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Effective evaluation of physiological and biochemical indexes and drought degree of tea

plant is an important technology to determine the drought resistance ability of tea plants.

At present, the traditional detection method of tea drought stress is mainly based on

physiological and biochemical detection, which is not only destructive to tea plants, but

also time-consuming and laborious. In this study, through simulating drought treatment

of tea plant, hyperspectral camera was used to obtain spectral data of tea leaves, and

three machine learning models, namely, support vector machine (SVM), random forest

(RF), and partial least-squares (PLS) regression, were used to model malondialdehyde

(MDA), electrolyte leakage (EL), maximum efficiency of photosystem II (Fv/Fm), soluble

saccharide (SS), and drought damage degree (DDD) of tea leaves. The results showed

that the competitive adaptive reweighted sampling (CARS)-PLS model of MDA had

the best effect among the four physiological and biochemical indexes (Rcal = 0.96,

Rp = 0.92, RPD = 3.51). Uninformative variable elimination (UVE)-SVM model was the

best in DDD (Rcal= 0.97, Rp= 0.95, RPD= 4.28). Therefore, through the establishment

of machine learning model using hyperspectral imaging technology, we can monitor

the drought degree of tea seedlings under drought stress. This method is not only

non-destructive, but also fast and accurate, which is expected to be widely used in tea

garden water regime monitoring.

Keywords: hyperspectral imaging, machine learning, non-destructive testing, tea plants, drought assessment

INTRODUCTION

Drought is the main factor affecting crop growth and development, which affects crop quality
and yield worldwide. With climate change, especially global warming and the increase in non-
agricultural water demand, drought will seriously affect the growth, yield, and quality of tea
(Sharma and Kumar, 2005). According to reports, drought reduced tea production by 14–33%
and caused 6–19% of plant deaths (Cheruiyot et al., 2010). At present, there are many traditional
methods to detect the drought status of tea plants (Tian et al., 2019), but it is urgent to find a more
timely and efficient detection method for tea drought status.
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Recent studies have documented and explained the response
of plant systems to drought stress. Tea plants adapt to drought
stress through a series of physiological and biochemical reactions,
such as osmotic pressure regulation, antioxidant activity, and
plant hormone regulation (Liu and Chen, 2014). Under drought
stress conditions, the content of soluble saccharide (SS) in
tea plants will increase to cope with the stress. However, tea
plants will cause membrane peroxidation, which will damage the
membrane system and detect the increase in electrolyte leakage
(EL) in plant cells. The content of malondialdehyde (MDA)
as an oxidation product will increase, which will reduce the
photosynthetic intensity of the cell membrane-dependent system.
At this time, the maximum efficiency of the photosystem II
value of plants will be lower than the normal level. In general,
MDA, EL, maximum efficiency of photosystem II (Fv/Fm), and
SS are used to evaluate the drought status of tea plants (Prieto
et al., 2009; Soleimanzadeh, 2010; Guo et al., 2017). However,
these traditional methods are not only time-consuming but also
destructive (Tian et al., 2019).

Therefore, how to detect the physiological and biochemical
components of plants under drought stress in real time is an
urgent problem to be solved. Hyperspectral imaging technology,
as a new phenotypic research technology, makes it possible to
quickly, accurately, and non-destructively assess the water status
of tea plants. Hyperspectral data have the characteristics of high
spectral resolution, wide spectral range, continuous band, and
rich information. Previous studies on hyperspectral imaging
mainly used vegetation index or characteristic bands as input
variables. The method of using vegetation index as a modeling
variable has the characteristics of a small amount of data and
fast calculation speed, which can be used for the large-scale data
evaluation. For example, Zovko et al. (2019) found that using
vegetation index to establish the prediction model can predict
the drought degree of grape to a certain extent. Wang et al.
(2014b) used the vegetation index (PRI, RENDVI, OSAVI, etc.)
of spring wheat to build the corresponding stress prediction
model, and they found that the model has a certain significance
for monitoring the degree of crop stress in semi-arid stress
areas. Zelazny and Lukáš (2020) found that RGI, CI, RNDVI,
and GI of rape seedlings were related to drought intensity, and
they took them as input variables to establish a drought stress
prediction model of rape seedlings, which achieved good results.
The method of characteristic bands as modeling variable has
the characteristics of high accuracy and strong generalization
ability. There are also related studies on this method. Kong et al.
(2016) used partial least-squares (PLS) regression, LS-SVM, and
ELM algorithms to extract the characteristic bands of MDA of
oilseed rape leaves as the input variables of the model, and they
found that the characteristic bands extracted by this method
mainly concentrated in the range of 524–868 nm, and the model
achieved the expected effect. Jiang et al. (2016) used competitive
adaptive reweighted sampling (CARS) and GA algorithms to
extract the characteristic bands of potato SS, and they found that
the model had a good prediction ability in 450–470-, 520–560-,
730–810-, 860–890-, and 910–980-nm bands (Jiang et al., 2016).

Previous studies used various algorithms to analyze the
correlation of different types of data and establish a robust

prediction model. Shi and Cheng used multiplicative scatter
correction (MSC), first derivative (1D), second derivative (2D),
and Savitzky–Golay (S-G) to preprocess hyperspectral image
data, and they found that these preprocessing algorithms have
an excellent effect on eliminating baseline drift and multiple
scattering effects (Shi et al., 2014; Cheng et al., 2019). Filho
et al. used successive projections algorithm (SPA), uninformative
variable elimination (UVE), CARS, and other algorithms to
extract sample feature data, and they found that these algorithms
can extract the most representative sample subset from the
dataset (Araújo et al., 2001; Filho et al., 2004; Zhang et al., 2010;
Li et al., 2019a). Qin et al. used support vector machine (SVM),
random forest (RF), PLS regression, and other algorithms to
model the sample set, and they found that these algorithms can
adapt to different data types for modeling and analyzing and can
establish stable mathematical models (Qin and He, 2005; Iverson
et al., 2008; Lin et al., 2016). The above studies showed that
choosing the appropriate algorithms for different types of data
can save calculation time and improve the accuracy of themodels.
However, the comprehensive evaluation of tea drought status
using hyperspectral imaging technology and the mathematical
algorithm has not been reported.

In this study, hyperspectral imaging technology was used
to comprehensively evaluate the drought status of tea plants.
MSC, 1D, 2D, and S-G algorithms were used as preprocessing
methods; SPA, UVE, and CARS algorithms were used as feature
band screening methods; and SVM, RF, and PLS algorithms were
used as prediction models. The principal component analysis
(PCA) was used to weight the MDA, EL, and SS, which were
positively correlated with the drought degree of tea plants, and
a comprehensive evaluation index of drought degree of tea plants
was obtained: drought damage degree (DDD), so as to more
accurately reflect the drought stress suffered by tea plants.

MATERIALS AND METHODS

Experimental Design
The experiment was carried out in the greenhouse of Qingdao
Agricultural University. The movable cultivation platform in the
greenhouse is 3.5m long and 1m wide, with a total of four
rows. The variety of tea plants is “Zhongcha 108,” and the age
of seedlings is 2 years. The soil, substrate, and tea seedlings
were disinfected, and 576 tea seedlings were cultivated in plug
culture. OnDecember 21, 2020, the tea plants will be precultured,
and the tea seedlings will be irrigated quantitatively to keep the
relative humidity of soil at about 50%. The air humidity in the
greenhouse will be controlled at about 40% by the humidifier,
and the temperature will be set at 26◦C in the daytime and 20◦C
at night. The greenhouse was ventilated for 1–2 h every day, and
the culture lasted for 2 weeks. From January 4, 2021, to January
19, 2021, the sprinkler irrigation or irrigation was stopped, the air
humidifier was closed, and other conditions remained unchanged
to simulate the drought stress of tea plants by high temperature
and natural water loss. From 10:00 a.m. to 12:00 a.m., most of
the biochemical indicators increased at noon, and we chose this
time to sample and collect their data (Zhang et al., 2006; Guo
et al., 2008). Each time 30 tea plants were randomly selected,
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FIGURE 1 | Hyperspectral image acquisition system.

one mature leaf was taken from each tea plant, and a total of
30 samples were collected for hyperspectral data collection. The
physiological and biochemical indexes of collected leaves were
determined, and each sample was repeated three times. In this
experiment, 180 samples were collected for six times.

Data Acquisition
Collection of Spectral Data

The hyperspectral image acquisition system device is shown
in Figure 1 (Supplementary Figure 1 shows the detailed
components of the system), which mainly includes imaging
spectral camera (Gaia field pro-v10, Finland), light source
(Hsia-ls-t-200w, China), displacement platform, PC, and other
components. In order to get a clearer image, the exposure time is
9ms, the field angle is 22◦, and the object distance (the distance
from the sample to the lens) is 38 cm. The color temperature of
the light source is 3,000K. The spectral range of the collected
image is 400–1,100 nm, and the size of hyperspectral image
data block is 960 pixels × 1,101 pixels × 176 bands. In order
to improve the signal-to-noise ratio of hyperspectral image, the
black-and-white correction method is used to remove the dark
current noise caused by the internal current instability of the
spectral camera (Talens et al., 2013). The formula of black and
white correction is:

C = 65552(R− D)/(W − D)

where C is the corrected image, R is the original image, D andW
are all black and all white images, respectively, and 65,552 is the
maximum value of digital quantization value (DN).

Determination of MDA, EL, Fv/Fm, SS, and DDD

The physiological and biochemical indexes of tea leaves were
measured by fresh samples, and the specific methods are
as follows:

Determination of MDA and SS: the fresh leaf samples crushed
by grinding machine (IKA A11, Germany) were extracted with

TABLE 1 | Descriptive statistics of drought-induced components and drought

damage degree of total fresh leaf samples.

Index Maximum Minimum Average value Standard deviation

MDA (mmol/kg FW) 9.61 3.26 5.95 1.76

EL (%) 49.70 18.76 33.14 7.29

Fv/Fm 0.92 0.6 0.76 0.07

SS (mmol/g FW) 13.1 5.1 8.98 1.93

DDD(Level) 9.06 3.65 6.07 1.40

TBA (4,6-dihydroxy-2-mercaptopyrimidine) solution at 100◦C.
According to the colorimetric method described by Li et al.
(2019b), the absorption value of MDA and SS was read at 532
and 450 nm, respectively, by spectrophotometer (Zhou and Leul,
1999; Morales and Munné-Bosch, 2019; Tian et al., 2019).

Determination of EL: the leaf samples were cut and rinsed
with deionized water for a short time. Under the condition of-
−0.1MPa, the vacuum pump (SHB-IIIA, China) was used to
vacuum for 10min. According to the method described by Tian
et al., the conductivity (C1) was measured by conductivity meter
(DDSJ-308A, China). Then, the solution was boiled for 10min,
and the conductivity (C2) was measured after cooling (Kate and
Johnson, 2000; Tian et al., 2019; Takashima et al., 2021).

RPC (%) = C1/C2 × 100

Determination of Fv/Fm: After dark treatment for 20–30min, the
Fv/Fm value of tea leaves was determined by Fluor Pen (Fluor Pen
FP110Hand held chlorophyll fluorometer, Czech Republic).

Determination of soil relative moisture: the relative moisture
of the soil at the time of sample collection was determined by
using a soil moisture-measuring instrument (TOP Cloud-agri
TZS-I, China).

The process of obtaining DDD: three physiological data
(MDA, EC, and SS) positively correlated with drought degree of
tea plant were standardized, and the eigenvalues and eigenvectors
of the correlation matrix were calculated, and the principal
component score was calculated according to the cumulative
contribution rate (the sum of the three variables is >0.85, so the
three variables are available). The calculation formula of DDD
can be obtained:

Y = 0.359X1 + 0.341X2 + 0.3X3

where X1 is MDA, X2 is EL, and X3 is SS. The contents of
drought-induced components and DDD are shown in Table 1,
mainly including maximum, minimum, average, and standard
deviation. The distributions of drought-induced components and
DDD of six periods under drought stress are shown in Figure 2;
the change of soil relative humidity during drought treatment is
shown in Supplementary Figure 2.

Extraction of Spectral Variables
In the hyperspectral image processing software Specview
(Dualix spectral imaging, China), the hyperspectral image is
corrected by lens correction and reflectance correction, and the
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FIGURE 2 | Data distribution of drought-induced components (three repeats) and damage degree of six periods under drought stress (boxplot) (A). Malondialdehyde

content; (B). electrolyte leakage; (C). Fv/Fm; (D). soluble saccharide content; (E). drought damage degree. The data box in the figure below different letters are

significantly different at P < 0.05 according to Duncan’s test.

standardized hyperspectral image is obtained. In the remote
sensing image processing software Envi5.3 (RSI, America),
threshold segmentation is used to remove the background
pixels of the corrected hyperspectral image, and the average
spectral value of the leaf part is extracted by the combination
of binarization and mask (Duan, 2016). The average spectra of
all samples are extracted in turn, and the 176 × 180 (number of
variables × number of samples) spectral matrix is obtained. The
specific process is shown in Figure 3.

Spectral Data Preprocessing Method
In order to enhance the correlation between spectral parameters
and tea plant indexes, the original data were preprocessed
by MSC, S-G, and differential method (1D, 2D), where MSC
is a common data processing method for multiwavelength
modeling at present. The processed spectral data can effectively

eliminate the scattering effect and enhance the quality of spectral
information. The relevant formula is as follows:

Calculate the average spectrum :X (i) =

∑n
i=1 x (i)

n

Linear regression :X (i) = m (i) ∗x (i) + b (i)

MSC correction :X (i)(msc) =
x (i) − b (i)

m (i)

where X is the original spectral matrix of the sample,
X (i) ,m (i) , b (i) , and X (i)(msc) are the surface original spectral
mean, regression constant, regression coefficient, and MSC-
corrected spectrum of the ith sample.

Savitzky–Golay (S-G estimates the ideal spectral value of the
spectral data point by fitting or averaging the data points within
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FIGURE 3 | Hyperspectral image processing flow of tea leaves: Hyperspectral image, ROI image (band math, segmentation image, masking), and average spectrum.
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FIGURE 4 | Image comparison of unprocessed spectral data and preprocessed spectral data. (A) Original spectral data; (B). multiplicative scatter correction +

second derivative + Savitzky-Golay (17); (C). multiplicative scatter correction + second derivative + Savitzky-Golay (19); (D). multiplicative scatter correction+ second

derivative + Savitzky-Golay (7); (E). multiplicative scatter correction + first derivative + Savitzky-Golay (5); (F). multiplicative scatter correction+ second derivative +

Savitzky-Golay (17).

a certain size window range (the window width is generally
odd) around the single-point spectral data, so as to reduce
the interference of the irregular fluctuation noise signal in the
spectral data to the data point and improve the signal-to-
noise ratio of the spectral data. The formula of S-G smoothing
algorithm is as follows:

X∗

i =

∑
j=−r Xi +Wj
∑r

j=−r Wj

where X∗
i , Xi is a spectral data point before and after S-G

smoothing, and Wj is the weight factor obtained by smoothing
the moving window with window width 2R+ 1.

Derivative is mainly used for baseline correction and
background interference removal of spectral data, so as to
improve the resolution of spectral data. Due to the interference
of different components of the sample and the experimental
environment, the baseline shift (the position of the signal line
changes) and the overlap of the spectral lines are directly caused.
Therefore, the spectrum can be preprocessed by first derivative
(1D) or second derivative (2D) to provide clearer spectral profile
changes. However, when the original spectrum does not have
a good signal-to-noise ratio, the derivative algorithm will also
amplify the noise signal (Yan et al., 2001; Chu, 2004). The specific

algorithm formula of the differential method is as follows:

First derivative :
dy

dλ

=
yi+1 − yi

1λ

Second derivative :
d2y

dλ2
=

yi+1 − 2yi + yi− 1

1λ2

Model Accuracy Verification
The accuracy of the prediction model is measured by R2, RMSE,
and RPD. If R2 is larger and RMSE is smaller, the accuracy of
the model is higher and the model is more stable; otherwise, the
accuracy of the model is lower and the model is more unstable
(Cui et al., 2017). In addition, when RPD ≥ 2, it shows that the
model has an excellent prediction ability. When 1.4 ≤ RPD < 2,
it shows that the model can roughly estimate the sample, while
RPD < 1.4 shows that the model cannot predict the sample (Yu
et al., 2016).

RESULTS AND ANALYSIS

Significant Difference Analysis and
Division of Modeling Sample Set
The drought-induced components of tea leaves were ranked
according to time; the calibration set and prediction set of
samples were selected according to the ratio of 3:1. The sample
numbers of the calibration set and the prediction set are 135
and 45, respectively. The data distribution of the training set and
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FIGURE 5 | Distribution of characteristic bands. (A) Malondialdehyde-uninformative variable elimination; (B). Malondialdehyde-competitive adaptive reweighted

sampling; (C). Malondialdehyde-successive projections algorithm; (D). Electrolyte leakage-uninformative variable elimination; (E). Electrolyte leakage-competitive

adaptive reweighted sampling; (F). Electrolyte leakage-successive projections algorithm; (G). Fv/Fm-uninformative variable elimination; (H). Fv/Fm-competitive

adaptive reweighted sampling; (I). Fv/Fm-successive projections algorithm; (J). Soluble saccharide-uninformative variable elimination; (K). Soluble

saccharide-competitive adaptive reweighted sampling; (L). Soluble saccharide-successive projections algorithm; (M). Drought damage degree-uninformative variable

elimination; (N). Drought damage degree-competitive adaptive reweighted sampling; (O). Drought damage degree-successive projections algorithm.
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TABLE 2 | Bands screening results.

Index Screening method Number of bands Characteristic bands (nm)

MDA UVE 85 466–535, 540–580, 730–760, 790–820, 830–870, 950

CARS 36 450, 520, 600–620, 650–670, 740–780, 800, 920, 950

SPA 33 400–460, 520, 550, 650, 670–690, 750, 810–880, 900–970

EL UVE 57 530–550, 590–660, 690–730, 770–810, 850–910, 960

CARS 20 460–490, 540, 560–590, 750, 790–820, 850, 880, 930

SPA 26 430–470, 550, 600–680, 740, 750, 800–860

Fv/Fm UVE 73 535–570, 600–670, 780–830, 840–920, 930–950

CARS 20 460, 670, 700–740, 780, 820–850, 900–920

SPA 27 400, 520, 540, 690, 750–810, 870–930, 960–980

SS UVE 68 430–460, 530–570, 590–660, 690–750, 770–810, 850–910

CARS 15 420–440, 500, 530, 580–620, 670, 810, 870, 950

SPA 26 540–600, 670, 700, 750, 810, 850–930, 950–990

DDD UVE 71 450–530, 540–600, 670–820, 830–870, 910, 950

CARS 27 450, 520, 550, 600, 660, 700, 740, 810, 900, 950

SPA 26 400–430, 520, 540, 590–670, 700–740, 810–840, 970

the prediction set is shown in Supplementary Material, mainly
including maximum value, minimum value, average value, and
standard deviation.

Preprocessing of Hyperspectral Data
In order to reduce the influence of the external environment and
the dark current of the spectrometer, and reduce the baseline
drift, light scattering, and other noises of the spectrum, we
preprocessed the spectrum. In this paper, MSC, derivative (1D,
2D), and S-G technology are used to preprocess hyperspectral
data (Tian et al., 2005; Zhao et al., 2005; Lu et al., 2019b).
The spectral differences caused by different scattering levels
are eliminated, and the correlation between spectra and data
is enhanced. It can be seen from Figure 4 that, through
pretreatment, it is found that the peak valley of the spectral bands
is obvious, avoiding the interference of overlapping peaks and
improving the resolution and sensitivity of the spectrum.

Selection of Characteristic Wavelength
In order to improve the accuracy of the model and reduce
the influence of noise and irrelevant bands, we screened 176
bands of spectral data. In this paper, three methods are used to
select the characteristic bands: UVE, SPA, and CARS (Chen and
Chen, 2005; Wu et al., 2009; Shi et al., 2018). The distribution
of characteristic bands is shown in Figure 5. It can be seen
from Table 2 that in MDA-related characteristic bands screening
method, the number of characteristic bands screened by UVE
is the most, which is 85, and that by SPA was the least, 33. In
the selection method of characteristic bands related to EC, the
number of characteristic bands screened by UVE was the most,
57, and that by CARS was the least, 20. In the feature bands
selection method related to Fv/Fm, the number of characteristic
bands screened by UVE was the most, 73, and that by CARS
was the least, 20. Among the methods for screening characteristic
bands related to SS, the number of characteristic bands screened

TABLE 3 | Optimal screening results.

Index Optimal method Rcal RMSEC Rp RMSEP

MDA MSC+2D+S-G (17) +CARS 0.96 0.36 0.92 0.46

EL MSC+2D+S-G (19) + UVE 0.90 0.022 0.82 0.032

Fv/Fm MSC+2D+S-G (7) +CARS 0.98 0.01 0.81 0.03

SS MSC+1D+S-G (5) +UVE 0.87 0.09 0.87 0.69

DDD MSC+2D+S-D (17) + UVE 0.98 0.28 0.95 0.32

by UVE was the largest (68), and the number screened by CARS
was the least (15). In themethod of feature bands selection related
to DG, the number of characteristic bands screened by UVE was
the largest, which was 71, and that by SPA was the least, 26. It can
be seen from Table 3 that the optimal bands selection methods
for MDA, EL, Fv/Fm, SS, and DDD models are MSC+2D+ S-G
(17) +CARS, MSC+2D+S-G (19) + UVE, MSC+2D+S-G (7)
+CARS, MSC+1D+S-G (5)+UVE, andMSC+2D+S–D (17)+
UVE, respectively.

Modeling and Analysis Based on
Characteristic Bands
In order to establish the algorithmmodel of tea tree with different
indexes, we use the feature vectors extracted by UVE, CARS, and
SPA as the input variables of SVM, RF, and PLS models (Vapnik,
1998; Carrascal et al., 2010; Shao et al., 2012; Dong and Huang,
2013; Li, 2013; Zhou, 2016). Table 4 shows the results of the
validation of the model with prediction set samples; it can be
seen fromTable 4 that, inMDAprediction, CARS-PLSmodel has
the highest accuracy and SPA-RF model has the lowest accuracy.
Among themodels ofMDA, EL, Fv/Fm, SS, andDDD, themodels
with the highest prediction accuracy are CARS-PLS, UVE-RF,
CARS-SVM, UVE-PLS, and UVE-SVM respectively. The models
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TABLE 4 | Modeling results.

Index Modeling method Rcal RMSEC RMSECV Rp RMECP RPD

MDA MSC+2D+S-G (17) + UVE+SVM 0.97 0.33 0.45 0.90 0.55 3.19

MSC+1D+ S-G (15) +SPA+RF 0.96 0.34 0.36 0.91 0.54 3.01

MSC+2D+ S-G (17) +CARS+PLS 0.96 0.36 0.38 0.92 0.46 3.51

EL MSC+1D+S-G (21) +UVE+SVM 0.88 0.031 0.38 0.75 0.034 1.78

MSC+2D+S-G (19) +UVE+RF 0.90 0.022 0.021 0.81 0.032 2.00

MSC+2D+S-G (17) +SPA+PLS 0.88 0.11 0.034 0.76 0.035 1.90

Fv/Fm MSC+2D+S-G (7) +CARS+SVM 0.98 0.01 0.02 0.81 0.03 2.29

MSC+1D+S-G (7) +SPA+RF 0.94 0.017 0.021 0.83 0.027 2.15

MSC+2D+S-G (5) +SPA+PLS 0.89 0.069 0.021 0.80 0.031 2.23

SS MSC+1D+S-G (13) +UVE+ SVM 0.87 0.68 0.68 0.84 0.79 2.41

MSC+1D+S-G (13) +SPA+RF 0.93 0.50 0.36 0.86 0.73 2.46

MSC+1D+S-G (5) +UVE+PLS 0.87 0.09 0.71 0.87 0.69 2.72

DDD MSC+2D+S-G (17) +UVE+SVM 0.97 0.28 0.021 0.95 0.32 4.28

MSC+2D+S-G (15) +SPA+RF 0.96 0.29 0.29 0.92 0.40 3.27

MSC+2D+S-G (15) +CARS+PLS 0.92 0.077 0.41 0.91 0.43 3.27

with the lowest accuracy were SPA-RF, UVE-SVM, SPA-RF, UVE-
SVM, and CARS-PLS, respectively. Among the four physiological
and biochemical indexes of MDA, EL, Fv/Fm, and SS, the CARS-
PLS model of MDA had the best effect, and Rp, RMSEP, and
RPD were 0.92, 0.46, and 3.51, respectively. The results showed
that the UVE-SVM model of DDD index for the comprehensive
evaluation of tea drought degree had the highest precision and
the best effect, and Rp, RMSEP, and RPD were 0.95, 0.32, and
4.28, respectively. Figure 6 shows the scatter distribution of the
real value and the predicted value of the prediction sample set.

DISCUSSION

In this study, we found that the models of MDA, EL, Fv/Fm, and
SS have a precise prediction ability in the inversion process of
physiological/biochemical indexes and hyperspectral data of tea
plants; these physiological and biochemical indexes are closely
related to the drought state of tea plant, which has important
physiological significance (Tian et al., 2019). Moreover, using
MDA, SS, and EL to evaluate the stress degree of tea plants
comprehensively can eliminate the deviation of single index
evaluation to a certain extent, which is consistent with the
conclusion of Liang et al. (2014). In this experiment, the
estimation ability of the optimal models of MDA, EL, Fv/Fm,
SS, and DDD all reached the expected effect (Rp > 0.8), which
means that this method can quickly and non-destructively detect
the drought state of tea plants.

The Optimization of Input Variables and
Algorithms Is of Great Significance to
Improve the Accuracy and Efficiency of
Hyperspectral Data Inversion
First, in the selection of input datasets, a large number of
previous studies used the vegetation index to evaluate stress

(Wang et al., 2014a; Lu et al., 2019a). Due to the relatively
small amount of information of vegetation index and the
lack of stable vegetation index closely related to drought
stress, the generalization ability of the final model may be
reduced. Therefore, multialgorithm modeling analysis based
on full bands is adopted in this experiment, which improves
the accuracy of the model and makes the determination
coefficients of the five models to evaluate the drought state
of tea trees above 0.8, which proves the superiority of the
experimental model.

In this experiment, we use a variety of feature extraction
methods, including UVE, CARS, and SPA, to reduce redundant
information and computing time, simplify data, and improve
model accuracy. Then, the model of five indexes is established
by machine learning method. The results showed that the
optimization model had high precision and strong stability,
which indicated that it was feasible to predict the physiological
and biochemical indexes of tea and evaluate the drought
status of tea by hyperspectral technology. Among them, the
performance of UVE-SVM model of comprehensive index DDD
(Rcal = 0.97, RMSEC = 0.28, Rp = 0.95, RMSEP = 0.32,
RPD = 4.28) is better than that of other four physiological and
biochemical indexes (MDA, EL, Fv/Fm, and SS), indicating that
the method of combining multiple single indexes to evaluate
plant drought status is better than a single index. Among the
four physiological and biochemical indexes, CARS-PLS model
had the highest prediction accuracy of MDA (Rcal = 0.96,
RMSEC = 0.36, Rp = 0.92, RMSEP = 0.46, RPD = 3.51),
which indicated that the relationship between MDA content
and spectrum was more close than other physiological and
biochemical indexes. It is expected that this model can be used
to detect MDA content in tea seedlings, so as to evaluate the
drought situation of tea plants. In the prediction models of
EL, Fv/Fm, and SS, the RPD of the models was 2.72, 2.29, and
2.00 respectively, which was ≥2.00, indicating that the three
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FIGURE 6 | Scatter plot of real and predicted values. (A). Malondialdehyde-support vector machine; (B). Malondialdehyde-random forest; (C).

Malondialdehyde-partial least-squares regression; (D). Electrolyte leakage-support vector machine; (E). Electrolyte leakage-random forest; (F). Electrolyte

leakage-partial least-squares regression; (G). Fv/Fm-support vector machine; (H). Fv/Fm-random forest; (I). Fv/Fm-partial least-squares regression; (J). Soluble

saccharide-support vector machine; (K). Soluble saccharide-random forest; (L). Soluble saccharide-partial least-squares regression; (M) Drought damage

degree-support vector machine; (N). Drought damage degree-random forest; (O). Drought damage degree-partial least-squares regression.
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models had a good prediction ability and the stress state of young
tea plants.

The Quantity and Quality of the Selected
Characteristic Bands Have an Indirect
Effect on the Model
Spectral data analysis needs to include a large number of
samples, resulting in a large number of redundant data in the
spectral matrix. And the original spectral data are prone to the
phenomenon of spectral peak overlap, which leads to the slow
speed and low efficiency of spectral analysis. In addition, the
spectral matrix information unrelated to the sample detection
index will have a great impact on the prediction accuracy
of the model. Therefore, the performance of the prediction
model can be improved by extracting characteristic wavelengths
and removing redundant spectral variables from the collected
spectral data.

In this experiment, we screened the variables to obtain amodel
with stronger generalization ability. In the screening results
of MDA, EL, Fv/Fm, and SS, it was found that the spectral
regions of 600–700, 700–780, and 800–850 nm appeared, and the
positions of these peaks were closely related to the wavelength of
vegetation index RENDVI and NDVI, which were also the two
best indicators proposed by Kim et al. (2011) when they studied
the response of plants to drought. In addition, in Kong et al.’s
research (Kong et al., 2012), it is found that the characteristic
bands of barley MDA are around 404 and 981 nm, and the
selected characteristic bands are located at the two ends of the
selected band range, in the visible and near-infrared regions, with
large span and instability, and the possibility of noise interference
is not excluded. In this experiment, the best characteristic band
of MDA is 466–535, 540–580, 730–760, 790–820, 830–870, and
950 nm, which is different from the results of previous studies.
The reason may be that with the increase of drought degree,
MDA, as a product of plant peroxidation reaction, shows the
increase of cell membrane permeability and respiration, which
leads to the increase of reflectance in the visible region and
the decrease of reflectance in the near-infrared region, thus
increasing the characteristic bands (Soleimanzadeh, 2010). In
research (Zhang et al., 2019), we found that the characteristic
bands of conductivity of corn seeds were concentrated in the
range of 400–600 and 760–1,000 nm. The screening results of
UVE of EL in this experiment were 430–460, 530–570, 590–
660, 690–740, 770–810, and 850–910 nm, which were similar to
the previous research results; the optimal characteristic bands
of Fv/Fm are 400, 520, 540, 690, 750–810, 870–930, and 960–
980 nm. The reason may be that SPA algorithm chooses the
variable combination with the least redundant information and
the least collinearity, and the reflectance of near-infrared band in
spectral data is quite different, which is different from previous
research results. In the screening results of Fv/Fm characteristic
bands, the corresponding bands (531 and 570 nm) of vegetation
index PRI can be found, which is an effective index proposed
by Wu and Niu (2008) in the study of plant photochemical
vegetation index. In the visible light region of 400–700 nm, tea
leaves absorbed a lot of visible light, but under drought stress, the

photosynthesis of tea plants decreased, resulting in more visible
light reflection and higher canopy original spectral reflectance.
In the range of 700- to 1,000-nm near-infrared region, the
spectral reflectance is greatly affected by the internal structure
of leaves. Drought stress may lead to the disorder of internal
tissue structure and rough cell wall of leaves (Mu et al., 2012), the
complex leaf cavity structure scatters, and reflects near-infrared
light many times, resulting in the decrease of spectral reflectance
(Xu et al., 2017); in the visible light range, the utilization rate
of light energy decreased and the reflectance of visible light
increased, while Fv/Fm value and chlorophyll content could
reflect the light utilization efficiency of plants. The SPA algorithm
screening results of SS in this experiment were 540–600, 730, 750,
810, 850–930, and 950–990 nm. In the range of 560–719 nm, it
is similar to the results of previous studies (Wang et al., 2018),
but this experiment is different from previous studies in the near-
infrared region. The reason may be that with the increase in
SS concentration, the difference of near-infrared light reflection
that leaves do not absorb becomes larger, so it is selected as the
characteristic band by the algorithm.

The Algorithm Characteristics of the Model
Determine the Correlation Between
Hyperspectral Data and Drought Stress
Through the comparison of three modeling methods, it is found
that the optimal models of different data are different, and the
reason may be as follows: SVM model can make full use of the
linear and non-linear information in the spectral data, but it is
difficult to implement for the training set with a large amount
of data. If a large part of the features of the data is lost, the
RF can still maintain the accuracy, but cannot make predictions
beyond the range of the training set data, which may lead to
overfitting in themodeling of some specific noise data. PLSmodel
can find the best function matching by minimizing the sum of
squares of errors, but it can only use the linear information in
spectral data.

In previous studies, it was found that LS-SVM was the best
model for MDA content of barley under herbicide stress, and
the determination coefficient of prediction set Rp = 0.84, but
the RMSEC and RMSEP were 7.87 and 13.79, respectively (Kong
et al., 2012), indicating that the degree of divergence of prediction
results was too large. In this experiment, UVE-SVM is the
best MDA model under drought stress, Rp = 0.9, RMSEP is
only 0.55, which proves that this modeling method is better
than LS-SVM model to some extent; In Zhang et al.’s research,
MSC-GA-PLSR model was the best model for predicting the
conductivity of sweet corn seeds (Zhang et al., 2019), with
Rp = 0.97 and RMSEP = 0.226. In the experiment, CARS-
RF model had the highest accuracy in this experiment, with
Rp = 0.81 and RMSEP = 0.032. The CARS-RF model in
this experiment is more stable than Zhang et al.’s GA-PLSR
model; in this experiment, using a variety of algorithms and
selecting the optimal model, the accuracy of Fv/Fm model of
CARS-SVM (Rp = 0.81, RMSEP = 0.03) is higher than that of
MASAVI2 model using vegetation index (Rp = 0.69, RMSEP
= 8.6) (Zhao et al., 2011), and the stability is higher than
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that of full bands-PLS model (Rp = 0.83, RMSEP = 1.52)
(Ding et al., 2015). According to Wang et al. ’s research, the
vegetation index DSI (D444, D455) was the best linear prediction
model of SS in maize under drought stress (Wang et al., 2018).
The coefficients of determination of D444 and D455 were Rp
= 0.88 and Rp = 0.94, while those of RMSEP were 5.40
and 3.19, respectively. The results showed that the difference
between the two models was large, which may be due to the
limitations of their linear models and their limited ability to
analyze complex hyperspectral data. In this experiment, the
optimal SS-UVE-PLS model (Rp = 0.87, RMSEP = 0.69) is
obtained through a variety of algorithms, and the anti-jamming
ability and prediction accuracy are better than the former. In
this experiment, the three models of comprehensive evaluation
of tea drought damage have an excellent effect, among which the
UVE-SVM model (Rcal = 0.97, Rp = 0.95, RPD = 4.28) is the
best, which proves that the effect of the comprehensive evaluation
model is better than the single physiological and biochemical
index model.

CONCLUSION

In this experiment, we established the hyperspectral data
models of five indexes related to drought evaluation by image
segmentation, spectral preprocessing, and feature band selection.
The results show that the best estimation models of the four
physiological and biochemical indexes (MDA, EC, Fv/Fm, SS,
DDD) were CARS-PLS, UVE-RF, SPA-RF, UVE-PLS, and UVE-
SVM, respectively. The determination coefficients of the model
prediction set were 0.92, 0.81, 0.83, 0.87, and 0.95, respectively.
The models all achieve the expected results, and the prediction
accuracy is very high. Among them, the model of DDD is better
than themodel of the four physiological and biochemical indexes,
which can more comprehensively and objectively estimate the
drought stress suffered by tea plants and effectively evaluate the
drought resistance of tea plants.

Through the research and application of the models, the
automatic irrigation of tea garden can be realized, the water-
use efficiency of tea garden can be improved, and it is of great
significance for water saving and consumption reduction. At the

same time, this study is expected to be used to evaluate the
drought resistance of different tea varieties, so as to screen out
drought-resistant tea varieties.
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