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Salt stress has long been a prominent obstacle that restricts crop growth, and increasing 
the L-ascorbic acid (ASA) content of crops is an effective means of alleviating this stress. 
2-Keto-L-gulonic acid (2KGA) is a precursor used in industrial ASA production as well as 
an ASA degradation product in plants. However, to date, no study has investigated the 
effects of 2KGA on ASA metabolism and salt stress. Here, we evaluated the potential of 
using 2KGA to improve crop resistance to salt stress (100 mM NaCl) through a cultivation 
experiment of non-heading Chinese cabbage (Brassica campestris ssp. chinensis). The 
results showed that the leaf and root biomass were significantly improved by 2KGA 
application. The levels of metabolites and enzymes related to stress resistance were 
increased, whereas the hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents 
were decreased. Lipid peroxidation and cell membrane damage were alleviated following 
2KGA treatment. Positive correlations were found between photosynthetic pigments and 
organic solutes, ASA and photosynthetic pigments, and ASA and antioxidant enzymes. 
In contrast, negative correlations were observed between antioxidant enzymes and H2O2/
MDA. Moreover, the expression levels of L-gulono-1,4-lactone oxidase, GDP-mannose 
pyrophosphorylase, dehydroascorbate reductase-3, and ascorbate peroxidase were 
increased by 2KGA treatment. These results suggested that exogenous 2KGA application 
can relieve the inhibitory effect of salt stress on plant growth, and the promotion of ASA 
synthesis may represent a critical underlying mechanism. Our findings have significant 
implications for the future application of 2KGA or its fermentation residue in agriculture.
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INTRODUCTION

Abiotic stress refers to specific environmental factors that are 
unfavorable for plant survival and development, such as high 
temperature, drought, and saline-alkali soils (Zandalinas et  al., 
2020). There are large areas of saline-alkali soils globally, and 
crops grown in these soils usually have a low yield and are 
of poor quality (Zhao et  al., 2014). Moreover, hydroponic 
agriculture with desalinated seawater is also associated with 
the detrimental effects of salt stress (Santos et  al., 2019). These 
observations highlight that saline-alkali soils or environments 
constitute key factors that restrict the sustainable development 
of agriculture.

L-ascorbic acid (ASA, vitamin C) is a non-enzymatic 
antioxidant commonly found in plants and plays a vital role 
in protecting plants from oxidative damage caused by abiotic 
stress. ASA is employed as an electron donor by ascorbate 
peroxidase (APX; EC 1.11.1.11), which catalyzes the conversion 
of hydrogen peroxide (H2O2) to water and O2 (Tyagi et  al., 
2020). Simultaneously, humans must obtain ASA from the diet, 
especially vegetables and fruits, to maintain good health. Current 
evidence shows that the fluctuation of ASA metabolism in 
plants greatly influences the resistance of plants to salt stress. 
Several studies have emphasized that increasing ASA levels 
can strengthen the salt stress tolerance of plants. Liu et  al. 
(2013) demonstrated that, in tobacco, the knock-in of cDNA 
encoding L-galactose-1,4-lactone dehydrogenase (GLDH; EC 
1.3.2.3), which catalyzes the conversion of L-galactono-1,4-
lactone to ASA, increased GLDH expression and ASA content, 
thereby enhancing salt stress tolerance in the plant. Similarly, 
the overexpression of dehydroascorbate reductase [encoding 
dehydroascorbate reductase (EC 1.8.5.1), the enzyme that 
catalyzes the regeneration of ASA from dehydroascorbic acid] 
in rice also increased ASA content, consequently enhancing 
the adaptability of rice to salt stress (Kim et al., 2014). Moreover, 
the application of exogenous ASA can also increase the ASA 
content and salt stress resistance of plants (Shalata and Neumann, 
2001). Despite these benefits of ASA, concerns regarding the 
use of genetically modified crops and the inherent instability 
of ASA have complicated their application in agriculture. 
Additionally, low ASA synthesis in plants under abiotic stress 
can greatly inhibit their growth and development (Huang et al., 
2005; Gao and Zhang, 2008). Combined, the above evidence 
suggests that increasing the level of ASA can enhance the 
ability of plants to resist salt stress.

2-Keto-L-gulonic acid (2KGA) is an intermediate metabolite 
of ASA metabolism in plants and is produced via the degradation 
of ASA (Jia et  al., 2019). In grape tissues, 2KGA is used to 
synthesize tartaric acid (Jia et  al., 2019). However, no study 
to date has investigated the effects of 2KGA on ASA metabolic 
activities or plant growth and development. Interestingly, 2KGA, 
mainly produced via two-step microbial fermentation using 
sorbitol as a substrate, is also a key precursor used in the 
chemical synthesis of ASA (Yang et  al., 2017). Currently, the 
global production of 2KGA is approximately 160,000–180,000 
tons per year (Xu et  al., 2021), and the application of this 
organic acid is merely limited to the industrial production of 

ASA. In addition, more than 50,000 tons of fermentation residue 
are discarded every year from the ASA industry in China 
(Kong et  al., 2014), with 2KGA accounting for approximately 
25–30% of this residue. Unlike many industrial waste products, 
this fermentation residue does not contain harmful chemicals 
or an excess of heavy metals; nonetheless, it is now treated 
as a wastewater (Xu et  al., 2021). One study showed that 
treatment with the 2KGA-containing fermentation residue can 
increase the biomass and ASA content of plants in saline soil 
(Kong et al., 2014), suggesting that it has potential for agricultural 
application. However, this fermentation residue is a solution 
comprising a mixture of organic acids, such as 2KGA, oxalic 
acid, formic acid, and acetic acid, among others. To assess its 
suitability for use in agriculture, it is necessary to investigate 
the effects of 2KGA in isolation.

Non-heading Chinese cabbage (Brassica campestris ssp. 
chinensis) is widely cultivated in China, including in hydroponic 
agriculture. In this study, this crop plant was used as the 
research material to determine whether 2KGA can enhance 
the resistance of crops to salt stress. In addition to ASA, 
organic solute [e.g., soluble carbohydrates (SC), soluble proteins 
(SP), and proline] and photosynthetic pigment contents and 
the activities of antioxidant enzymes [e.g., superoxide dismutase 
(EC 1.15.1.1), peroxidase (EC 1.11.1.1), APX, and catalase 
(EC 1.11.1.6)] are also known to be  important for plant 
resistance to salt stress (Nounjan et  al., 2012; Ahanger et  al., 
2019); here, these parameters were also examined to evaluate 
the potential of 2KGA in relieving salt stress in plants. 
Furthermore, we  measured the expression levels of genes 
involved in the ASA biosynthesis and recycling pathways to 
reveal the effect of 2KGA treatment on plant ASA metabolism 
under salt stress. The aim of this study was to provide a 
basis for the future application of 2KGA or its fermentation 
residue in agriculture.

MATERIALS AND METHODS

Plant Materials and Cultivation Conditions
The experiment was conducted in a laboratory of the Institute 
of Applied Ecology, Chinese Academy of Sciences, Shenyang, 
China. 2KGA (>99.4%) was supplied by Northeast Pharmaceutical 
Group Co., Ltd., Shenyang, China. Non-heading Chinese cabbage 
seeds were soaked in 8% sodium hypochlorite solution for 
10 min, washed with desalinated water at least three times, 
and then placed on moist germination paper. After 6 days, the 
cabbage seedlings at the first new leaf stage were transplanted 
into 1/2 Hoagland nutrient solution. When the third new leaf 
appeared, the seedlings were divided into the following three 
groups (90 seedlings per group): Group  1 (CK group), in 
which cabbage seedlings were transplanted into fresh 1/2 
Hoagland nutrition solution as a control; group 2 (Na+ group), 
in which the fresh 1/2 Hoagland nutrient solution was 
supplemented with NaCl (final concentration: 100 mM); and 
group  3 (Na++2KGA group), in which the fresh 1/2 Hoagland 
nutrient solution was supplemented with NaCl (final 
concentration: 100 mM) and 2KGA (final concentration: 1 mM; 
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Figure  1). The cultivation conditions of the seedlings were as 
previously reported (Lacerda et al., 2003). During the experiment, 
the temperature was set at 26 ± 2°C, the relative humidity at 
60 ± 10%, and the illumination at 8,000 lx. Plant samples were 
collected on days 3, 6, and 9 after the nutrient solution 
was replaced.

Analysis of Photosynthetic Pigments
The assay for photosynthetic pigment content was based on 
the method of Lichtenthaler (1987). Photosynthetic pigments 
were extracted from leaves with 95% ethanol. The absorbance 
of the extract was measured at the 470, 649, and 665 nm 
wavelengths. Full details are provided in Supplementary  
Method 1. Chlorophyll a (Chla), chlorophyll b (Chlb), total 
chlorophyll (Chlab), and carotenoid (Car) contents were 
calculated according to the following formulas:

CChla = 13.36 × A665 − 5.19 × A649 (μg/ml)
CChlb = 27.43 × A649 − 8.12 × A665 (μg/ml)
CChlab = 5.24 × A665 + 22.24 × A649 (μg/ml)
CCar = (1,000 × A470 − 2.13 × CChla − 97.64 × CChlb)/209 (μg/ml)

Leaf and Root Sampling
Leaves and roots were collected on day 9 for the determination 
of the relevant parameters. The length and width of the 
leaves were measured. Total root length (the sum of detectable 
primary and lateral root lengths), root tip number, root 
average diameter, and surface area were measured using a 
Microtek ScanMaker i800 plus scanner, and the related 
parameters were collected via the instrument’s supporting 
software. Root morphology was observed under a microscope. 

Fresh plant samples were directly weighed to record fresh 
weight and then dried to constant weight at 75°C to record 
dry weight. Fresh roots were soaked in desalinated water, 
placed at 4°C in the dark for 24 h, and then weighed to 
determine root turgor weight. Root relative water content 
was calculated according to the reported formula (Annunziata 
et  al., 2017):
Root relative water content = (root fresh weight  –  root dry 
weight)/(root turgor weight  –  root dry weight) × 100%.

Determination of Soluble Carbohydrate, 
Soluble Protein, Proline, and ASA Content 
in the Leaves
Soluble carbohydrate content in the leaves was determined using 
the phenol-sulfuric acid method (Nielsen, 2010). Leaves (0.5 g) 
were chopped and placed in a centrifuge tube containing 5 ml 
of desalinated water. The tube was placed in a boiling water 
bath for 30 min and then cooled to room temperature. Next, 
the samples were centrifuged at 7,200 × g for 10 min at room 
temperature. The supernatant was transferred to a graduated 
test tube, and desalinated water was added to a total volume 
of 10 ml, yielding the extract solution. A 1-ml aliquot of extract, 
0.5 ml of phenol solution (9% w/v), and 2.5 ml of concentrated 
sulfuric acid (98%) were placed in a stoppered glass test tube, 
mixing, and placed in a boiling water bath for 15 min. After 
cooling to room temperature, the absorbance was measured at 
490 nm. SC content was calculated using a glucose standard curve.

Soluble proteins concentration was assessed using the Bradford 
assay (Bradford, 1976). Proline was extracted from the leaves 
using sulfosalicylic acid (3% w/v) and quantified based on a 

FIGURE 1 | The experimental setup of the study. 2KGA, 2-keto-L-gulonic acid. CK, seedlings were cultivated in 1/2 Hoagland nutrition solution; Na+, the 1/2 
Hoagland nutrient solution was supplemented with NaCl (100 mM); and Na++2KGA, 1/2 Hoagland nutrient solution was supplemented with NaCl (100 mM) and 
2KGA (1 mM).
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previous report (Ghoulam et  al., 2002). Details of the method 
are provided in Supplementary Methods 2, 3.

Ascorbic acid content was measured using a HPLC as 
previously reported (Cronje et al., 2012), with some modifications. 
The leaves (0.3 g) were ground with liquid nitrogen and dissolved 
in 5 ml of 1% (w/v) metaphosphate in an ice bath. The 
homogenate was centrifuged at 7,200 × g for 10 min at 4°C, 
and the resulting supernatant was diluted with metaphosphate 
and filtered using a 0.22-μm injection filter. A 20-μl aliquot 
of the filtered solution was injected into an AQ-C18 column 
for analysis. The detection conditions were as follows: mobile 
phase, 95% 20 mM phosphate buffer, pH 2.8 ± 0.1, and 5% 
acetonitrile; flow rate, 1 ml/min; temperature, 40°C; detection 
wavelength, 243 nm. The ASA content of the samples was 
determined according to a standard curve.

Antioxidant Enzyme Activity
Leaf samples (0.2 g) in 2 ml of PBS (20 mM, pH 7.2 ± 0.1) 
supplemented with 0.1 mM EDTA-Na, 0.5 mM ASA, and 
polyvinylpyrrolidone (0.1% w/v) were evenly ground in an ice 
bath using a mortar and pestle. The homogenate was centrifuged 
at 7,200 × g for 10 min at 4°C, and the supernatant was collected 
as the crude enzyme solution. The activities of superoxide 
dismutase (SODa), ascorbate peroxidase (APXa), catalase (CATa), 
and peroxidase (PODa) were assayed as previously described 
(Azevedo Neto et  al., 2006; Wang et  al., 2014). More details 
of the experiment are provided in Supplementary Method 4.

Measurement of H2O2 and 
Malondialdehyde Levels
The H2O2 content was determined using potassium iodide (KI; 
Velikova et  al., 2000). Leaf samples (0.5 g) were ground in an 
ice bath with 5 ml of trichloroacetic acid (TCA, 0.1% w/v). 
The homogenate was centrifuged at 7,200 × g for 10 min at 
4°C, and 0.5 ml of the supernatant was mixed with 0.5 ml of 
0.1 mol/l potassium phosphate buffer (pH 7.0 ± 0.1) and 1 ml 
of 1 mol/L KI solution and kept at room temperature in the 
dark for 1 h. Absorbance was then determined at 390 nm. The 
H2O2 concentration was calculated using a H2O2 standard curve.

Malondialdehyde (MDA) content was determined using the 
thiobarbituric acid (TBA) method (Li and Yi, 2012). One gram 
of sample was mixed with 2 ml of TCA (10% w/v) and a 
small amount of quartz sand and ground to obtain the 
homogenate. Subsequently, 8 ml of TCA (10% w/v) was added 
to allow the even mixing of the homogenate. The homogenate 
was then centrifuged at 7,200 × g for 10 min at 4°C, and the 
supernatant was used as the sample extract solution. Then, 
2 ml of the extract solution was added to 2 ml of TBA (0.6% 
w/v) solution and the mixture were placed in a boiling water 
bath for 15 min to initiate the reaction. The mixture was 
subsequently rapidly cooled and centrifuged at 7,200 × g for 
3 min at room temperature. The absorbance of the supernatant 
was measured at 450, 532, and 600 nm. The MDA concentration 
was calculated using the following formula:

CMDA = 6.45 × (A532 − A600) − 0.56 × A450 (μmol/L)

The Expression of Genes Related to ASA 
Accumulation
The expression levels of L-gulono-1,4-lactone oxidase (GLO), 
GDP-mannose pyrophosphorylase (GMP), Myo-inositol oxygenase 
(MIOX), and GLDH in the ASA biosynthesis pathway and 
monodehydroascorbate reductase (MDHAR), dehydroascorbate 
reductase-1 (DHAR1), dehydroascorbate reductase-3 (DHAR3), and 
APX in the ASA recycling pathway were examined. Total RNA 
was extracted from leaves according to the instructions of the 
SteadyPure Universal RNA Extraction Kit (Code No. AG21017; 
Accurate Bio, Inc., Hunan, China). cDNA was prepared using 
Evo M-MLV RT Premix for qPCR (Code No. AG11706; Accurate 
Bio, Inc., Hunan, China). qPCR was performed using the SYBR 
Green Premix Pro Taq HS qPCR Kit (Code No. AG11701; Accurate 
Bio, Inc., Hunan, China). Details of the primers used are shown 
in Supplementary Table S1. Relative gene expression levels were 
calculated using the 2-ΔΔCt method (Livak and Schmittgen, 2001).

Statistical Analysis
Two-tailed Student’s t tests were used for statistical analysis. 
A value of p < 0.05 was considered statistically significant. Each 
parameter was evaluated in at least three biological replicates. 
Spearman’s method was used to analyze putative correlations 
among the metabolites. Cytoscape 3.7.2 was used to plot the 
correlation networks.

RESULTS

Leaves and Photosynthetic Pigments
We found that salt stress significantly inhibited seedling growth. 
Compared with the CK (control) group, seedlings in the Na+ 
group were stunted and the leaves were significantly smaller 
(Figure  2A). Additionally, the fresh and dry weights of the 
salt-stressed leaves were reduced by 48.21 and 51.37%, 
respectively, compared with those of the CK group (Figure 2B). 
However, the addition of 2KGA (Na++2KGA group) significantly 
increased the fresh weight and dry weight of the seedlings 
under stress by 45.77 and 48.44%, respectively, thereby effectively 
counteracting the negative impact of stress on seedling growth.

To improve the resistance of plants to salt stress, their 
photosynthetic efficiency must be  enhanced by increasing the 
photosynthetic pigment content. Compared with those of the Na+ 
group, leaves in the Na++2KGA group exhibited a greater 
accumulation of photosynthetic pigments. The Chlab content was 
also significantly greater in the leaves of the Na++2KGA group 
on day 6; however, no difference in the Chla/Chlb ratio was 
observed between the two groups. Interestingly, 2KGA treatment 
led to a marked increase in carotenoid content, with the highest 
increase (12.5%) being recorded on day 3. Correspondingly, the 
Chlab/Car ratio of the Na++2KGA group was lower (Figure  2C).

Root Growth and Development
Compared with the CK group, Na+-only treatment significantly 
reduced the root fresh weight and dry weight by 41.17 and 
39.56%, respectively (Figures  3A,B), while the total root 
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length, root surface area, average diameter, and root tip 
number were reduced by 12.89, 37.73, 32.90, and 16.94%, 
respectively. However, 2KGA supplementation relieved the 
inhibitory influence of salt stress on the roots. The 
corresponding root indices in the Na++2KGA group showed 
increases of 43.73, 37.27, 32.72, 42.56, 5.92, and 86.86% 
compared to the Na+ group. Surprisingly, even under salt 
stress, the addition of 2KGA (Na++2KGA group) increased 

the total root length and root tip number by 15.62 and 
55.21%, respectively, compared with that of the CK group. 
Moreover, microscopic analysis showed that the roots of 
the Na++2KGA group contained more and longer fine roots 
(Figure  3C). Unlike with the plant biomass, no significant 
changes in water content or root relative water content  
were recorded between the Na+ and Na++2KGA groups 
(Supplementary Figure S1).

A

C

B

FIGURE 2 | Leaf morphology, biomass, and photosynthetic pigment content. The morphology (A), biomass, length, and width (B), and photosynthetic pigment 
content (C) of the leaves. Chla, chlorophyll a; Chlb, chlorophyll b; Car, carotenoids; Chlab, total chlorophyll; Chla/Chlb, the ratio of chlorophyll a content to 
chlorophyll b content; Chlab/Car, the ratio of total chlorophyll content to carotenoid content; FW, fresh weight; and ns, not significant; *p < 0.05, **p < 0.01.
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Organic Solutes, ASA, Antioxidant 
Enzymes, H2O2, and MDA
Under salt stress, plants must increase their levels of anti-
osmotic organic solutes (such as SC, SP, and proline) to maintain 
cell morphology and balance osmotic pressure. In the early 
stage of stress (day 3), the SC concentration of the Na+ group 
increased by 30.47% compared with that of the CK group. 
Subsequently, however, the SC levels in the Na+ group decreased 
rapidly and were lower than those of the CK group on days 
6 and 9. There was no significant difference in SC content 
between the Na++2KGA and Na+ groups on day 3; however, 
the SC content in the Na++2KGA group remained at a high 
level on days 6 and 9, showing increases of 81.68 and 98.03%, 
respectively, relative to those of the Na+ group (Figure  4).

The SP concentration displayed a continuous increase over 
time. The Na++2KGA group had a greater SP content than the 
Na+ group, showing increases of 7.37, 9.53, and 4.74% on days 
3, 6, and 9, respectively. From day 6, proline accumulation was 
significantly improved in the Na+ group and was 6.15-fold higher 
compared with that of the CK group. The proline content in the 
Na++2KGA group was similar, albeit slightly greater, to that of 
the Na+ group. The ASA content of all the groups peaked on 
day 3. Compared with the Na+ group, the ASA content in the 
Na++2KGA group was significantly increased (16.24%). After day 
3, the ASA content of each group began to decline and was 
lower in the Na+ and Na++2KGA groups than in the CK group 
on days 6 and 9; however, the ASA level was always higher in 
the Na++2KGA group than in the Na+ group (Figure  4).

Superoxide dismutase was 7.90% higher in the Na++2KGA 
group compared with that of the Na+ group on day 9. Meanwhile, 
PODa in the Na++2KGA group was 9.63, 10.17, and 18.15% 
higher on days 3, 6, and 9, respectively, compared with that 
of the Na+ group. Additionally, compared with the Na+ group, 
APXa in the Na++2KGA group was increased by 27.80, 11.03, 
and 10.29% on days 3, 6, and 9, respectively. Similarly, 2KGA 
caused a continuous increase in CATa of 31.85, 21.97, and 
23.19% on days 3, 6, and 9 compared to that of Na+ (Figure 4).

In plants, MDA is a product of cell membrane lipid oxidation 
and is a biochemical marker for assessing the degree of membrane 
lipid peroxidation (Silva et  al., 2010). The results showed that 
H2O2 and MDA remained at a stable level in the seedlings 
under normal growth conditions but increased under salt stress. 
In the early stage (day 3), 2KGA did not affect H2O2 metabolism; 
from day 6, however, the H2O2 level in the Na++2KGA group 
decreased rapidly compared with that of the Na+ group and 
was reduced by 16.16% on day 9. Simultaneously, the MDA 
content decreased by 8.97% on day 9. These results indicated 
that membrane lipid peroxidation was attenuated following 
2KGA treatment. The level of H2O2 in the Na++2KGA group 
was similar to that of the control group on day 9 (Figure  4).

Analysis of Correlations Among Leaf 
Metabolites
Under salt stress, variations in the levels of organic solutes 
and photosynthetic pigments and activities of antioxidant 
enzymes in leaves were correlated with H2O2 and MDA contents 

FIGURE 3 | Root morphology and indexes for each experimental group. The morphology of intact plants (A) and roots (10 × 4; magnification: ×40; C), and root-
related parameters (B). Five root samples of each biological replicate were scanned. Total root length was calculated as the sum of detectable primary and lateral 
root lengths. ns, not significant, *p < 0.05.
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(Supplementary Figure S2). Under 2KGA treatment, changes 
in photosynthetic pigment levels were correlated with the 
osmotic resistance of organic solute contents (Figure  5A). The 
Chla/Chlb ratio was negatively correlated with SP and proline 
levels and positively correlated with SC levels; however, Chlab/
Car levels were positively correlated with SP and proline content 
and negatively correlated with SC content. Antioxidant enzyme 
activity was negatively correlated with H2O2 and MDA 
concentrations (Figure 5B). ASA content was positively correlated 
with antioxidant enzyme activity and photosynthetic pigment 
levels (Figure  5C).

ASA-Related Gene Expression
The expression levels of GLO and GMP, genes acting in the 
ASA biosynthesis pathway, were significantly increased in the 
Na++2KGA group relative to those of the Na+ group; in particular, 
the GLO expression level was consistently higher in the 
Na++2KGA group than in the Na+ group (Figure  6). MIOX 
and GLDH levels were not significantly different between the 
Na+ and Na++2KGA groups.

In the ASA recycling pathway, 2KGA treatment did not 
affect the expression of MDHAR or DHAR1. Compared to the 
Na+ group, the expression level of DHAR3 was significantly 
increased on day 6  in the Na++2KGA group, but no significant 
difference was observed between the two groups on day 9. 
Furthermore, the expression of DHAR3 was lower in both the 
Na+ and Na++2KGA groups than in the control group (p < 0.05; 
Supplementary Figure S3). The expression of APX in the 
Na++2KGA group was higher than that in the Na+ group at 
each sampling time point (Figure  6). The results of nucleic 

acid quality assessment are provided in Supplementary Table S3 
and Supplementary Figure S4.

DISCUSSION

We have previously shown that a 2KGA-rich fermentation 
residue from the vitamin C industry could increase soil organic 
matter content and endogenous ASA concentrations in crops, 
thereby leading to increased crop yields in saline soil (Kong 
et al., 2014). However, this fermentation residue was a mixture, 
and its main effectors had not been identified. The 2KGA 
content in the residue varies between 25 and 30%, that of 
oxalic acid is approximately 1–2%, while the levels of other 
organic acids comprise less than 1%; much of the rest is water. 
This suggested that the 2KGA component of the residue might 
be a key to enhancing ASA production in plants. In this study, 
we  found that 2KGA treatment increased the biomass of 
non-heading Chinese cabbage subjected to salt stress.

In this study, under salt stress, the levels of H2O2 and MDA 
in non-heading Chinese cabbage seedlings were significantly 
increased, and peroxidative damage in the cell membrane was 
aggravated, resulting in the inhibition of seedling leaf and 
root development. However, the observed increase in leaf and 
root biomass, especially that of roots, in the Na++2KGA group 
suggested that 2KGA could effectively relieve this inhibitory 
effect and promote seedling growth and development. Because 
it has been shown that enhancing endogenous ASA levels can 
promote root development (Aghaei et  al., 2008), we  speculated 
that these effects were most likely related to an increase in 

FIGURE 4 | Variations in the contents of organic solutes, ASA, antioxidant enzymes, H2O2, and MDA in seedling leaves at different time points. Data were 
normalized relative to the control (CK) group. The absolute results are shown in Supplementary Table S2. SC, soluble carbohydrate; SP, soluble protein; ASA, 
L-ascorbic acid; SODa, superoxide dismutase activity; PODa, peroxidase activity; APXa, ascorbate peroxidase activity; CATa, catalase activity; H2O2, hydrogen 
peroxide; and MDA, malondialdehyde. *p < 0.05, **p < 0.01.
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ASA levels in the seedlings. In general, fluctuations in the 
concentrations of anti-osmotic organic solutes (including ASA), 
photosynthetic pigments, and antioxidant enzymes are essential 
for plants to resist salt stress.

Salt stress reduces the osmotic potential of plant cells by 
creating a high-salinity environment, which results in osmotic 
stress. The latter will lead to a reduction in the relative water 
content of plants and is not conducive to the maintenance of 
cell morphology (Annunziata et al., 2017). Osmotic adjustment 
represents an adaptive mechanism that helps cells maintain 
osmotic pressure and ensures normal metabolism and crop 
growth. In this study, we found that 2KGA treatment increased 
the SC, SP, and free proline contents in the leaves of non-heading 
Chinese cabbage under salt stress. The accumulation of SC is 
especially important for osmotic regulation, while SP and proline 
are believed to play a more important role in protecting cells 
from oxidative damage and enhancing defensive responses 
(Zhang et  al., 2011; Li et  al., 2019; Alfosea-Simón et  al., 2020).

In the present study, the photosynthetic pigment content 
was found to be  correlated with the SC level. When 2KGA 

was added under conditions of salt stress, the Chlab/Car ratio 
was negatively correlated with SC content. The results also 
showed that SC content was significantly increased on day 3 
post stress induction and then rapidly decreased in the CK 
and Na+ groups, while the addition of 2KGA could effectively 
reverse the loss of SC content. Simultaneously, the Na++2KGA 
group had a lower ratio of Chab/Car. Under all treatments, 
the photosynthetic pigment content continuously increased 
along with the growth of the seedlings. Under salt stress, 
photosynthetic pigments accumulated at a high level, and the 
variations in H2O2 and MDA contents were positively correlated 
with photosynthetic pigment levels. This indicated that enhanced 
photosynthesis was a defense mechanism employed by seedlings 
to resist salt stress, and the addition of 2KGA further promoted 
the accumulation of photosynthetic pigments. This was in 
agreement with the results of previous studies, in which an 
increase in photosynthetic pigment levels was shown to improve 
photosynthetic efficiency and promote plant growth (Garg et al., 
2002; Li and Yi, 2020). In contrast, in a recent study, Gautam 
et al. (2020) found that the photosynthetic efficiency of tobacco 

A

B C

FIGURE 5 | The correlations among different metabolites in seedling leaves. (A) The correlation between photosynthetic pigment and organic solute contents. 
(B) The correlation between antioxidant enzyme activities and H2O2/MDA levels. (C) The correlation among ASA, antioxidant enzyme activity, and photosynthetic 
pigment content. Chla, chlorophyll a; Chlb, chlorophyll b; Car, carotenoids; Chlab, total chlorophyll; Chla/Chlb, the ratio of chlorophyll a content to chlorophyll b 
content; Chlab/Car, the ratio of total chlorophyll content to carotenoid content; SC, soluble carbohydrate; SP, soluble protein; SODa, superoxide dismutase activity; 
PODa, peroxidase activity; APXa, ascorbate peroxidase activity; CATa, catalase activity; H2O2, hydrogen peroxide; MDA, malondialdehyde; and ASA, L-ascorbic 
acid. The data correspond to the absolute value of the correlation coefficient. *p < 0.05, **p < 0.01.
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was reduced under salt stress. Differences in crop species 
investigated, time of action, or salt stress intensity might explain 
these discrepant results.

Photosynthesis is the primary means by which plants obtain 
carbon sources in the environment. However, in this study, 
the increase in photosynthetic pigment concentrations did not 
improve SC content in seedlings. Interestingly, photosynthetic 
pigment levels were positively correlated with variations in SP 
and proline content, indicating that seedlings could respond 
to salt stress by increasing photosynthetic pigment production 
and adjusting the Chla/Chlb and Chlab/Car ratios. Combined, 
these observations suggested that the addition of 2KGA enhanced 
the ability of the seedlings to regulate photosynthetic pigment 
levels, thereby resisting salt stress.

The photosynthesis system is also one of the main sites 
of reactive oxygen species (ROS) production in plant cells 
(Foyer and Noctor, 2011). Here, we  found that salt stress 
increased the H2O2 content. The accumulation of ROS leads 
to an increase in antioxidant enzyme activity (Attia et  al., 
2020; Li and Yi, 2020). Accordingly, PODa, CATa, and APXa 
were higher in the Na+ group than in the CK group and 
were positively correlated with fluctuations in H2O2 and 
MDA levels (Supplementary Figure S2). However, with the 
application of 2KGA, the activities of all four enzymes 
increased relative to those in the Na+ group, and they were 
all negatively correlated with H2O2 and MDA contents. These 
results suggested that salt stress promoted the increase in 
H2O2 and MDA concentrations in seedlings, which 
subsequently led to a passive increase in antioxidant enzyme 
activities. Nevertheless, the addition of 2KGA enhanced 
antioxidant enzyme activity in the leaves, leading to faster 
H2O2 and MDA clearance.

Our findings demonstrated that the application of 2KGA could 
significantly increase ASA concentrations in non-heading Chinese 
cabbage seedlings exposed to salt stress. ASA content was positively 
correlated with antioxidant enzyme activities and photosynthetic 
pigment levels, indicating that the increase in ASA levels promoted 
the increase in antioxidant enzyme activities and photosynthetic 
pigment contents in the seedlings. Plants use ASA to remove 
large amounts of ROS produced by the photosynthesis system 
to avoid peroxidative damage (Talla et al., 2011), which is indicative 
of the importance of ASA in the protection of the photosynthesis 
system. Lim et al. (2012) reported that under salt stress, increasing 
endogenous ASA content in the tomato could enhance the 
photosynthetic pigment content. Meanwhile, exogenous ASA 
application can reportedly increase the levels of endogenous ASA 
and the activities of antioxidant enzymes in plants under heavy 
metal stress and salt stress (Athar et  al., 2008; Chao and Kao, 
2010). The above results suggested that ASA has a crucial function 
in plant defenses against salt stress.

To explore the mechanism underlying the 2KGA-mediated 
enhancement of ASA synthesis in non-heading Chinese cabbage 
under salt stress, we  analyzed the expression levels of eight 
genes involved in the ASA accumulation. DHAR3 was more 
highly expressed in the Na++2KGA group relative to that in 
the Na+ group, but only in the early stage of the experiment; 
in later stages, DHAR3 expression was downregulated in both 
groups. This observation may explain why the ASA content 
was lower in the salt-stressed groups than in the CK group. 
The increase in GMP expression in the Na++2KGA group 
reached significance only on day 9, and its contribution to 
ASA accumulation in the early stage was thus likely to have 
been limited. At present, GLO is the only confirmed enzyme 
involved in the synthesis of ASA in the L-gulose pathway. 
The expression level of GLO in the Na++2KGA group was 
maintained at a higher level throughout the whole test period 
compared with that in the Na+ group, while greater ASA 
accumulation was also observed in the former. An earlier study 
on the potato showed that an increase in GLO expression 
promoted the accumulation of ASA and enhanced abiotic stress 
tolerance (Lim et  al., 2012). As a downstream product of ASA 
metabolism, the ketone group of 2KGA can be  reduced to a 
hydroxyl group (Jia et  al., 2019), which has the possibility of 
forming gulonic acid, a precursor in gulonolactone synthesis 
(catalyzed by GLO and converted to ASA) in plants (Cruz-Rus 
et  al., 2012). This suggests strongly that exogenous 2KGA 
supplementation may increase the endogenous 2KGA content 
in non-heading Chinese cabbage. Meanwhile, the higher levels 
of gulonic acid and gulonolactone, both ASA precursors, finally 
leads to an increase in ASA content via GLO catalytic activity. 
The increase in GMP and DHAR3 expression levels also exerted 
a positive effect on plant ASA accumulation (Lin et  al., 2011; 
Wang et  al., 2019). Moreover, in agreement with the observed 
increase in APX enzyme activity, APX gene expression was 
found to be  upregulated with 2KGA administration, which 
further implied that 2KGA enhanced the resistance of 
non-heading Chinese cabbage seedlings to salt stress by increasing 
the endogenous ASA content. APX catalyzes the conversion 
of H2O2 to water and O2, with ASA serving as the reductant 

FIGURE 6 | Relative gene expression related to ASA accumulation. Data 
were normalized relative to that of the control (CK) group. GLO, L-gulono-1,4-
lactone oxidase; GLDH, L-galactose-1,4-lactone dehydrogenase; GMP, 
GDP-mannose pyrophosphorylase; MIOX, Myo-inositol oxygenase; DHAR1, 
dehydroascorbate reductase-1; DHAR3, dehydroascorbate reductase-3; 
MDHAR, monodehydroascorbate reductase; APX, ascorbate peroxidase. 
*p < 0.05, **p < 0.01.
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FIGURE 7 | The prospect for the application of 2KGA and its fermentation residue. 2KGA, 2-keto-L-gulonic acid; ASA, L-ascorbic acid.

(Tyagi et  al., 2020). Thus, the higher ASA content and APXa 
in the Na++2KGA group explains why the level of H2O2 was 
lower in this group than in the Na+ group.

Although we demonstrated that 2KGA can relieve the inhibition 
of salt stress on the growth of non-heading Chinese cabbage 
seedlings, this is a preliminary study in this field. Many aspects 
remain to be  explored, such as whether 2KGA has the same 
effect on different crops, whether 2KGA influences acetylsalicylic 
acid synthesis and carbon and nitrogen metabolism, and how 
2KGA can efficiently be  applied in agricultural practice. As a 
precursor of industrial ASA synthesis, 2KGA is produced on a 
large scale using a two-step microbial fermentation process; however, 
that 2KGA is only used in the chemical synthesis step of ASA 
production. In addition, a large amount of fermentation residue 
is discarded from the ASA industry. This provides a reliable 
industrial base for the application of 2KGA or its fermentation 
residue in a new field, that is, agriculture. Consequently, given 
the function of 2KGA against salt stress and its availability in 
the ASA industry, the prospect of applying 2KGA in agriculture, 
such as for crop cultivation in saline-alkali soils and hydroponic 
agriculture, merits further investigation (Figure  7).

CONCLUSION

In summary, to the best of our knowledge, this is the first study 
to report that 2KGA relieves the inhibitory effect of salt stress 
on non-heading Chinese cabbage, which has laid the foundation 
for the future application of 2KGA in agriculture. Meanwhile, a 
potential novel direction for the study of plant ASA metabolism 
was also identified. Our findings suggest that exogenous 2KGA 

application strengthens non-heading Chinese cabbage defenses 
against salt stress, for which the promotion of ASA accumulation 
may represent a crucial underlying mechanism.
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