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A sudden cooling in the early spring or late autumn negatively impacts the plant growth
and development. Although a number of studies have characterized the role of the
transcription factors (TFs) of plant R2R3-myeloblastosis (R2R3-MYB) in response to
biotic and abiotic stress, plant growth, and primary and specific metabolisms, much
less is known about their role in Rosa multiflora under chilling stress. In the present
study, RmMYB108, which encodes a nuclear-localized R2R3-MYB TF with a self-
activation activity, was identified based on the earlier published RNA-seq data of
R. multiflora plants exposed to short-term low-temperature stress and also on the
results of prediction of the gene function referring Arabidopsis. The RmMYB108 gene
was induced by stress due to chilling, salt, and drought and was expressed in higher
levels in the roots than in the leaves. The heterologous expression of RmMYB108
in Arabidopsis thaliana significantly enhanced the tolerance of transgenic plants to
freezing, water deficit, and high salinity, enabling higher survival and growth rates,
earlier flowering and silique formation, and better seed quantity and quality compared
with the wild-type (WT) plants. When exposed to a continuous low-temperature
stress at 4°C, transgenic Arabidopsis lines—overexpressing RmMYB108 showed higher
activities of superoxide dismutase and peroxidase, lower relative conductivity, and
lower malondialdehyde content than the WT. Moreover, the initial fluorescence (Fo)
and maximum photosynthetic efficiency of photosystem Il (F,/Fy) changed more
dramatically in the WT than in transgenic plants. Furthermore, the expression levels
of cold-related genes involved in the ICET (Inducer of CBF expression 1)-CBFs (C-
repeat binding factors)-CORs (Cold regulated genes) cascade were higher in the
overexpression lines than in the WT. These results suggest that RmMYB108 was
positively involved in the tolerance responses when R. multiflora was exposed to
challenges against cold, freeze, salt, or drought and improved the cold tolerance of
transgenic Arabidopsis by reducing plant damage and promoting plant growth.
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INTRODUCTION

Freezing temperatures induce cellular dehydration and limit
the plant growth by inhibiting water uptake. Furthermore,
chilling stress is fatal to plants, as cold thermodynamically
lowers the membrane fluidity and directly inhibits several
vital metabolic reactions (Mehrotra et al, 2020). In winter-
hardy plants, the genes comprising a cryogenic response
network mediate the physiological and biochemical changes
and transcriptional modifications to maintain the cell integrity
and plant survival at low temperatures (Zhao et al., 2015). We
previously described that Rosa multiflora, a creeping thorny
plant with medicinal and ornamental values, has a strong ability
to withstand subzero temperatures (up to -40°C) in winter.
The transcriptomic analysis of R. multiflora leaves exposed to
different temperatures (25, 4, and -20°C) revealed that genes
encoding APETALA2/ethylene-responsive factor (AP2/ERF),
myeloblastosis (MYB), basic helix-loop-helix (bHLH), zinc
finger protein (ZFP), NAC [NAM (NO APICAL MERISTEM),
ATAF (Arabidopsis ACTIVATION FACTOR) and CUC (CUP-
SHAPED COTYLEDON)] and WRKY transcription factors
(TFs) actively participate in the response to cold treatment
(Zhang et al., 2016). In plants, MYB TFs form one of the
largest TF families, which are characterized by 1-4 incomplete
conserved repeat (R)-containing DNA-binding domain located
near the N-terminus (Klempnauer et al, 1982). Each R
is composed of approximately 51-53 conserved amino acid
residues with three a-helices (Dubos et al., 2010). The MYB
family contains four types of TFs (i.e, 1R, R2R3, 3R, and
4R), depending on the number of MYB domains (Rogers and
Campbell, 2004). The R2R3-MYB TFs form the largest clade and
participate in the plant growth, especially in cell differentiation,
development of floral organ, specific metabolisms, and response
to environmental stress (Albert et al., 2014; Li et al., 2019;
Liu et al., 2021).

In Arabidopsis thaliana, the R2R3-MYB TFs, such as
AtMYBI15, AtMYB30, AtMYB44, AtMYB96, and AtMYB108,
are associated with stress responses (Dubos et al., 2010). The
AtMYBI15 protein interacts with the Inducer of C-repeat binding
factor (CBF) Expression 1 (ICE1) and binds to Myb recognition
sequences in the promoters of CBF genes to repress cold tolerance
(Agarwal et al., 2006). In Rosa chinensis, anthocyanidin synthase,
flavonol synthase, orcinol O-methyltransferase 1 (RcOOMTI), and
RcOOMT?2 genes are highly expressed in pink petals of flower
buds and open flowers (Han et al., 2019). The silencing of
RcMYB84/RcMYBI123 increases the susceptibility of R. chinensis
to Botrytis cinerea and reduces the protective effects of treatment
with jasmonic acid (JA; Ren et al., 2020). Moreover, the structural
genes of proanthocyanidins and flavonoid have a high expression
level in R*MYB5- and RrMYBI10-overexpressed Rosa rugosa and
tobacco (Shen et al., 2019). However, a complete understanding
of how R2R3-MYB TFs respond to low-temperature stress in Rosa
species is lacking.

Here, we identified the R2R3-MYB genes of R. multiflora
that respond to low-temperature stress from its transcriptome
data (Zhang et al., 2016). The functions of these genes were
predicted based on the phylogenetic analysis of the homologs

of R multiflora and Arabidopsis R2R3-MYB. We further
investigated the RmMYBI108 gene after combination of the RNA-
seq data and prediction of the gene function. The overexpression
(OE) of RmMYBIO8 in Arabidopsis confirmed the role of
RmMYB108 in improving the tolerance against plant stress. This
study provides a theoretical basis for cold-tolerance breeding in
Rosa species.

MATERIALS AND METHODS
Plant Materials and Growth Conditions

The cuttings of R. multiflora were obtained from the forest
botanical garden of Heilongjiang in China (45.0°N, 128.4°E)
and were grown under a 16-h light/8-h dark cycle at 25°C
[control (CK)]. The 1-year-old cutting seedlings of R. multiflora
were exposed to 4°C (CT1) in an artificial climate room or
to —20°C (CT2) in a freezer to induce cold stress. Additionally,
plants were either not watered or watered with 150 mM NaCl
to imitate drought and salt stress, respectively. The leaves and
roots of R. multiflora were collected and immediately frozen in
liquid nitrogen.

Arabidopsis thaliana ecotype Columbia-0 was used for stable
genetic transformation, and tobacco (Nicotiana benthamiana)
was used for transient transformation. Arabidopsis plants were
grown at 23°C under 12-h light/12-h dark cycle during the
vegetative period and under 14-h light/10-h dark cycle during the
reproductive phase.

Bioinformatics Analysis of R2ZR3-MYB

Proteins in R. multiflora

Putative R2R3-RmMYB proteins, which were queried with
the MYB DNA-binding protein PF00249 in the Linux system
HMMER 3.3.1 (<1E—10), were identified from a published RNA-
seq data (SRA accession no.. PRJNA698412) and the whole
genome sequence of R. multiflora’ (Jung et al., 2019). The coding
sequences (CDSs) of R2R3-MYB genes in A. thaliana and amino
acid sequences of the encoded proteins were downloaded from
The Arabidopsis Information Resource (TAIR?). The sequence
of AtICEI promoter was downloaded from the National Center
for Biotechnology Information’, and the cis-acting elements
of AtICEl promoter were predicted using PlantCARE®. The
conserved MYB domains were defined by using SMART®
(Letunic and Bork, 2018). The sequence alignments were
performed using DNAMAN. A phylogenetic analysis was carried
out using the maximum likelihood method with 1,000 bootstrap
replicates in MEGA X. The heatmap was generated by using
the Toolbox for Biologists (TBtools) software; the value in the
row scale was normalized by the equation: value = %, X is
fragments per kilobase per million (FPKM), p is mean, and o is
standard deviation of all FPKM in the row (Chen C. et al., 2020).

Uhttps://www.rosaceae.org/

Zhttp://www.arabidopsis.org/
3https://www.ncbi.nlm.nih.gov/
*http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
“http://smart.embl-heidelberg.de/
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Quantitative Real-Time Polymerase

Chain Reaction

The levels of gene expression were determined by using the
quantitative real-time polymerase chain reaction (QRT-PCR), as
described earlier (Zhang et al., 2016). The comparative Ct method
was used to analyze the level of gene expression (Schmittgen
and Livak, 2008). Primers used for qRT-PCR are listed in
Supplementary Table 1. RmUBC (Klie and Debener, 2011) and
AtActin2 (Zhou et al., 2018) were selected as reference genes in
R. multiflora and Arabidopsis, respectively. All experiments were
performed in three biological replicates, each containing three
technical repeats.

Subcellular Localization of RmMYB108

The RmMYB108 CDS without the stop codon was amplified
by PCR and cloned into the pBI121-green fluorescent protein
(GFP) vector using ClonExpress II One Step Cloning Kit (Vazyme
Biotech Co., Ltd., Nanjing, China) to generate 35S::RmMYB108-
GFP construct. The primers used for plasmid construction
are listed in Supplementary Table 1. The 35S:RmMYBI08-
GFP plasmid (Addgene: 173181) and 35S::GFP [positive control
(PC)] plasmid were introduced into Agrobacterium tumefaciens
strain GV3101, which was then injected into the leaves of 1-
month-old N. benthamiana plants. The subcellular localization of
358:RmMYBI108-GFP and 35S:GFP was visualized by confocal
laser scanning microscopy (TCS SP8, Wetzlar, Germany) 3 days
post infiltration.

Transcriptional Activation of RmMYB108
The full-length CDS of RmMYBI08 was introduced into the
PGBKT?7 vector using Ndel and BamHI restriction endonucleases
and T4 ligase (Thermo Fisher Scientific, Waltham, MA,
United States). The primers that were used for plasmid
construction are listed in Supplementary Table 1. pGBT9 was
used as a PC that could activate HIS3, ADE2, and MELI reporter
genes and X-a-Gal activity in the transformed yeast cells on the
medium lacking tryptophan (Trp) and histidine (His). pGBKT7
was used as a negative control (NC). The NC, PC, and pGBKT7-
RmMYBI108 plasmids (Addgene: 173183) were transformed into
the yeast strain AH109 and cultivated on synthetic-defined (SD)/-
Trp or SD/-Trp/-His medium with or without X-a-Gal.

Vector Construction and Plant

Transformation

To construct 35S:RmMYBI08, the RmMYB108 CDS was
amplified using the primers listed in Supplementary Table 1, and
then the PCR product was ligated into the Kpnl and BamHI sites
of the pPCAMBIA1301 vector downstream to the 35S promoter
of the cauliflower mosaic virus (Addgene: 173180). The resulting
vector was introduced into A. tumefaciens strain GV3101.

To generate RmMYBI108-overexpressing lines, Arabidopsis
plants were transformed with the 35S:RmMYB108 construct
using the floral dipping method (Clough and Bent, 1998).
A semiquantitative reverse-transcription PCR (RT-PCR) assay
was performed to select T, generation, which was obtained from
healthy T; plants grown on the half-strength Murashige and

Skoog (1/2 MS)-agar medium containing 30 mg/L Hygromycin.
Homozygous RmMYBI08 OE lines (#7, #9, and #11) in the T3
generation were further identified by screening of Hygromycin
resistance and PCR.

Stress Treatments of Arabidopsis

For induce stress as oxidation, dehydration, and salt, sterilized
seeds or 1-week-old seedlings of Arabidopsis were grown in
1/2 MS medium containing 3% sugar and 0.75% agar, which
was further supplemented with or without 1.2 mM hydrogen
peroxide (H,0;), 150 mM mannitol, or 150 mM NaCl. The
plates were incubated under 12-h light/12-h dark cycle at
23°C vertically. To induce cold stress, the sterilized seeds and
1-week-old seedlings in plates without any supplement were
incubated in a growth chamber that was maintained at 15 or
4°C vertically. The seed germination and seedling growth were
observed and measured after cultivating for 1 and 2 weeks,
respectively. To test the freezing tolerance of OE lines, the 20-
day-old Arabidopsis plants were cold-acclimated at 4°C for 12 h
and then subjected to —10°C for 2.5 or 4 h. Subsequently, the
plants were subjected again to 4°C for 12 h and then grown
at 23°C.

Physiological Measurements of Plants

The leaves of 20-day old wild-type (WT) plants and RmMYBI108
OE lines were collected after exposure to 4°C for 0, 1, 3, 6 12,
and 24 h. The relative conductivity (RC), superoxide dismutase
(SOD) activity, peroxidase (POD) activity, and malondialdehyde
(MDA) content of plant leaves were measured as described earlier
(Miao et al., 2010).

Measurement of Chlorophyll

Fluorescence

The 20-days-old WT and transgenic Arabidopsis plants were
exposed to 4°C for 0, 1, 3, 6, 12, and 24 h; the rosette
leaves of Arabidopsis were used for measuring chlorophyll
fluorescence. The initial fluorescence (F,) and the highest
electronic efficiency (Fy/Fp) of photosystem II (PS II) were
measured using IMAGING-PAM (Walz, Germany), according to
the instructions of the manufacturer. The same leaf position was
used for measurements in both plant groups.

Statistics and Analysis

All data were subjected to ANOVA, followed by the least
significant difference test. All statistical analyses were performed
using IBM SPSS (New York, NY, United States) software.
The results were displayed by graphs and charts using
GraphPad Prism 8.0.

RESULTS AND ANALYSIS

R2R3-RmMYBs Potentially Regulate
Plant Growth, Development, and Stress

Tolerance in R. multiflora
The analysis of R. multiflora RNA-seq data (SRA accession
no.: PRINA698412) revealed many differentially expressed genes,
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which encoded TFs involved in metabolism, transcription,
transport, and signal transduction in response to cold stress.
For example, some genes belonging to the AP2/ERF, MYB, and
NAC families were expressed in higher levels at both 4°C (CT1)
and —20°C (CT2) than at 25°C (CK); however, the specific
functions of most of these genes are unknown. In this study, we
focused on how the R2R3-RmMYBs respond to low-temperature
stress in R. multiflora. Based on the FPKM data, 37 R2R3-
RmMYB genes (Supplementary Table 2 and Supplementary
Figure 1) exhibited three expression trends in response to cold
treatment. Genes including RmMYB018 and RmMYB44b were
upregulated in the CT1 and CT2 treatments, while genes such
as RmMYB308c and RmMYB24a were downregulated in both
treatments. Several genes including RmMYB35 and RMMYBI106
were induced only at CT1.

To understand the possible function as well as identifying
potential chilling stress-responsive genes in this family, 119
R2R3-MYBs with complete sequences, which were extracted
from 2R subgroup (Supplementary Table 3), were identified

and named by referring to the protein BLAST results and the
naming principle of R2R3-MYB in R. chinensis (Han et al., 2019;
Supplementary Figure 2). Notably, the TFs with identical names
were differentiated by lowercase letters; these MYB TFs showed
extremely similar sequences and blastp results (Supplementary
Table 4). According to the function of 134 Arabidopsis R2R3-
MYBs (Supplementary Table 5), 114 R2R3-MYBs in R. multiflora
were divided and clustered to 30 function-annotated and six
function-unknown subgroups, with the exception of 5 R2R3-
MYBs, which shared low sequence similarity with AtMYBs in
the ML phylogenetic tree (Figure 1). Based on their functional
annotation, RmMYBs were divided into three classes. RmMYBs
in class I were further divided into eight subgroups (i.e., S9, S10,
S16, S24, S25, S26, S29, and S33) and were involved in specific
metabolisms, such as the regulation of lignin, anthocyanin,
and flavonol biosynthesis. For example, RmMYBS8e clustered
closely with AtMYBI1 and AtMYBI2, which modulate flavonoid
biosynthesis in favor of flavonol accumulation (Pandey et al,
2015; Wang et al., 2016). Class II contained 14 subgroups (i.e.,
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S2, 83, $4, S11, S13, S14, S15, S19, S20, S21, S23, S30, S31, and
$35), and RmMYBs in these subgroups played important roles in
the fate of the plant cell, especially in the regulation of axillary
meristem and stamen development. Class III RmMYBs, which
were divided into eight clades (i.e., S1, S6, S8, S18, S22, $32, S34,

and $36), were involved in the response to biotic and abiotic
stress. In class III, some RmMYBs showed a close relationship
with Arabidopsis R2R3-MYBs involved in stress tolerance, such
as AtMYB21 (Zhang et al., 2021), AtMYB44 (Jung et al., 2007),
or AtMYBI108 (Cui et al., 2013). Furthermore, some R2R3-MYB
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FIGURE 2 | R2R3-MYBs in R. multifiora respond to chilling stress.Relative expression level and fragments per kilobase per million (FPKM) of (A) RmMYB108,
(B) RmMYB44b, (C) RmMYB35, (D) RmMYB114b, (E) RmMYB44a, (F) RmMYB106, (G) RmMYB4b, (H) RmMYB308c, (1) RmMYB308d, (J) RmMYB30a, (K)
RmDIVa, (L) BmMYB24b, (M) RmSRM1, (N) RmMYB33, (0) RmMYB5 under 25°C (CK), 4°C (CT1) and —20°C (CT2). The correlation coefficient of each gene
between FPKM from RNA-seq and relative expression level from quantitative real-time polymerase chain reaction (QRT-PCR) was represented by R? (coefficient of
determination). *p < 0.05; *p < 0.01; and ***p < 0.001 in statistics. The aligned sequences of both R2 (P) and R3 (Q) domains of 15 R2R3-MYB from R. muiltifiora
were evolutionarily highly conserved.
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genes involved in the response to abiotic and biotic stress were
also involved in the regulation of stamen development or specific
metabolisms. These results suggest that R. multiflora R2R3-MYBs
perform a wide range of functions including the regulation of
growth and development of rose plants, as well as its tolerance
to harsh environments.

Rosa multiflora R2R3-MYB Genes

Response to Chilling Stress

The R. multiflora RNA-seq data analysis and prediction of gene
function revealed a total of 15 stress-responsive R2R3-MYB
genes (Figure 2). The gene expression analysis by using

the qRT-PCR confirmed that RmMYBI108, RmMYB44b, and
RmMYB44a were upregulated in response to chilling stress,
while RmMYBI106, RmMYB35, RmMYBI114b, and RmMYB308¢c
were upregulated at 4°C and downregulated at —20°C. Moreover,
the expression trends of the abovementioned genes showed a
strong correlation with the RNA-seq results. However, while
some other R. multiflora genes such as DIVARICATA (RmDIVa),
RmMYB308d, and Salt-Related MYB1 were differentially
expressed under low-temperature treatment, their correlation
between gRT-PCR and RNA-seq data was not significant
(Figures 2A-0). The alignments of the amino acid sequence
of the R domains of these 15 R2R3-MYBs showed that the Myb
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domains of R2 and R3 were evolutionarily highly conserved,
with spacer sequences [-W-(X19)-W-(X19)-W-.. .-F/I-(X18)-
W-(X18)-W-] (Figures 2P,Q).

Thus, the results of the prediction of gene function together
with RNA-seq data revealed that the 15 R. multiflora R2R3-
MYB genes are responsive to the cold treatment. Among those
genes, RmMYBI108 showed the highest relative expression level,
and its expression trend was fitted with the transcriptome result
under low-temperature treatment. In addition, the effect of
RmMYBI08 on plant cold tolerance has not been investigated to
date although the phylogenetic tree showed that RmMYB108 has
a close relationship with R2R3-MYBs of Arabidopsis which are
involved in stress resistance. Therefore, we further explored the
potential role of RmMYBI108 in cold tolerance in Arabidopsis.

Molecular Characterization of
RmMmMYB108

The expression of RmMYBI108 was first investigated under stress
due to cold, salt, and drought using the qRT-PCR. At 4°C,
RmMYB108 expression in rose leaves was induced within 0.5-2 h
of the treatment, peaked at 1 h, and then decreased to its original

level at 2 h. Furthermore, under cold stress, RmMYBI108 showed
a greater increase in the expression in roots over time, with the
highest value at 8 h (Figure 3A). Notably, the expression pattern
of RmMYBI08 under salt stress (150 mM NaCl) was similar to
that under cold stress (Figure 3B). In the drought treatment,
the RmMYBI08 expression peaked at 6 h in roots and at 12 h
in leaves (Figure 3C). Thus, the expression of RmMYBI108 in
rose leaves and roots was affected by stress due to cold, salt,
and drought at different time points. Interestingly, these results
suggest that rose leaves sense environmental signals earlier than
roots, although roots potentially exhibited a greater tolerance to
stress than leaves.

To determine the subcellular localization of the RmMYB108
protein, the RmMYBI08 CDS was fused with the N-terminus
of the GFP gene. As expected, RmMYB108 was localized to the
nucleus in tobacco epidermal cells (Figure 3D). In addition, the
experiments conducted in yeast confirmed that the full-length
RmMYBI108 exhibited self-activation, as the yeast AH109 cells
transformed with the pGBKT7-RmMYBI108 and pGBT9 (PC)
grew well on the SD/-Trp/-His medium and turned blue on the
selective medium containing X-a-Gal (Figure 3E).
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FIGURE 4 | Identification of RmMYB108-overexpressing Arabidopsis and cold tolerance contrast between wild type (WT) and #7, #9, and #11 OE lines at early
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Overexpression of RmMYB108 Enhanced
the Cold Tolerance of Arabidopsis at the
Early Growth Stage

To characterize the function of RmMYBI108, pCAMBIA1301-
RmMYB108 was transformed into Arabidopsis via the
Agrobacterium-mediated transformation. Three RmMYBI108
OE lines (#7, #9, and #11) were identified by using the
semiquantitative RT-PCR (Figure 4A). We then compared the
growth and cold tolerance of WT and RmMYB108 OE lines
at the stages of germination and seedling. The rate of seed
germination of the WT was similar to that of the OE lines under

normal (no stress) conditions but reduced significantly at 15 and
4°C. While 98% of the transgenic seeds stayed alive, more than
40% WT seeds showed no germination at 4°C (Figures 4B,C).
Interestingly, the growth vigor of seedlings (determined by their
fresh weight and primary root length) was weaker in the WT
than in OE lines even at 23°C, and the growth potential of
WT seedlings was affected more dramatically than that of OE
lines with the decrease in temperature (Figures 4D-F). At 14
days after treatment, the weight of WT seedlings decreased by
31.78% at 15°C and by 90.27% at 4°C, whereas that of OE lines
decreased by 13.6 and 82.78%, respectively. These results suggest
that the OE of RmMYBI08 in Arabidopsis accelerated the plant
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growth as well as enhanced tolerance to chilling temperatures
by alleviating stress-induced inhibition of seed germination
and plant growth.

Overexpression of RmMYB108 Enhanced
Cold Tolerance at Maturity

The cold tolerance assays were further carried out in mature
plants of the WT and OE lines. When exposed to -10°C for
4 h, transgenic plants showed a higher survival rate and greater
tolerance against freezing stress than WT plants, with several
yellow leaves (Figure 5A), whereas WT plants showed the most
withered leaves and less than 15% survival (Figure 5B). When
the duration of freezing stress was shortened to 2.5 h, the survival
rate of WT plants increased to 20%, while that of OE lines
was maintained at approximately 80% (Figures 5B,C). Forty-
day-old transgenic plants were more robust than WT plants
with or without cold treatment. A short exposure to freezing
temperatures greatly harmed WT plants, as evident from the
sharp reduction in the plant height from 19 to 8 cm, whereas OE
lines suffered less damage, as the plant height decreased only from
31.22 to 21.27 cm (Figure 5D). In addition, flowering and silique
formation occurred earlier in OE lines than in the WT under
CK and cold conditions. The first silique appeared at 29 days
in the WT and 22.5 days in OE lines under normal conditions
but at 41.33 and 28.43 days, respectively, under cold conditions
(Figure 5E). Furthermore, after freezing, silique length of the
WT was only 5.95 cm, which is much shorter than that of OE
lines with 13.00 cm at average (Figures 5E,G). These results
suggest that the OE of RmMYBI08 in Arabidopsis improved
cold tolerance of the plant and shortened the plant growth cycle
even after freezing.

Overexpression of RmMYB108 Induced
Physiological Changes in Arabidopsis

The healthy WT and OE lines were grown under the treatment
at 4°C for 1 week, while the leaves of these plants were green,
with no indication of wilting or dehydration. The physiological
changes were observed in plants within 24 h of treatment at 4°C
and indicated that all the physiological indexes of WT plants
and OE lines showed the same variational trend under cold
treatment in the vegetative phase. The SOD and POD activities
of Arabidopsis peaked at 6 h after chilling stress, and their values
were higher in OE lines than in WT plants at each time point,
except at 0 h. For example, compared with the control at 6 h,
SOD activity increased by 128.08% in the WT and by 284.20,
291.96, and 281.87% in OE lines #7, #9, and #11, respectively
(Figures 6A,B). In addition, MDA content and RC, which exhibit
a negative correlation with cold tolerance, showed a greater
increase in WT plants than in OE lines. At 24 h, the RC of WT
lines increased by 20%, whereas that of OE lines increased by
an average of 15.54% (Figures 6C,D). Furthermore, the value
of F,, which shows a linear relationship with the content of
photosynthetic pigment, increased more in WT plants than in
OE lines under chilling stress (Figure 6E). The value of F,/Fp,
decreased over time from 0.795 to 0.490 in the W, 0.806 to 0.570
in line #7, 0.809 to 0.579 in line #9, and 0.805 to 0.577 in line
#11 (Figure 6F).

RmMYB108 Improves Plant Cold
Tolerance by Upregulating the CBF

Cascade
The expression of some marker genes involved in cold tolerance
was tested in the WT and OE lines under chilling stress. Genes,
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such as AtICE1, AtCOR47A, AtCBF3, AtCORI5B, and AtRD29A
(Zhou et al., 2011; Thalhammer and Hincha, 2014), in the ICE1-
CBF-COR cascade showed a similar expression in the WT and
OE lines under normal conditions. Under chilling stress, all genes
were upregulated, reaching peak values at 3 or 6 h (Figures 7A-
E), with more drastic changes in OE lines than in the WT. No
phenotypic difference was apparent between WT plants and OE
lines at continuous 4°C; however, the accumulation of oxides and
loss of permeability of the cell membrane were observed in plants
of all genotypes. Notably, compared with WT plants, all OE lines
showed a minimal injury with a similar trend in physiological
indexes and expression of genes related to cold resistance.

Overexpression of RmMYB108

Decreases Sensitivity to Other Stress

The seed germination and seedling growth of Arabidopsis were
investigated under other stress to exemplify the essential role
of RmMYBI08 in abiotic stress tolerance. In deionized water,
WT and transgenic seeds showed the same germination rate
(Figure 8A). However, in the presence of 1.2 mM H,0;, 150 mM
mannitol, or 150 mM NaCl, the germination rate of WT seeds
decreased to 50-70%, while that of OE lines #7, #9, and #11
remained over 95% (Figure 8B). Furthermore, the vigor of WT
seedlings was lower than that of OE lines in all treatments. The
fresh weight and primary root length of WT seedlings were
significantly lower than those of OE lines in the treatment of
stress due to oxidation, drought, and salt (Figure 8C). Under
normal conditions, the average primary root length of WT
seedlings was 38.79 mm, while that of OE lines was approximately
46.63 mm; however, when treated with 1.2 mM H,0,, 150 mM
mannitol, and 150 mM NaCl, the average primary root length
decreased to 11, 7.47, and 13 mm in the WT and averaged
to 14.59, 13.27, and 18.82 mm in the OE lines, respectively
(Figures 8D,E). Additionally, water deficiency or 200 mM NaCl
treatments for 10 days significantly damaged the growth and
development of Arabidopsis plants (Figure 8F). The survival rate
of WT was less than 20% in both salt and drought treatments after
returning to normal growth conditions, while that of OE lines
was maintained at 60-80% (Figures 8G,H). These phenomena
revealed that RmMYB108 enhanced plant tolerance to stress due
to dehydration and oxidation.

DISCUSSION

The R2R3-MYBs play essential roles in responses of the plant to
abiotic stress. MYB genes in wheat [ Triticum aestivum; TaMYB31
and TaMpcl-D4 (Myb protein colorless 1 located on chromosome
D)] and cotton (Gossypium hirsutum; GaMYB85) respond to
drought stress (Zhao et al., 2018; Li et al,, 2020). Similarly,
the Salt Stress Regulator 1 (PtrSSRI) gene in poplar (Populus
trichocarpa), AcoMYB4 in pineapple (Ananas comosus), and
SiMYB305 in sesame (Sesamum indicum) mediate the tolerance
against stress due to salt or drought through abscisic acid (ABA)
signaling (Fang et al., 2017; Chen H. et al., 2020; Dossa et al,,
2020). In apple (Malus domestica), MdMYB308L, MdMYB23,
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MdMYB88, and MdMYB124 regulated cold hardiness via CBF-  the cold tolerance response of R. multiflora (Figure 1). The
dependent and CBF-independent pathways (An et al., 2018; ICEI-CBF-COR gene cascade has been shown to contribute to
Xie et al, 2018; An et al, 2020). In this study, we found cold acclimation by protecting plants from freezing damage
that RmMYB108, RmMYB44a, and RmMYB44b participated in  in Arabidopsis (Zhao et al., 2015). AtICEI, AtCBF3, AtRD29A,
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AtCORI15B, and AtCOR47A were upregulated in Arabidopsis
within 24 h under chilling stress, and RmMYBI108 OE lines
showed the higher expression levels of these genes than
those in WT plants (Figure 7). Furthermore, the promoter
of ICE1 harbors MYB-binding sequences (Supplementary
Table 6). Therefore, we predicted that RmMYBI08 enhances
cold tolerance probably via the CBF-dependent pathway in
Arabidopsis (Supplementary Figure 3).

RmMYBI108 was upregulated in the transcriptome of
R. multiflora in response to low-temperature stress, improved
the ability to resist abiotic stress, and accelerated the growth
of Arabidopsis plants by regulating changes in proteins in the
cytoplasm or by indirectly maintaining the integrity of the cell
membrane under stress. The stress due to low temperature,
drought, and salt limits the availability of water to plant cells
(Khan et al., 2018). This stress can cause membrane rupture
and the outward flow of ions due to difference in osmotic
pressure between the intra- and extracellular spaces, leading
to plasmolysis and even cell death (Djemal and Khoudi, 2016;
Ritonga and Chen, 2020). RmMYBI108, which acts as a TF in
the nucleus, regulates the expression of downstream genes
probably by binding to their promoter regions on receiving the
signals due to abiotic stress transmitted by the receptors. These
genes generally participate in the minimization of oxidative
damage, ion and water balance, osmotic stress response, and
specific metabolisms to protect plant cells from water-related
stress (Figure 6; Khan et al., 2018). Once the culture conditions
were appropriate, the OE lines recovered and blossomed faster
than WT obviously.

The recent studies showed that MYBI108 orthologs are
associated with plant development, specific metabolisms, and
stress response. MYB108 is believed to be a JA-responsive TF
involved in the development of stamen and pollen and defense
signaling in plants (Mandaokar and Browse, 2009; Cheng et al.,
2016; Xu et al., 2019). RmMYBI108 has a close relationship with
AtMYBI112, AtMYB78, and AtMYBI108 in Arabidopsis (Figure 1
and Supplementary Figure 2); AtMYBI12 responds to salinity
and high-light stress (Lotkowska et al., 2015), AtMYB78 belongs
to ABA-related genes (Sun et al, 2020), and AtMYBI08 acts
as a negative regulator of ABA-induced cell death, (Cui et al,,
2013). In Prunus mume, PmMYBI08 (90% sequence similarity
with RmMYBI08) is positively associated with organ color
(Zhang et al, 2018). In R. chinensis, RcMYBI108, which is
homologous to RmMYBI108 (94.17% sequence similarity), was
upregulated during petal senescence and shedding, and silencing
of ReMYBIO08 altered the expression of senescence-associated
genes and blocked ethylene- and JA-induced petal senescence
(Zhang et al., 2019). Interestingly, when Arabidopsis seeds were
cultured at 4°C for 6 months, we found that the speed of
seed germination and plant growth was greatly reduced (data
not shown). The germination rate of WT seeds was very
low, whereas the seeds of most of the OE lines germinated
well, and the resulting seedlings subsequently bloomed under
harsh environments. After transferring to normal conditions,
the transgenic plants grew well and quickly formed siliques.
By contrast, WT seedlings showed a very low survival rate.
Based on the evaluation of stress tolerance of OE lines and

WT plants, we speculated that the RmMYBI108 gene promotes
cell division and differentiation to facilitate plant senescence,
shortens the plant growth cycle, and enhances tolerance
against abiotic stress.

In addition to an increasing plant yield, plant breeders
focus on how to shorten the breeding period and increase the
environmental stress resistance of plants (Bhatta et al., 2021).
These breeding goals can generally be achieved through the
genetic modification of plants by targeting genes encoding TFs
(Hoang et al., 2017; Khan et al., 2018; Nowicka et al., 2018; Baillo
et al,, 2019). In this study, OE of RmMYB108 in Arabidopsis
promoted the tolerance against stress due to drought, salt, and
freezing of transgenic plants, manipulated their growth cycle,
and increased their biomass and seed yield under cold stress.
This approach can be used to accelerate wood growth, reduce
the length of the plant breeding cycle, enhance stress tolerance,
and improve land utilization by developing more productive
and resilient crops that can feed the global population, which is
predicted to reach 10 billion by 2050 (Bhatta et al., 2021).
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Supplementary Figure 1 | The heatmap indicated row-normalized fragments per
kilobase per million (FPKM) of 37 R2R3-MYBs from the RNA-seq database under
25°C (CK), 4°C (CT1), —20°C (CT2) in Rosa muitiflora.

Supplementary Figure 2 | The phylogenetic tree of R2R3-MYB genes among
Rosa multiflora, Rosa chinensis, and Arabidopsis thaliana. Red triangle marked
R2R3-MYBs in R. multiflora, green star marked R2R3-MYBs in R. chinensis, and
blue circle represented R2R3-MYBs in A. thaliana.

Supplementary Figure 3 | The putative regulation network of RmMYB108 after
encountering chilling in overexpressed RmMYB108 Arabidopsis.

Supplementary Table 1 | The primers names and sequences (5'-3') for
quantitative real-time polymerase chain reaction (QRT-PCR), reverse-transcriptase
polymerase chain reaction (RT-PCR), cloning, overexpression, subcellular
localization, and self-activation.
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