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Plants are composed of cells that physically interact and constantly adapt to their 
environment. To reveal the contribution of each plant cells to the biology of the entire 
organism, their molecular, morphological, and physiological attributes must be quantified 
and analyzed in the context of the morphology of the plant organs. The emergence of 
single-cell/nucleus omics technologies now allows plant biologists to access different 
modalities of individual cells including their epigenome and transcriptome to reveal the 
unique molecular properties of each cell composing the plant and their dynamic 
regulation during cell differentiation and in response to their environment. In this 
manuscript, we provide a perspective regarding the challenges and strategies to collect 
plant single-cell biological datasets and their analysis in the context of cellular interactions. 
As an example, we provide an analysis of the transcriptional regulation of the Arabidopsis 
genes controlling the differentiation of the root hair cells at the single-cell level. We also 
discuss the perspective of the use of spatial profiling to complement existing plant 
single-cell omics.

Keywords: transcriptomics, single-cell omics, multi-omics analyses, spatial transcriptomics, cell-to-cell 
interactions

INTRODUCTION: HOW SINGLE-CELL APPROACH CAN HELP 
TO ENHANCE OUR UNDERSTANDING OF PLANTS AS 
BIOLOGICAL SYSTEMS?

Plants are complex and very dynamic biological systems composed of various cell types that 
communicate together and constantly respond to their environment. Therefore, to better 
understand plants as biological systems, there is a need to understand the contribution of 
each cell to the biology of the organism, to reveal the unique and dynamic response of each 
plant cell to environmental stimuli, and to characterize how cell-to-cell communication plays 
a role in controlling these responses. To reach such knowledge, plant scientists must gain 
molecular information from each cell composing the tissue/organ/plant and analyze this 
information in the context of the spatial organization of the organ and interaction of the 
cells (Figure  1).

The emergence of single-cell omics technologies and their recent application on plant 
organs now enable the characterization of the molecular attributes of thousands of cells in 
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one single experiment (Rich-Griffin et  al., 2020; Shaw et  al., 
2021). For instance, recent studies reported the establishment 
of Arabidopsis roots, stomatal cells, and maize anther cell 
transcriptomes at the single-cell level using isolated protoplasts 
or nuclei as input (Denyer et  al., 2019; Jean-Baptiste et  al., 
2019; Nelms and Walbot, 2019; Ryu et al., 2019; Shulse et al., 
2019; Zhang et  al., 2019; Liu et  al., 2020b; Farmer et  al., 
2021). To complement this first set of information, single-
cell ATAC-seq was also applied on nuclei isolated from 
Arabidopsis roots and various maize organs to reveal the 
differential chromatin accessibility between plant cell types 
(Dorrity et  al., 2020; Marand et  al., 2020; Farmer et  al., 
2021). Recently, Farmer et  al. (2021) integrated single-nuclei 
RNA-seq and ATAC-seq datasets to reveal the impact of 
chromatin accessibility in controlling gene expression and 
the differential organization of the Arabidopsis genome between 
cell types. While informative, these analyses require the 
abolition of the interactions between plant cells, a 
pre-requirement to the study of the molecular attributes of 
each plant cell. In this manuscript, we  provide an update 
about the current limitations and advantages associated with 
the use of single-cell omics technologies to study plant cell 
biology notably in the context of cell-to-cell communication. 
As an example, we  provide a comprehensive analysis of the 
differential transcriptional regulation between H and N cells, 
epidermal root cells differentiating into trichoblasts and 
atrichoblasts, respectively.

ACCESSING ISOLATED PLANT 
BIOLOGICAL ENTITIES TO CONDUCT 
OMICS ANALYSES

Plant biologists face unique challenges when characterizing the 
molecular attributes of each plant cell. First, the presence of 
the cell wall prevents the isolation of plant cells. To overcome 
this first difficulty, several groups used enzymatic cocktails to 
digest the plant cell wall and release plant protoplasts. These 
protoplasts were used as input into microfluidic systems to 
generate single-cell barcoded cDNA libraries and establish the 
transcriptomes of the Arabidopsis root cells (Denyer et al., 2019; 
Jean-Baptiste et  al., 2019; Ryu et  al., 2019; Shulse et  al., 2019; 
Turco et  al., 2019; Zhang et  al., 2019; Shahan et  al., 2020; Song 
et  al., 2020; Wendrich et  al., 2020), stomatal cells (Liu et  al., 
2020b; Lopez-Anido et  al., 2020), leaf phloem cells (Kim et  al., 
2020), and sperm cells (Misra et al., 2019), and the transcriptomes 
of the cells composing the rice root tip (Liu et  al., 2021) and 
the maize shoot apical meristem (Satterlee et al., 2020), developing 
ears (Xu et  al., 2021) and anther (Nelms and Walbot, 2019). 
However, the release of a representative and viable population 
of protoplasts would require constant optimization by taking 
into consideration the unique biochemical composition of the 
cell wall without compromising protoplast viability. Therefore, 
the establishment of a protoplast-based single-cell transcriptome 
might be restricted to a limited number of plant species, organs, 

A B C D

FIGURE 1 | Schematic representation of the analysis of plant cell-to-cell interaction using single-cell omics technologies. Plant organs are composed by physically 
interacting somatic cells that constantly adapt to their biological environment (A). The analysis of the epigenomic and transcriptomic profiles of isolated plant cells 
(i.e., epigenome and transcriptome) requires the isolation of individual cells and nuclei (B) before the construction of DNA sequencing libraries (C). Therefore, the 
relative position of the cell in the organ and its interaction with somatic, microbial, and pathogenic cells is lost. A systems view of plant cellular communication would 
require the capture of cellular modalities in the context of the morphology of the plant sample before their integration using computational tools (D).
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and cell types. For instance, Shulse et  al. (2019) noticed that 
the transcriptome of differentiated endodermal cells that are 
characterized by the suberization of their cell wall was missing 
in Arabidopsis root protoplast single-cell transcriptomic datasets 
(Shulse et  al., 2019). It is also important to acknowledge that 
plant protoplasts are prone to bursting and that protoplastization 
leads to the activation of the expression of protoplast-induced 
genes (Birnbaum et  al., 2003).

As an alternative to the use of plant protoplasts, plant nuclei 
were recently utilized to establish biologically meaningful 
transcriptomic information from the Arabidopsis root (Farmer 
et  al., 2021; Long et  al., 2021), inflorescences (Sunaga-Franze 
et  al., 2020), and seeds (Picard et  al., 2020), and the tomato 
shoot apex (Tian et  al., 2020). Besides, the use of isolated 
nuclei revealed the transcriptome of Arabidopsis roots cells 
that were not captured by protoplast-based single-cell 
transcriptomes likely due to the limited digestibility of their 
cell wall (Farmer et al., 2021). Therefore, this method represents 
an alternative to the use of plant protoplasts to broadly access 
the transcriptome of plant cells from different species and 
organs (Sunaga-Franze et  al., 2020; Thibivilliers et  al., 2020; 
Thibivilliers and Libault, 2021). However, accessing a more 
limited pool of polyadenylated transcripts from an isolated 
nucleus compared to an entire cell would necessarily lead to 
the detection of a lower number of expressed genes per nucleus 
vs. per protoplast. Considering that isolated nuclei are also 
prone to RNA leakage when not properly manipulated, the 
depth of the nuclear transcriptome might be  low when using 
damaged nuclei. On the other hand, the nuclear transcriptome 
could be considered as a snapshot of the dynamic transcriptional 
activity of the genes while the cellular transcriptome may 
represent an integration of gene activity over time [i.e., the 
half-life of the cellular mRNA is estimated at 9  h in human 
cells (Schwanhausser et  al., 2011)]. Hence, the nuclear 
transcriptome should allow the characterization of the early 
and more subtle responses of the cell in response to stress. 
Nevertheless, despite its challenges, it has been demonstrated 
that the nuclear transcriptome is sufficient to decode the tissue 
heterogeneity to a similar level to the cellular transcriptome.

MULTI-OMICS APPROACHES TO 
REVEAL PLANT CELL DYNAMICS

Accessing one molecular modality of plant cells, such as their 
transcriptome, is a major milestone. However, to capture the 
entire diversity and subtle differences existing between cells 
and to reveal cell-type-specific regulatory networks and biological 
processes, there is a need to characterize and integrate different 
modalities at the single-cell level (Iacono et al., 2019; Hu et al., 
2020; Jackson et  al., 2020). Previous studies revealed changes 
in the patterns of histone modifications and gene expression 
of the Arabidopsis stomatal cells (Lee et  al., 2019), and in 
the profile of methylation of the Arabidopsis root cell types 
(Kawakatsu et  al., 2016). More recently, Dorrity et  al. (2020) 
and Farmer et al. (2021) characterized the profiles of chromatin 
accessibility of Arabidopsis root cells at the single-cell level 

using microfluidic technology on isolated plant nuclei  
(Dorrity et  al., 2020; Farmer et  al., 2021). A similar study 
was also conducted on maize axillary buds, inflorescences, 
whole seedling, embryonic root tips, and post-embryonic crown 
roots cells (Marand et  al., 2020). As a first effort in integrating 
various molecular markers of plant cells, Horvath et  al. (2019) 
revealed that CG-methylated Arabidopsis genes are constitutively 
expressed (Horvath et  al., 2019). More recently, Farmer et  al. 
(2021) revealed the impact of the profiles of chromatin 
accessibility in regulating the transcriptional activity of the 
Arabidopsis root cells (Farmer et  al., 2021). Such approaches 
should be  expanded to other modalities, potentially gained at 
the same time from the same cell, to maximize dataset integration 
and to highlight the relationships existing between structural 
and chemical changes on the genomic DNA, somatic mutations, 
their impact on controlling gene expression and protein 
abundance. Considering the recent emergence of real multi-
omics technology (e.g., analysis of gene expression and profile 
of chromatin accessibility from the same cell/nucleus using 
10x Genomics technology), such technology needs to 
be expanded to other biological modalities to reveal the diverse 
and dynamic use of genomic information, proteome and 
metabolome of thousands of individual plant cells.

CHARACTERIZE MOLECULAR 
MODALITIES AT THE SINGLE-CELL 
LEVEL IN THE CONTEXT OF PLANT 
CELL-TO-CELL INTERACTIONS

Proximal interactions and distal communication between cells 
and organs play critical roles in plant biology. Local 
communication between two cells depends on the formation 
of plasmodesmata that connect the cytoplasm of neighboring 
cells to allow the exchange of proteins, metabolites, and 
nucleotidic sequences. For instance, the transportation of auxin 
and cytokinin between root cells via plasmodesmata plays a 
major role in controlling plant organ differentiation, such as 
the initiation of the formation of lateral root (Mellor et  al., 
2020) and legume nodule, plant organ resulting from the 
symbiotic interaction between legumes and Rhizobia (Fisher 
et  al., 2018). Distal communication also plays a critical role 
in regulating biological processes. For instance, legume nodulation 
is controlled by the autoregulation of nodulation mechanism, 
a distal communication system between the canopy and the 
root of legume plants that regulates the formation of nodules 
and, as a consequence, nitrogen fixation efficiency (Kassaw 
et  al., 2015; Wang et  al., 2018; Suzaki and Nishida, 2019;  
de Bruijn, 2020).

Besides their proximal and distal interactions with other 
somatic cells, plant cells are also subject to interactions with a 
diverse population of microbes. Therefore, plant cells must 
constantly adapt their response upon recognition of symbiotic 
and pathogenic microbes notably by regulating cell-to-cell 
trafficking (Aung et al., 2020). Decades of work on plant microbes 
interactions revealed that the response of plant cells to microbial 
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infection is complex and sequential. Upon recognition of the 
pathogen, a first response, the MAMP-triggered immunity 
response, is initiated. Later, the effector-triggered immunity 
response will allow the infected plant cell to initiate a more 
specific response to the microbe (Jones and Dangl, 2006; Naveed 
et  al., 2020). These two types of immunity form the plant cell-
autonomous immunity. Increasing the complexity of these 
interactions, the neighboring plant cells to an event of infection 
will trigger a non-cell-autonomous immunity response to minimize 
new events of infection by the same microbe. This immunity 
is activated upon communication between plant cells (Yan et al., 
2019; Aung et  al., 2020; Li et  al., 2020; Zeng et  al., 2020). 
Considering that different events of interaction and infection 
co-occur in a complex organ, the molecular characterization of 
the cell-autonomous and non-cell-autonomous responses of plant 
cells to a pathogenic infection remains challenging when conducted 
at the level of complex tissues and organs. Similar challenges 
are also faced by plant scientists when considering other complex 
cellular interactions including mutualistic symbiotic interactions 
between plants and microorganisms (e.g., legume nodulation 
and arbuscular mycorrhization) or when considering the 
interactions of plants with multicellular organisms, such as 
nematodes and insects. Single-cell approaches represent an 
attractive solution to reveal the cell-autonomous and non-cell-
autonomous regulatory programs activated and repressed by the 
plant in response to microbial infection and pathogenic organisms. 
Ultimately, considering that the transcriptome of plant cells at 
different stages of infection will be  captured and considering 
the development of performant computational tools to create 
transcriptomic trajectories (Qiu et  al., 2017; Hao et  al., 2020), 
the use of single-cell omics technology will clarify the sequential 
transcriptomic response of the plant cell to pathogenic infections.

To enhance our understanding of the biology of the plants 
as a complex and organized cellular system, the molecular attributes 
of each cell should be characterized in the context of the morphology 
of the tissue/organ. However, as mentioned above, a pre-requirement 
to the use of single-cell omics technologies is the dissociation of 
the tissue to access independent biological entities (i.e., cells or 
nuclei) and, consequently, the loss of the spatial organization of 
the cells in the tissue. This limitation is partially recovered by 
the use of performant dimensionality reduction methods (e.g., 
UMAP and t-SNE) that allow the annotation of the plant cells 
based on their molecular attribute. Therefore, the dividing/
differentiating cells have been reported to be  located in the center 
of dimensionality reduction maps while differentiated cells are 
located at their periphery (Ryu et  al., 2019; Farmer et  al., 2021).

THE ARABIDOPSIS ROOT SINGLE-CELL 
TRANSCRIPTOME HIGHLIGHTS THE 
ROLE OF CELL-TO-CELL 
INTERACTIONS IN CONTROLLING ROOT 
HAIR DIFFERENTIATION

To evaluate the usefulness of single-cell transcriptomes in the 
context of cell-to-cell communication, we  looked at the 

transcriptional activity of the Arabidopsis genes involved in 
the differentiation process and patterning of the root epidermal 
cells, a biological process that depends on intercellular 
communication between cortical and epidermal cells. The genes 
controlling the differentiation of the epidermal cells into H 
and N cells (i.e., trichoblasts and atrichoblasts, respectively) 
have been well characterized through a series of functional 
genomic studies (Salazar-Henao et  al., 2016). Upon detection 
of a signal generated in large quantities by the two cortical 
cells underlying an H cell, the root epidermal leucine-rich 
repeat receptor SCRAMBLED (SCM) repressed the expression 
of the MYB transcription factor WEREWOLF exclusively in 
the H cells (Kwak et  al., 2005; Kwak and Schiefelbein, 2007; 
Wang et  al., 2019). Mining the recently published Arabidopsis 
single-cell/nucleus RNA-seq UMAP projections (Farmer et  al., 
2021), we  found WER mostly transcriptionally active only in 
a subpopulation of atrichoblasts, and in the lower branch of 
the cortical cells (Figure  2). As expected, WER was not 
significantly expressed in the H cells. In the N cells, WER 
interacts with GLABRA3 (GL3), ENHANCER OF GLABRA3 
(EGL3), and TRANSPARENT TESTA GLABRA (TTG) to induce 
the expression of CAPRICE (CPC), TRIPTYCHON (TRY), and 
GLABRA2 (GL2) (Koshino-Kimura et  al., 2005). Mining the 
single-cell/nucleus transcriptome, we observed the co-expression 
of TTG, CPC, TRY, and GL2 genes, and, at a lower level, the 
expression of GL3 and EGL3 in the atrichoblast cluster (Figure 2). 
Besides, GL3, EGL3, TTG, and CPC are also expressed in the 
trichoblast cluster. This observation is supported by the role 
of these genes in controlling the differentiation of H cells 
notably by repressing the expression of GL2 (Kurata et  al., 
2005). Indeed, we  did not detect any GL2 transcripts, nor 
TRY, into the cells and nuclei composing the trichoblast cluster 
as supported by previously published works (Rerie et  al., 1994; 
Di Cristina et al., 1996; Masucci et al., 1996). This transcriptomic 
analysis at the single-cell level supports functional genomic 
studies showing the co-expression of major regulatory genes 
controlling the differentiation process and patterning of the 
root epidermal cells. However, the isolations of protoplasts or 
nuclei before conducting single-cell omics analyses necessarily 
lead to the loss of the physical interactions between cells. 
Therefore, the molecular information collected on isolated cells 
cannot be  analyzed in the context of the relative position of 
the cells in the organ and their interactions with their 
neighboring cells.

PERSPECTIVES

To gain a systems view of plant cellular communication, there 
is a need to quantify molecular modalities of individual cells 
in the context of the morphology of the organ analyzed, or 
at least to bridge information gained from single-cell approaches 
with the relative position of the cells.

Spatially resolved transcriptomics technologies offer an 
opportunity to access the transcriptome of cells or groups of 
cells in the context of the morphology of the organ analyzed. 
While spatial methods are now routinely applied in animal 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Thibivilliers and Libault Single-Cell Omics and Cell-to-Cell Interactions

Frontiers in Plant Science | www.frontiersin.org 5 August 2021 | Volume 12 | Article 696811

science, the plant scientific community starts to discuss their 
use to better understand gene regulation (Giacomello and 
Lundeberg, 2018; Gurazada et al., 2021). Spatial transcriptomics 
technologies will also facilitate the characterization of 

cell-type-specific molecular markers. While marker genes are well 
characterized in model plant species, such as Arabidopsis thaliana 
(e.g., Denyer et  al., 2019; Jean-Baptiste et  al., 2019; Ryu et  al., 
2019; Shulse et al., 2019; Zhang et al., 2019; Farmer et al., 2021),  

FIGURE 2 | Transcriptional activity of the Arabidopsis genes playing a major role during root epidermal cell differentiation, a biological process that depends on 
intercellular communication (top left panel). The relative expression levels of the genes controlling Arabidopsis epidermal cell differentiation are highlighted in yellow/
red color. The cortical, N, and H cell clusters are, respectively, highlighted in blue, green, and red on the top right panel. Shortly, a biological signal produced in high 
quantities by two cortical cells underlying a single H root epidermal cell is detected by the epidermal cell-localized leucine-rich repeat receptor SCM. This recognition 
notably leads to the repression of the expression of the WER gene and the initiation of epidermal cell differentiation. Based on the previous studies, WER and GL2 
are expected to be specifically expressed in the N cells (green cluster). Besides, we found that WER is also expressed in cortical cells (blue cells). As expected, the 
expression of GL3 and EGL3 is almost exclusively restricted to the H cells (red cells). Sc/sNucRNA-seq datasets also confirmed the transcriptional activity of TTG1 
in both N and H cells (green and red cells). However, CPC seems to have a ubiquitous transcriptional activity.
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non-model species suffer from limited access to the cell-type-
specific marker genes needed to properly annotate the various 
cell types composing an organ based in their transcriptomic 
information. The use of spatial transcriptomics technology on 
plant organ cross-sections will allow the characterization of 
cell-type-specific marker genes in the morphological context 
of the organ analyzed. This knowledge can be used to enhance 
the functional annotation of plant single-cell clusters; especially 
from plant species or organs where the number of functionally 
validated single-cell marker genes is limited.

Two strategies have been used to enable spatial 
transcriptomics analyses. On the one hand, Slide-seq (Rodriques 
et  al., 2019) and Visium technology from 10x Genomics® 
are based on the use of nucleotide spatial barcodes arrayed 
on a slide. On the other hand, High-Definition Spatial 
Transcriptomics (Vickovic et  al., 2019) and Spatial Molecular 
Imaging technology from Nanostring® offer very high-level 
resolution transcriptomes of complex organs. Applied to plant 
samples, these technologies will enable the accurate analysis 
of the differential use of the genomic information between 
plant cells and the impact of cell-to-cell interactions in 
controlling biological processes. However, it is important to 
acknowledge that spatial omics technologies suffer from several 
limitations. First, the resolution of the information gained 
might requires the use of computational methods for 
deconvolution of the Visium pots (e.g., the 10x Genomics 
Visium Gene Expression spots are 55 μm in diameter leading 
to the analysis of the transcriptome of several plant cells per 
spots; Andersson et  al., 2020; Elosua-Bayes et  al., 2021). 
Second, spatial omics technologies are currently almost 
exclusively restricted to the analysis of the transcriptome. To 
overcome this limitation, Liu et al. (2020a) recently developed 

Deterministic Barcoding in Tissue (DBiT-seq) technology 
allowing the quantification of transcripts abundance and the 
detection of proteins of interest in the context of the morphology 
of tissue (Liu et  al., 2020a). To date, this method has been 
applied on mouse embryos and will likely require substantial 
optimization before implementing its use on plant samples. 
Such an approach will need to be expanded to cover additional 
molecular modalities to gain a deeper understanding of plant 
cell biology and to reveal the impact of these modalities on 
cell biology, physiology, and morphology.
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