dutch Double
White

2.68 Corbett
Refugee

4.04 Fortex 2.65 Gold Mine 2.26 Pole Blue Lake
S7

1.72 Banga 49.08 Fortex 11.99

Booster 2.72 Gina 4 Pole Blue Lake
S7

2.62 Profit 2.26 Dutch Double
White

1.74 Pole Blue Lake 49.09 Ebro 12.02

Stringless
French Filet

2.73 Ebro 3.97 Booster 2.56 Stringless
French Filet

2.24 Impact 1.74 Serin 49.26 Magnum 12.05

Selecta 2.74 Tapia 3.92 EZ Pick 2.54 Oregon 5630 2.22 Kylian 1.76 Astun 49.3 Tapia 12.11

Pole Blue Lake 2.78 NY6020-5 3.89 Impact 2.54 Eagle 2.22 Koala 1.76 EZ pick 49.36 Astun 12.6

Oregon 2065 2.79 Coloma 3.89 Pole Blue Lake 2.53 Gina 2.22 Polder 1.77 Celtic 49.44 Idaho Refugee 12.96

Pole Blue Lake
S7

2.79 Unidor 3.87 Paloma 2.51 Carson 2.21 Renegade 1.77 Stayton 49.46 Romano 118 13.01

Cherokee 2.81 Calgreen 3.82 Hayden 2.5 Summit 2.21 Pix 1.78 Redon 49.67 Cyclone 13.01

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shade 3.45 Brio 2.68 US Refugee #5 2.05 Redon 1.96 NY6020-5 2.2 Benton 59.87 Benton 18.51

Espada 3.45 Minuette 2.67 Charon 2.04 EZ Pick 1.94 Medinah 2.2 Castano 59.89 Warrior 18.66

Spartacus 3.46 Paulista 2.66 Opus 2.04 Banga 1.93 Landmark 2.2 Brio 59.91 Festina 18.68

Matador 3.49 Festina 2.65 Strike 2.04 Idaho Refugee 1.93 Benton 2.24 Shade 60.04 Zeus 18.68

Warrior 3.5 Matador 2.64 Mercury 2.04 Booster 1.93 Coloma 2.29 Summit 60.1 Matador 18.72

Titan 3.53 Palati 2.64 Dusky 2.03 Blue Peter Pole 1.91 FR-266 2.32 Carlo 60.38 Palati 18.77

Benton 3.53 Flavorsweet 2.63 Castano 2.02 Corbett
Refugee

1.89 Oregon Giant
Pole

2.34 Provider 60.56 Benchmark 18.88

Hercules 3.53 Dusky 2.51 Landmark 2.01 Kentucky
Wonder

1.87 US Refugee #5 2.43 Stallion 60.82 Dusky 19.04

Festina 3.54 Speedy 2.4 Idaho Refugee 1.97 McCaslan No.
42

1.86 Idaho Refugee 2.55 Valentino 61.39 Castano 19.22

Seabiscuit 3.58 Embassy 2.32 Corbett
Refugee

1.93 Trail of Tears 1.86 Corbett
Refugee

2.6 Grenoble 61.41 Roller 19.37

1Disease severity rated on a 1–5 scale where 1 is resistant and 5 is susceptible. 2Rated on a 1–5 scale where 1 is the least and 5 the most biomass accumulation. 3Rated on a 1–3 scale where 3 = most adventitious roots.
4Degrees from 0◦ to 90◦ where 0◦ represents a horizontal position.
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FIGURE 3 | Correlation of predicted and observed values for training vs. testing populations at four ratios (60:40, 70:30, 80:20, and 90:10%) and compared with
observed vs. predicted for the entire population (100%) of the BeanCAP Snap Bean Diversity Panel for Fusarium solani root rot disease severity and plant and root
traits. Correlation coefficients were generated by rrBLUP using 10 K iterations and 10 repetitions per trait-level combination. (A) Adventitious roots, (B) Biomass, (C)
Basal stem diameter, (D) Disease severity, (E) Deep root angle, (F) Shallow root angle, and (G) Taproot diameter.

and deep root angle. As size of the training population increased,
mean correlation remained essentially flat (adventitious roots,
basal root diameter), showed a linear increase (biomass, disease

severity, and taproot diameter), or fluctuated (deep and shallow
root angles). Variation about the mean of r was greatest at
the 90% level (Figure 3 and Supplementary Table 3). Overall,
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standard deviations were smallest for the model with 70%
training population although for biomass, 60 or 70% training
models were very similar, as were 70 and 80% training models for
basal root diameter. Cross-validation predictions generally were
20–40% lower than correlation among predicted and observed
of the entire population. Disease severity, deep root angle and
shallow root angle showed the smallest differences.

Number of SNPs retained in the model affected predictive
ability. Correlation coefficients were generally lowest for the
fewest significant SNPs and increased as SNPs were added to the
model (Figure 4), but in most cases plateaued before declining
with use of the full SNP set. The traits separated into two
groups with disease severity and biomass showing relatively
high correlations, and the root traits exhibiting moderate to
moderately high correlations over SNP subsets. For disease
severity, r > 0.90 was obtained with 126 SNPs, while for biomass
r > 0.90 was obtained with 221 SNPs. Disease severity exhibited
a decrease in r from 0.91 to 0.78 when transitioning from 4,018
to the full SNP set, and for biomass, the decrease was from 0.93
to 0.90. For root traits, most did not reach a maximum r until
2,009 or 4,018 SNPs were used with r ranging from 0.72 to 0.84.
In all cases except for adventitious roots and deep root angle, r
decreased for the full SNP set compared to half the SNPs used in
the model (Figure 4).

DISCUSSION

Our ANOVA results showed significant year x line interaction
for disease severity (P ≤ 0.05), biomass (P ≤ 0.001), adventitious

roots (P ≤ 0.001), basal root diameter (P ≤ 0.05), deepest root
angle (P ≤ 0.05), and root angle geometric mean (P ≤ 0.05), but
no statistical significance for the remaining traits. The significant
interactions for disease severity and biomass appeared to be due
to differences in magnitude rather than changes in rank years as
shown by moderate but highly significant correlations between
years based on Spearman rank correlation (data not shown).
The pattern exhibited by the replicates for disease score differed
in 2014 and 2015, most likely due to differences in order of
evaluation. In 2014, lines in all reps were evaluated when reaching
the desired physiological stage but in 2015, reps were evaluated
sequentially. In 2014, spatial variation in reps was important
with the two inner reps showing more disease than the outer
reps. In 2015, disease severity increased over time. Coefficient of
variation (CV) was relatively low at 15 and 23 for disease severity
and biomass, respectively, with other traits similar to biomass,
except shallow root angle, which was had a CV of 68. The high
disease pressure and consistent watering likely contributed to this
uniformity across years and a low CV. Although our study could
not exclude every environmental factor present in an outdoor
field, these environmental factors may be both confounding
but also offer the possibility of capturing complex interactions
between genes and the environment that could be important to
disease manifestation in a grower’s field.

Our shovelomics methodology provides a valuable window
into the disease process. Our analysis showed that root angle
and disease severity are positively correlated suggesting that
susceptible lines had root systems oriented at a deeper angle than
resistant lines (Table 4). Similar to our findings, Snapp et al.
(2003) found that more lateral roots of larger diameter were

FIGURE 4 | Effect of number of SNPs on predictive accuracy for Fusarium root rot disease severity and root traits of a snap bean diversity panel. SNPs were first
filtered for MAF < 0.05, then sorted from smallest to largest P value and arranged in nine subsets approximately doubling in size with each step. Full set of SNPs for
biomass was 7,082 while for all other traits totaled 8,036. Number of SNPs is plotted on a logarithmic (base 10) scale.
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associated with Fusarium root rot resistance. In their research
on nutrient foraging, Lynch and Brown (2001) emphasized that
a plant with exclusively deep root angles is exploring a smaller
amount of soil than a plant with either a shallow or a range of
root angles. The beans with shallower root systems may have been
able to access a greater soil volume. Another possible explanation
for the effect observed in this study is that the upper layer of
soil had superior drainage, which reduced infection by root rot.
There may be a tradeoff between disease resistance and drought
tolerance with regard to root angle. Drought tolerant plants will
likely have roots exploring greater depths of soil.

The negative correlation of disease severity with aboveground
biomass, basal root diameter, and taproot diameter, indicated that
resistant cultivars had greater aboveground biomass and larger
root diameter than susceptible cultivars (Table 4). The positive
correlation of disease severity with adventitious roots, shallowest
root angle and deepest root angle indicated that cultivars
with fewer adventitious roots and shallower root angles were
associated with less disease. For aboveground biomass, basal root
diameter and taproot diameter, the highly positive correlation
indicated that the magnitude of the three size measurements
maintained a constant relationship across lines. Aboveground
biomass and taproot diameter were negatively correlated with
shallowest and deepest root angle, meaning that larger plants
had shallower root systems. Positively correlated shallowest and
deepest root angles indicated that regardless of the orientation
of the root system, the span of the soil profile that it accessed
remained constant.

Disease severity, biomass, and adventitious roots had higher
heritability than the other shovelomics traits, such as root
angle measurements. The heritability value for disease resistance
is within the range of values measured by most previous
researchers. Hagerty et al. (2015) obtained h2 of ∼0.20 and
Mukankusi et al. (2011) reported heritability of 0.38–0.45 for root
rot resistance. In contrast, Kamfwa et al. (2013) found higher
heritabilities of 0.86–0.99. The heritability for aboveground
biomass found in this study also corresponds to previously
reported values. Shenkut and Brick (2003) found a range from
0.60 to 0.70. Navarro et al. (2008) reported values of 0.77–0.91
for heritability of biomass, based on measurements of dry weight,
which implies that our categorical rating system did not greatly
inflate heritability values. The high heritability values imply that
simple selection strategies on these traits would be effective.

The high heritabilities of disease severity and biomass are
consistent with the high correlational accuracy of these two traits
in genomic prediction and the significant results in GWAS. These
two traits were also negatively correlated with a high statistical
significance (Table 4) indicating the possibility that disease
stressed plants were generating less biomass. Nevertheless, these
traits are not entirely overlapping and the negative correlation
may be partly coincidental and not causal because GWAS analysis
identified distinct SNP markers for disease severity and biomass.

The lack of GWAS results for five of seven traits is notable.
There may be confounding factors associated with measuring
traits under disease pressure. As noted already, the other traits
had lower heritabilities that may also explain the difference.
Moreover, the Bonferroni and bootstrap thresholds utilized

in this study are very conservative. Additionally, increasing
the population size and/or number of SNPs would have led
to greater precision and a greater likelihood of detecting
significant associations.

The SNPs identified by our GWAS analysis did not clearly
overlap with any previously identified SNP from GWAS analysis
or biparental analysis of root rot organisms (Hagerty et al.,
2015; Oladzad et al., 2019; Dramadri et al., 2020; Zitnick-
Anderson et al., 2020). We identified one candidate gene related
to plant defense within the immediate vicinity of an associated
SNP (Table 6). Peroxidases are involved in the final steps of
the biochemical pathway leading to lignification, which directly
interferes with pathogen invasion (Ray et al., 1998).

From our studies and those of others (Hagerty et al., 2015;
Nakedde et al., 2016; Wang et al., 2018; Zitnick-Anderson
et al., 2020), there is strong evidence that F. solani resistance
in common bean is polygenic with many genes with small
effect being involved. One interesting finding is the lack of
commonality of resistance QTL among the different studies
where genome location can be compared. This would support
the idea of polygenic resistance based on genes that are
not considered classical resistance genes. Given the level of
resistance in some lines in our diversity panel, it is possible to
achieve relatively high levels of resistance with the right gene
combination, which appears to confer broad-spectrum resistance
to different Fusarium isolates. While virulence may vary among
isolates, there does not appear to be a pathogen race structure. As
a case in point, the resistance in FR-266 was relatively effective
to Fusarium isolates endemic to Michigan (Schneider et al.,
2001; Snapp et al., 2003), whereas we found this genotype to be
moderately resistant against our field isolates in Oregon, implying
that Oregon isolates were more virulent. However, in both cases,
resistance was quantitative with no clear major QTL.

Where host and pathogen are coevolving under antagonist
selection, the prediction is resistance genes would evolve in
concert and tend accumulate in large haplotype blocks in low
recombining genomic regions (Ravinet et al., 2017). Our findings
lend support to that idea in that of the five SNPs associated
with disease severity, four were located in low-recombination,
gene-sparse pericentric regions and only one was located distally
on Pv10 in a high-recombination region (Table 5). Both SNPs
associated with biomass were in high-recombination regions
located proximally on their respective chromosomes.

Linkage disequilibrium heatmaps (Figure 2 and
Supplementary Table 2) provide a more detailed examination of
low recombination blocks in relations to chromosomal location,
and are in partial agreement with low recombination regions
identified in Table 5. Visually, Figure 2 aligns with categories in
Table 5. One discrepancy between Table 5 and Supplementary
Table 2 was for the SNP associated with disease severity on Pv08,
where the SNP clearly resides in a region of low recombination
(based on physical vs. cM biplots in Schmutz et al., 2014),
however, an LD block for this region was essentially non-existent
based on an R2 cutoff of 0.80. The heatmap (Figure 2) does show
moderate to high LD in this region. The second discrepancy
was for a SNP on Pv10 associated with biomass. This SNP is
located proximally, but had a sizable LD block of 421 kb. Pv10
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is acrocentric and the SNP is located in the short arm, which
have reduced recombination (see Supplementary Figure 13 in
Schmutz et al., 2014).

A further implication of the location of most resistance
associated SNPs in low recombination regions is that marker
assisted selection would be at best, inefficient and at worst,
ineffective because of the large non-recombinant blocks of
genes. This provides further support for prioritizing genomic
selection over QTL mapping and marker assisted selection
of individual QTL.

The biomass candidate genes were identified through their
known effects on biomass but also their effects on abiotic stress
tolerance because disease pressure can induce drought stress in
affected bean plants through the loss of their roots to disease.
A pentatricopeptide repeat (PPR) domain candidate gene was
found in the vicinity of SNP ss715645486. PPR domains have
been implicated in an increase of biomass in a study of Paulownia
trees (Cao et al., 2020), and are also implicated in drought stress
tolerance (Jiang et al., 2015). The three tandem duplicate genes
of 2-alkenal reductase in the vicinity of SNP ss715649390 are also
implicated in increased biomass and improved drought tolerance
in a study of transgenic tobacco plants (Xi et al., 2015).

Are there tradeoffs between Fusarium resistance and abiotic
stress tolerances? Burke and Miller (1983) extensively analyzed
the interactions of Fusarium root rot with various cultural
practices that can affect the development of disease. Their
findings were that anything that constricts the root system
(such as cold soils and compaction) will exacerbate disease
development. Intermittent drought stress combined with these
factors restricting root growth will further increase disease
pressure. Excess soil moisture even if it is intermittent and of
short duration will prevent oxygen diffusion to the roots and
further inhibits root growth. High population densities also tend
to increase root rot. Previously bred Fusarium root rot resistant
dry bean cultivars tended to tolerate cold soils, drought and
compaction better than susceptible cultivars, but in waterlogged
soils, resistance was defeated. In the present study, there does not
appear to be a tradeoff among these traits with one exception: the
correlation of shallow root angle with disease resistance, which
might lead to less drought tolerant plants. Correlation is not
causation so this supposition would need to be tested and could
be carried out by subjecting the snap bean diversity panel to
drought as well as other forms of abiotic stress. On the other
hand, nutrient use efficiency, especially for phosphorous (P), is
associated with shallow root systems (Lynch and Brown, 2001).
Breeding for P use efficiency would not likely impact root rot
resistance and vice versa.

The multiple associated SNPs detected for disease severity
with low R2 values and their non-overlap with numerous SNPs
detected for root rot in other studies strongly suggests that root
rot resistance is highly polygenic in nature with numerous loci
of low effect. This further supports the notion that genomic
selection, which fully utilizes all SNPs, may be a better method to
breed for root rot disease resistance in snap bean than identifying
a small number of loci in GWAS and applying marker assisted
selection to those loci.

Optimum ratio of training to testing populations for
achieving the highest repeatable predictive ability was 70:30%

training:validation for most traits. This level is within the range
of what has been found for other studies of genomic prediction in
common bean (Keller et al., 2020; Diaz L. M. et al., 2021; Diaz S.
et al., 2021; Shi et al., 2021). At 90% training population, the
highest average predictabilities as measured by r were achieved,
but standard deviations were much larger, leading to less certainty
in whether a prediction was accurate. Shi et al. (2021) reported
that training sets >80% can lead to large variation associated with
too small a validation set.

In evaluating the influence of the number of SNPs on
prediction accuracy, it was curious that for most traits, the full
set of SNPs used in our model had lower predictive accuracy
compared to a reduced number of SNPs. Studies in bean and
other crops have generally shown a positive correlation between
number of SNPs and predictive accuracy (Spindel et al., 2016; Liu
et al., 2018; Wen et al., 2019; Keller et al., 2020; Thistlethwaite
et al., 2020; Arenas et al., 2021; Shi et al., 2021). These studies
do differ in how many SNPs were used and in how they were
selected for each subset, but the overall trends were similar.
Some studies have observed decreases in predictive accuracy at
various SNP levels. Thistlethwaite et al. (2020) observed a drop
at around 10,000 SNPs before rising again. Arenas et al. (2021)
observed a dip at around 1,000–1,500 SNPs for four traits. In
our study, disease severity and biomass could be modeled with
a high degree of accuracy (r > 0.90) with relatively few (126–221)
SNPs. In contrast, root traits were best modeled with one-half to
one-quarter of the full SNP data set. Other studies have shown
that genomic prediction models that incorporate GWAS can
improve accuracy in breeding programs (Spindel et al., 2016). Shi
et al. (2021) found the highest predictive accuracy when 20 SNPs
derived from GWAS were used. Our selection of 14 (biomass)
and 16 (disease severity) most highly significant SNPs had among
the lowest predictive accuracies. Our results reinforce the idea
that resistance to Fusarium root rot is polygenic and requires
many genes to achieve the highest levels of resistance.

One of the important questions in GWAS has been how to
account for the “missing heritability” in such studies (Manolio
et al., 2009). Relative to the heritability estimates based on
phenotypic and genotypic variances, the amount of variation
explained by significant SNP associations is small, and the
cumulative effect of all associations in the model does not always
approximate classical measures of heritability. This is particularly
true where QTL have small individual effect. In the present study,
the h2 estimate based on genotypic and phenotypic variances
was relatively high 0.74 for disease severity and 0.75 for biomass
(Table 2) while the cumulative R2 for the SNPs associated with
these traits ranged from 0.26 to 0.31. This implies that either
h2 is overestimated, or that GWAS may be missing medium-
and low-effect associations. Relaxing our cutoff for identifying
SNP associations could lead to the identification of additional
associations, but increasing number of genotypes and/or markers
would provide the greatest possibility of accurately detecting
additional associations.

One piece of the missing heritability may be
conditioned by genetic variability in the phenolic/flavonoid
biosynthetic pathway. Flavonoids and phenolics have
been shown to possess antimicrobial properties which
have been associated with resistance to root rots
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(Hagerty et al., 2015; Cirak and Myers, 2021). One line
(‘Cherokee’) from those with the highest rank for GEBV for
disease severity had colored seeds and flowers, while none of the
lowest ranked lines were colored (Table 7 and Supplementary
Table 1 in Kleintop et al., 2016). The SBDP has been evaluated
for total phenolic content (TPC) of pods (Kleintop et al.,
2016), which can serve as a proxy for phenolics and flavonoids
distributed in other plant parts. The 10 lines with lowest GEBV
values for disease severity had relatively higher TPC than did the
10 lines with the highest GEBV (mean of 0.52 vs. 0.40 mg g−1

FW gallic acid equivalents). Disease severity and GEBV for
disease severity were negatively correlated with TPC (r = -0.18,
P = 0.03 and r = -0.23, P = 0.005, respectively). Myers et al.
(2019) conducted a GWAS for TPC in pods of the SBDP and
when we compared those results to the current findings, we did
not find any overlap in regions of significant SNPs for disease
severity or biomass. These results are compatible with the idea
that phenolics do play a role in root rot resistance although it is
not a major one.

To achieve acceptable processing quality, most contemporary
snap bean cultivars are white-seeded, which eliminates
anthocyanins and flavonols from the pods. If we had found
a strong relationship between TPC and disease severity, those
associations with pigment production would not be useful in a
breeding program. Although lines varied for total TPC, all but
one was white-seeded (preventing anthocyanin accumulation in
the pods) and thus do not present barriers to use in a breeding
program for root rot resistance.

In common bean, geographic origin and population structure
have been shown to be an important influence on genetic
variation in wild and landrace beans (Blair et al., 2012; Cortés
et al., 2018). With the BeanCAP snap bean diversity panel, we
do not expect associations that might be related to demography
since snap bean origins are not associated with a particular
place. However, snap beans do appear to have been secondarily
derived from dry beans, and indirectly from the two centers
of domestication, possibly with several independent events, and
have retained some genetic signature of their origins (Wallace
et al., 2018). Derivation has been followed by substantial
admixing, which has reduced distinct associations with centers of
domestication and has produced more of a clinal variation across
the diversity panel. Population structure could result in spurious
marker – trait associations; however, structure was accounted for
in the FarmCPU model, and we did not see any pattern between
disease severity GEBVs and location on the PCA biplot.

This research builds on prior work on Fusarium root
rot resistance in common bean and will give snap bean
breeders additional tools to dissect and manipulate resistance
to Fusarium root rot in snap beans. The heritabilities give
information on the expected gain from selection that could
be achieved. The correlations among disease and root traits
provide valuable information on the root architecture necessary
to develop resistant lines. The GWAS analysis provides additional
markers to a growing number associated with resistance. The
genomic predictions identify individual lines with genetic merit
worth pursuing by utilizing the totality of marker effects.
Future research could include a more detailed investigation
root trait associations with biotic and abiotic stress tolerance,

combine snap bean data with dry bean for a meta-GWAS, and
development of a MAGIC population (Cavanagh et al., 2008) to
facilitate recombination of SNP associations into a common snap
bean background.
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